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Thermoelectric transport 
in temperature-driven two-
dimensional topological insulators
H. M. Dong1, L. L. Li2, W. Xu2,3 & J. L. Liu4

We theoretically investigate on the thermoelectric (TE) transport properties of edge and bulk states in 
a temperature-driven two-dimensional (2D) topological insulator (TI) realized from CdTe/HgTe/CdTe 
quantum wells (QWs). It is found that the temperature can effectively drive a TI phase in CdTe/HgTe/
CdTe QWs. We find that the TE transport properties of 2D TI can be governed by edge states, bulk 
states, or their interplay, depending on driving temperature and chemical potential of the system. 
Moreover, we find that the TE figure of merit ZT shows a peak at relatively low temperatures due to 
the competition between bulk and edge transports. This peak vanishes at relatively high temperatures 
due to the dominance of bulk states in the TE transport. With decreasing the ribbon width of the 
temperature-driven 2D TI, the low-temperature ZT exhibits two peaks, among which one occurs due 
to the bulk-edge competition and the other occurs due to the edge-edge hybridization; while the high-
temperature ZT first exhibits the bulk-state behavior and then the edge-state one, which is indicative of 
a bulk-to-edge transition in the TE transport.

In recent years, two-dimensional (2D) and three-dimensional (3D) topological insulators (TIs) have drawn a 
great attention in both condensed matter physics and material science1, 2. TIs are a new class of quantum materials 
with strong spin-orbit couplings (SOC), which leads to the formation of topological edge (in 2D case) and surface 
(in 3D case) states. These boundary (edge or surface) states protected by time-reversal (TR) symmetry are top-
ologically robust against TR-invariant perturbations, and their spin orientations are locked to their momentum 
directions due to spin-momentum lockage3. Since CdTe/HgTe quantum wells (QWs) were first discovered as 2D 
TIs4, 5, many other 2D and 3D TIs have been theoretically predicted and experimentally confirmed in different 
semiconductor systems6–10. Rich and interesting physics, such as quantum spin Hall effect4, 5, finite-size effect11, 12,  
weak localization/anti-localization13, 14, magneto-electric/magneto-optical effects15, 16, electron correlation17, 18,  
elementary excitation19, 20, nonlinear optical response21, 22, etc, in 2D and 3D TIs have been investigated. At pres-
ent, research work in looking for new TI materials and exploring their interesting physical properties is still active.

Recently, 2D and 3D TIs have been proposed as high-performance thermoelectric (TE) materials23–26. The 
physical reason is that by introducing strong disorder into the TIs, the electron conduction carried by edge or 
surface states remains good since these boundary states are topologically robust against disorder while the pho-
non conduction could be largely suppressed due to enhanced phonon scattering by disorder. Thus, one may 
expect that the TE figure of merit ZT can be greatly improved. However, the surface states of 3D TIs are not 
topologically protected against disorder-induced scattering at any angle other than backscattering, although the 
topological robustness of edge states has been verified in 2D TIs based on HgTe QWs27. Therefore, from this 
perspective, 2D TIs are more preferable for the design of high-performance TE materials. Furthermore, 2D TIs 
are also low-dimensional systems, which is also beneficial for the design28: the use of quantum confinement to 
enhance the Seebeck coefficient and the use of numerous interfaces to enhance phonon scattering.

In the most of existing research works, although the authors have investigated the TE transport properties of 
both edge and bulk states in 2D TIs, they have commonly used a rough and imprecise band structure model (e.g., 
the linear and parabolic energy dispersions for the edge and bulk states, respectively) with some free parameters 
such as bulk-electron effective mass, bulk-state band gap, and edge-state hybridization gap. As is well known, 
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in 2D TIs realized from CdTe/HgTe QWs, these important parameters depend strongly on quantum structure 
parameters such as QW thickness4 and ribbon width11. In our previous work, we started from a realistic band 
structure model and studied the influence of QW thickness and ribbon width on the TE transport properties of 
2D TIs based on CdTe/HgTe QWs29. Unfortunately, in that work we only focused on the TE transport properties 
of 2D TIs at a relatively low temperature (T = 60 K). It is known that the temperature could be very important 
for the practical application of TE devices. In the present work, we extend the previous band structure model29 
to include the temperature effect and study the influence of temperature on the TE transport properties of 2D 
TIs based on CdTe/HgTe QWs. The band structure calculation shows that the temperature can effectively drive a 
topological phase transition in CdTe/HgTe QWs. As a result, such important parameters as bulk-electron effec-
tive mass, bulk-state band gap, and edge-electron group velocity are strongly dependent on temperature. Based 
on these results, one may expect that the temperature should have a substantial influence on the TE transport 
properties of 2D TIs based on CdTe/HgTe QWs. This is the prime motivation of the present work. In this work, 
we present a systematic theoretical study of the thermoelectric properties of 2D TIs. We develop a simple and 
transparent theoretical approach to investigate the effects of temperature, chemical potential, and ribbon width 
on the thermoelectric transport properties of edge and bulk states in a 2D TI.

The paper is organized as follows. In Section II, we outline the theoretical approach to calculate the band 
structures and TE transport properties of temperature-driven 2DTIs realized from CdTe/HgTe QWs. In Section 
III, the numerical results are presented and discussed. Finally, the concluding remarks are given in Section IV.

Theoretical Approach
Band structure calculation with temperature effect. We consider a symmetric CdTe/HgTe QW of 
thickness d grown along the [001] direction, i.e., the z-direction. The 2D-plane or (x, y)-plane of this QW is 
designed into a ribbon of width w along the y-direction and of length l along the x-direction. The schematic plot 
of such a model system can be found in our previous work29 and we do not present it here.

With the envelope function theory, the six-band Kane model is used to calculate the energy spectra and wave 
functions of CdTe/HgTe QWs. The model is established on the basis set consisting of six Bloch atomic orbitals: 
two s-like orbitals multiplied by spin and four p-like orbitals coupled with spin to form four orbitals with total 
angular momentum J = 3/2. There are totally seven input parameters used in the six-band Kane model29, i.e., Eg 
(band gap), Ep (parameter related to the Kane’s momentum matrix element), Δso (spin-orbit splitting energy), 
Ac (parameter related to the electron effective mass), and γi (i = 1, 2, 3, three Luttinger paramters). A number of 
empirical expressions for the temperature dependence of Hg1−xCdxTe band gap are available at present30–33. The 
most widely used expression according to Hansen et al.31 is given by

= − . + . − . + . + . −E x x x x T0 302 1 930 0 810 0 832 0 535(1 2 ) /1000, (1)g
2 3

where Eg is in units of eV and T is in units of K. This expression is valid for all alloy composition 0 ≤ x ≤ 1 
and for temperatures 5 ≤ T ≤ 300 K31. The dependence of Eg on temperature automatically leads to 
temperature-dependent Ac via29

= + + ∆ .A E E1 /[3( )] (2)c p g so

Except for Eg and Ac, no other parameters such as Ep, Δso, and γi (i = 1, 2, 3) are dependent on temperature, 
which follows the previous work34. The details of the application of six-band Kane model to CdTe/HgTe QWs 
can be found in ref. 29. Our numerical results show that the temperature has a significant impact on the band 
structure properties of CdTe/HgTe QW, and as will be seen in the Section. III, it can effectively drive a topological 
phase transition in CdTe/HgTe QWs.

With the obtained energy spectra and wave functions for electrons and holes in the CdTe/HgTe QW, we can 
construct an effective 2D Hamiltonian via reduction procedure29. By choosing the electron and hole ground states 
(each state is spin degenerate) as a basis set, the matrix form of this Hamiltonian is given by29
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where k = (kx, ky) is the 2D wavevector, k± = kx ± iky, Ee and Eh are the lowest electron and the highest hole energy 
levels at the center of Brillouin zone, respectively, B and C are related to the electron and heavy-hole effective 
masses, and A is determined by the overlap of wave functions for the lowest electron state and the highest hole 
state at the zone center. These parameters depend sensitively on temperature T and thickness d. As can be seen, 
the effective 2D Hamiltonian consists of two decoupled blocks, which are related by the TR symmetry.

The effective 2D Hamiltonian given by Eq. (3) is employed to calculate the energy spectra and wave functions 
for edge and bulk states in the 2D TI based on the CdTe/HgTe QW. For the 2D TI in the ribbon geometry, we 
assume the periodic boundary condition in the x-direction and confining boundary condition in the y-direction. 
Thus, kx is a good quantum number but ky is replaced by −id/dy. The energy spectra and wave functions for edge 
and bulk states are obtained by solving the following Schrödinger equation
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function with φj(y) (j = 1~4) being the envelop functions along the y-direction. Considering the hard-wall poten-
tial confinement35, φj(y) (j = 1~4) satisfies the following boundary condition

φ = ± = .y w( /2) 0 (5)j

With such a boundary condition, we use the finite difference method36 to numerically solve the Schrödinger 
equation given by Eq. (4).

TE transport coefficients. We now consider the TE transport properties of edge and bulk states in the 2D 
TI ribbon. The transport direction is taken along the x-direction. TE transport coefficients such as electrical con-
ductivity σ, Seebeck coefficient S, and electron thermal conductivity κ can be expressed in terms of the transport 
integrals Lj (j = 0, 1, 2) as follows24
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where e is the elementary charge. By neglecting the phononic contribution to the TE transport, the TE figure of 
merit ZT can be written as24
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In general, the thermoelectric figure of merit ZT is written as

σ
κ κ

=
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with T being the temperature and κe (κp) the electron (phonon) thermal conductivity. It is clear that the inclusion 
of κp leads to a decrease for ZT. Therefore, when designing high-performance thermoelectric materials, one of the 
most efficient methods is to suppress the phonon thermal conductivity as largely as possible, which can enhance 
ZT markedly. In 2D TIs, the phononic thermal conductivity can be suppressed (κp → 0) by doping nonmagnetic 
impurities in the systems in order to achieve the higher ZT. The physical reason is discussed in these two ref-
erences, i.e., strong phonon-nonmagnetic impurity or disorder scatterings can dramatically reduce phononic 
thermal conductivity37, 38.

The edge states in the 2D TI are perfectly conducting and they can be viewed as 1D ballistic transport chan-
nels. To describe the edge-state transport, we use the Landauer-Büttiker formula. The transport coefficients for 
edge states =L j( 0, 1, 2)j

e  are given by24
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where λ = 2 accounts for the spin degeneracy, l is the length of 2D TI ribbon, s is the cross-section area of 2D TI 
ribbon, h is the Plank constant, T(E) is the energy-dependent transmission coefficient, μ is the chemical potential 
of 2D TI ribbon, and = +µ−f E e( ) 1/[ 1]E k T( )/ B  is the Fermi-Dirac function with kB being the Boltzmann con-
stant. Here we consider the following three important features for edge states in the 2D TI ribbon: (1) when the 
electron energy E lies inside the bulk band gap Δb, the transmission probability T(E) = 1 which reflects the per-
fectly conducting nature of edge states; (2) when the finite-size effect is taken into account, the edge states at two 
boundaries of the ribbon can hybridize substantially to open a finite gap Δe in the edge-state energy spectrum; 
and (3) due to presence of such a hybridization gap, the transmission coefficient is given by11
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where β = 1/(kBT). Based on these considerations, the transport integrals Lj
e (j = 0, 1, 2) can be written as
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with Fj(E) = T(E)(E−μ)j(−∂f/∂E). Here we have taken the Dirac point in the edge-state energy spectrum as the 
zero of energy. By making integral variable substitution in Eq. (9), the transport integrals Lj

e (j = 0, 1, 2) can be 
obtained as
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where xb = βΔb/2, xe = βΔe/2, x0 = βμ, and  = +x x e e( ) /[( 1) ]j
j x x 2 .

The bulk-state transport is diffusive and the Boltzmann formalism applies. By solving the Boltzmann trans-
port equation with relaxation time approximation, the transport integrals for bulk states =   L j( 0, 1, 2)j

b  are given 
by ref. 29

∫
λ µ= Π −




−

∂
∂



−∞

+∞
L

s
dE E E f

E
( )( ) ,

(13)j
b j

where Π(E) is the so-called transport distribution function39, and is given by
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Here, τ(kx) is the relaxation time for bulk electrons which is assumed to be a constant τ, and v(kx) is the group 
velocity of bulk states which is given by
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Taking into account of both edge-state and bulk-state contributions, the total transport integrals are obtained 
as

= + = .L L L j( 0, 1, 2) (16)j j
e

j
b

Results and Discussion
In this paper, we calculate the band structures and TE transport properties of temperature-driven 2D TIs (in 
the ribbon geometry) realized from CdTe/HgTe QWs. For the band-structure calculation, the input parameters 
such as Eg, Ep, Δso, γ1, γ2 and γ3 at T = 0 K are taken from ref. 40. These parameters are frequently used and well 
documented in the literature. The valence band offset between HgTe and CdTe is taken as 570 meV at T = 0 K40 
and is assumed to be temperature independent. For the TE transport calculation, the input parameters such as l, 
s, and τ are required. We take the the length of 2D TI ribbon as l = 1 μm41. The cross-section area of 2D TI ribbon 
is taken as s = 100 nm × 10 nm. The relaxation time for bulk electrons is taken as τ = 10−14 s, corresponding to a 
case with strong disorder. The temperature T, QW thickness d and ribbon width w are varied to investigate their 
influences on the electronic band structure and TE transport properties of 2D TI ribbon. The chemical potential 
μ considered in this work starts from zero. In Fig. 1, we show the demonstration of the TI phase transition driven 
by temperature. For a normal insulator case [see e.g. Fig. 1(a)], when the chemical potential μ is above (below) 
the band gap, it means a n-type (p-type) system in which the TE transport is governed by the electrons (holes). 
However, for a topological insulator case [see e.g. Fig. 1(b)], when the Fermi energy is located within the band 
gap, it indicates an edge-state-dominated TE transport. The TE transport coefficients, such as electrical conduc-
tivity σ, Seebeck coefficient S, and thermal conductivity κ, for electrons or holes are determined by their energy 
spectra and chemical potentials. For instance, σ and κ are even as a function of E − μ with E being the energy 
spectrum, while S is an odd function with respect to E − μ. Therefore, when μ changes from a positive value to 
a negative one, the signs of σ and κ are not changed while only the sign of S is changed37. In addition, these TE 
transport coefficients are also dependent on the carrier velocity vk = 1/ħ · ∂E/∂k with k being the wave vector. Due 
to different k-dependence features of the electron and hole energy spectra, the electron and hole velocities have 
different values, which can also lead to a difference in the TE transport coefficients as the chemical potential is 
varied from lying in the conduction band to lying in the valence band.

In Fig. 2, we show the dependence of band gap of CdTe/HgTe QW on temperature (T) and thickness (d). As 
can be seen, by decreasing temperature and/or increasing thickness, the band gap changes continuously from the 
positive value to the negative one. This indicates a quantum phase transition between normal insulator (NI) and 
TI taking place in the QW system. Therefore, both temperature and thickness can effectively drive a TI phase in 
CdTe/HgTe QWs. At higher temperatures, the larger thickness is required to drive the QW system into the TI 
phase. These results are consistent with those published previously42.

To clearly demonstrate the temperature-driven TI phase in CdTe/HgTe QWs, a powerful tool is to calculate 
the energy spectrum of ribbon structure and to see whether there exists edge states or not. We take the ribbon 
width w = 400 nm and the QW thickness d = 8 nm. In Fig. 1(a) and (b), we show the effect of temperature on 
the energy spectrum of ribbon structure. It is clear that with deceasing temperature, a pair of gapless edge states 
occurs in the band gap formed by bulk states. In such a case, when the chemical potential of the system is tuned 
across the bulk band-edge, the edge and bulk states would exhibit quite distinct TE transport properties, as will 
be seen in the later. The characteristic features for edge and bulk states can be more clearly demonstrated by their 
probability density distributions |Ψedge(x, y)|2 and |Ψbulk(x, y)|2 in the plane of ribbon structure. We plot these 
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results in Fig. 1(c) and (d). As can be seen, the edge and bulk states mainly distribute at the ribbon boundary and 
interior, respectively. The results shown in Fig. 3 well confirm that the temperature can effectively drive a TI phase 
in CdTe/HgTe QWs.

Figure 1. Demonstration of the TI phase transition driven by temperature: (a) and (b) plot the energy spectra 
of ribbon structures in NI and TI regimes, respectively, and (c) and (d) plot the probability density distributions 
for bulk and edge states at k = 0, respectively. Here, the blue solid lines and black solid curves in (a) and (b) 
represent the energy dispersions for edge and bulk states, respectively, and the purple and red colors in the 
rainbow maps in (c) and (d) represent the minimum and maximum values of probability density distribution, 
respectively.

Figure 2. QW band gap as a function of thickness d (temperature T) for different temperatures T (thicknesses 
d) as indicated. Here, the light-cyan and light-yellow shadow regions denote the normal insulator (NI) phase 
and topological insulator (TI) phase, respectively.
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We now begin to discuss the TE transport properties of temperature-driven 2D TIs realized from CdTe/HgTe 
QWs. The TE transport coefficients such as the electrical conductivity σ, Seebeck coefficient S, and electron 
thermal conductivity κ are calculated as a function of the chemical potential μ for various QWs in the TI regime 
at different temperatures. The calculated results are shown in Fig. 3, where (a)~(c) plot the results for T = 10 K 
and d = 8 nm, (e)~(g) for T = 100 K and d = 9 nm, and (h)~(j) for T = 300 K and d = 15 nm. In all subfigures, 
the ribbon width of 2D TI is fixed at w = 500 nm. From Fig. 3, we can see the following interesting features. (1) 
Regardless of low or high temperatures, the contributions from edge and bulk states to the total σ are simply addi-
tive but to the total S and κ are not, which is well reflected by expressions of such three quantities [see Eqs (6a), 
(6b) and (6c)]. Edge and bulk states compete with each other to give the total TE transport properties. (2) In the 
low-temperature case (T = 10 K), due to gapless (gapped) property of edge (bulk) states, the edge states dominate 
the transport when μ is in the bulk band gap while the bulk states become dominant when μ is in the bulk band. 
As a result, when μ is tuned from lying inside the bulk band gap to entering into the bulk band, σ for edge (bulk) 
states decreases (increases) with increasing μ. The changing behaviors of S and κ for edge and bulk states as a 
function of μ could be understood with the help of Mott’s formula (S−σ relation) and Wiedemann-Franz law 
(κ−σ relation) in the adiabatic approximation, which read43

σ
= −











 µ=

S L eT d E
dE

ln ( ) ,
(17a)E

0

κ σ µ= L T ( ), (17b)0

where π=L k e/(3 )B0
2 2 2  is the Lorentz number. As mentioned before, σ for edge (bulk) states decreases (increases) 

with increasing μ. Thus, by analyzing σ as a function of μ, one can see that (i) S for edge (bulk) states is positive 
(negative) as a function of μ, (ii) its absolute value |S| for edge (bulk) states increases (decreases) with increasing 
μ, and (iii) κ for edge (bulk) states has the same variation trend as σ for edge (bulk) states. In particular, due to the 
competition between edge and bulk transports, the total S exhibits a peak structure when μ is near the bulk 
band-edge. (3) In the middle-temperature case (T = 100 K), the changing behaviors of σ and κ for edge and bulk 
states as a function of μ are the same as those in the low-temperature case. However, the Seebeck coefficients for 
edge and bulk states tend to cancel each other because they have opposite signs, leading to a very small value of 
the total S. (4) In the high-temperature case (T = 300 K), the edge-state transport is overwhelmed by the bulk-state 
transport. This is because more bulk states around the chemical potential take part in the TE transport at 

Figure 3. Electric conductivity, Seebeck coefficients, and electron thermal conductivity as a function of the 
chemical potential for various QWs in the TI regime at different temperatures, where (a)~(c) plot the results for 
T = 10 K and d = 8 nm, (e)~(g) for T = 100 K and d = 9 nm, and (h)~(j) for T = 300 K and d = 15 nm. Here, the 
black dashed line represents the bulk band-edge, the red and green solid lines represent the edge-state and bulk-
state contributions to the TE transport, respectively, and the blue solid line represents the total TE transport.



www.nature.com/scientificreports/

7SCiEntifiC REPORTs | 7: 7588  | DOI:10.1038/s41598-017-08084-w

relatively high temperatures due to the small bulk band gap and large thermal broadening energy (characterized 
by kBT). The total σ, S, and κ display the bulk-state behavior in the whole region of μ. This implies that the total 
TE transport properties at relatively high temperatures are governed by bulk states regardless of μ lying inside the 
bulk band gap or entering into the bulk-state region. (5) With increasing temperature, σ and κ for edge states 
decrease significantly. According to the expressions of transport integrals Lj

e (j = 0, 1, 2) for edge states [see Eq. 
(12)], as temperature is increased, the integral intervals [−Δb/(2kBT), −Δe/(2kBT)] and [Δe/(2kBT),Δb/(2kBT)] in 
these expressions are reduced. Thus, σ and κ for edge states decrease with increasing temperature since they are 
proportional to transport integrals. Mathematically, the reduction of integral intervals by increasing temperature 
is equivalent to that by decreasing bulk band gap, by considering such an equation as Δ/(kBT*) = Δ*/(kBT) with 
T* and Δ* being effective temperature and bulk band gap, respectively. Therefore, as temperature is increased, the 
effective bulk band gap is decreased (let T* = T), and so the number of in-gap edge states (modes) is reduced, 
which is the physical reason why σ and κ for edge states decrease with increasing temperature.

Based on the above TE transport coefficients σ, S, and κ, the TE figure of merit ZT is calculated for the same 
QWs in the TI regime at different temperatures. The calculated results is shown in Fig. 4. In all subfigures (a)~(c), 
the ribbon width of the 2D TI is fixed at w = 500 nm. As can be seen, (1) in the low-temperature case (T = 10 K), 
due to the bulk-edge competition, ZT exhibits a peak structure when μ is near the bulk band-edge; (2) in the 
middle-temperature case (T = 100 K), regardless of μ in the bulk band gap or in the bulk band, the bulk and 
edge contributions to the TE transport tend to cancel each other, leading to an almost vanished ZT; and (3) in 
the high-temperature case (T = 300 K), due to the dominance of bulk states in the TE transport, ZT displays the 
bulk-state behavior in the whole region of μ. The interesting behaviors of ZT at different temperatures are well 
manifested by those of S at different temperatures (see Fig. 3). Here we give a reasonable explanation for such a 
manifestation: According to Eqs (6) and (7), the expression of ZT can be rewritten as ZT = TσS2/κ. From this 
expression, one can see that ZT is mainly determined by S since (1) ZT is proportional to S2 and (2) κ/(σT) is 
nearly a constant (approximated to be the Lorentz number) according to Wiedemann-Franz law.

Next, we turn to discuss the dependence of TE transport properties on ribbon width of the temperature-driven 
2D TI. To proceed, we first have a look at how the ribbon width influences the band structure of the 2D TI. In the 
calculation, we take the temperature T = 100 K and the QW thickness d = 9 nm. As demonstrated before, such a 
QW system is in the TI phase. In Fig. 5, we show the energy spectra for two different ribbon widths w = 500 and 
100 nm. We can see that with decreasing w, the edge states at two boundaries of the 2D TI ribbon can hybridize to 
open a finite gap of several meV in the edge-state energy spectrum due to the substantial coupling of edge-state 
wave functions at such two boundaries. This is the so-called finite-size effect in the 2D TI11. The hybridization 
gap is smaller than the bulk band gap, as can be seen in the figure. When the chemical potential is tuned from 
lying inside the hybridization gap to entering into the bulk band, it sequentially pass through the edge band-edge 
and bulk band-edge. Moreover, with decreasing w, the bulk band gap is increased and the number of bulk bands 
is reduced due to the finite-size effect. These interesting features would have a great impact on the TE transport 
properties of temperature-driven 2D TIs, as will be clearly seen in the following.

In Fig. 6, we show the TE transport coefficients σ, S, and κ as a function of the chemical potential μ for various 
temperature-driven 2D TIs with different ribbon width w, where (a)~(c) plot the results for w = 100 nm, (e)~(g) 

Figure 4. TE figure of merit ZT as a function of the chemical potential for various QWs in the TI regime at 
different temperatures: (a) T = 10 K and d = 8 nm, (b) T = 100 K and d = 9 nm, and (c) T = 300 K and d = 15 nm. 
Here, the black dashed line represents the bulk band-edge, the red and green solid lines represent the edge-state 
and bulk-state contributions to the TE transport, respectively, and the blue solid line represents the total TE 
transport.
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Figure 5. Energy spectra and edge-state wave functions at k = 0 for different ribbon widths: (a) and (c) plot the 
results for w = 400 nm; (b) and (d) plot the results for w = 100 nm. Here, the red dashed and solid lines in (a) 
and (b) represent the bulk band-edge and edge band-edge, respectively. The temperature and QW thickness are 
fixed at T = 100 K and d = 9 nm.

Figure 6. Electric conductivity, Seebeck coefficients, and electron thermal conductivity as a function of the 
chemical potential for various temperature-driven 2D TIs with different ribbon widths, where (a)~(c) plot 
the results for w = 100 nm, (e)~(g) for w = 300 nm, and (h)~(j) for w = 500 nm. Here, the black solid (dashed) 
line represents the edge (bulk) band-edge, the red and green solid lines represent the edge-state and bulk-state 
contributions to the TE transport, respectively, and the blue solid line represents the total TE transport. The 
temperature and QW thickness are fixed at T = 10 K and d = 7.5 nm.
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for w = 300 nm, and (h)~(j) for w = 500 nm. In all subfigures, the temperature and QW thickness are fixed at 
T = 10 K and d = 7.5 nm, corresponding to the QW system in the TI regime. From Fig. 6, we can see the following 
interesting features. (1) When μ is near edge band-edge, σ and κ for edge states decrease with decreasing w. As 
is known, by decreasing w, the finite-size effect can be induced and thus the edge states can hybridize to open a 
finite gap in the edge-state energy spectrum. Due to the presence of such a hybridization gap, the transmission 
coefficient T(E) is reduced [see Eq. (9)] and as a result, σ and κ for edge states are decreased. (2) With decreasing 
w, the bulk band gap is increased and the number of bulk bands is reduced due to the finite-size effect. As a result, 
σ and κ for bulk states also decrease with decreasing w. (3) With decreasing w, the edge-state S changes the sign 
from minus to plus when μ is tuned from lying inside the bulk band gap to entering into the bulk band. Such a 
changing behavior for the edge-state S as a function of μ can be understood by analyzing the edge-state σ as a 
function of μ with the aid of Mott’s formula.

In Fig. 7, we show the dependence of low-temperature ZT on ribbon width w of the 2D TI. The temperature 
and QW thickness are taken as T = 10 K and d = 7.5 nm. As mentioned before, when the chemical potential μ is 
around the bulk band-edge, the low-temperature ZT exhibits a peak structure due to the bulk-edge competition. 
With decreasing w, the finite-size effect plays a significant role in the low-temperature ZT. Such an effect can give 
rise to the edge-state hybridization and so-produced hybridization gap. Therefore, one can see from this figure 
that for the narrowest ribbon width (w = 100 nm), the low-temperature ZT exhibits two peaks. Among them, one 
occurs around the bulk band-edge due to the bulk-edge competition around the bulk band-edge and the other 
occurs around the edge band-edge due to the edge-state hybridization. As w is increased, one of two peaks disap-
pears due to the vanished edge-state hybridization gap and the other shifts to the lower chemical potential due to 
the reduced bulk band gap.

In Fig. 8, we show the dependence of high-temperature ZT on ribbon width w of the 2D TI. The temperature 
and QW thickness are taken as T = 250 K and d = 13 nm. As can be seen, the w-dependence of high-temperature 
ZT has a totally different behavior as compared to that of low-temperature ZT shown in Fig. 7. With decreasing 
w, the high-temperature ZT first exhibits the bulk-state behavior and then the edge-state behavior, indicative of 
a bulk-to-edge transition in the TE transport. This is because the number of bulk states is proportional to the 
ribbon width due to the finite-size effect and thus the edge states in the narrower ribbon can have comparable or 
even larger contribution compared to bulk states.

Concluding Remarks
In this work, we have theoretically investigated on the TE transport properties of temperature-driven 2DTIs 
realized from CdTe/HgTe QWs. We have started from a realistic band structure model and then calculated the TE 
transport coefficients on the basis of band structure results. It has been found that the temperature has two main 
effects that have a great impact on the TE transport properties of edge and bulk states in the 2D TI. The first and 
the most important one is that it can effectively drive a quantum phase transition between NI and TI. The second 
one is that it can significantly change the edge-carrier and bulk-carrier populations in the 2D TI. Through analyz-
ing the TE transport coefficients such as the electric conductivity, Seebeck coefficient and thermal conductivity, 
we have found that the edge states dominate the TE transport at relatively low temperatures while the bulk states 

Figure 7. Low-temperature ZT as a function of the chemical potential for various 2D TIs with different ribbon 
widths: (a) w = 100 nm, (b) w = 300 nm, and (c) w = 500 nm. Here, the black solid (dashed) line represents the 
edge (bulk) band-edge, the red and green solid lines represent the edge-state and bulk-state contributions to the 
TE transport, respectively, and the blue solid line represents the total TE transport. The temperature and QW 
thickness are fixed at T = 10 K and d = 7.5 nm.
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become dominant at relatively high temperatures. The TE figure of merit ZT has a peak structure around the 
bulk band-edge in the low-temperature case due to the competition between edge and bulk transports and this 
peak vanishes in the high-temperature case due to the dominance of bulk states in the TE transport. Moreover, 
we have also examined the dependence of TE transport properties of edge and bulk states on ribbon width of the 
2D TI. Interestingly, we have observed that with decreasing ribbon width, the low-temperature ZT exhibits two 
peaks, among which one occurs due to the bulk-edge competition and the other occurs due to the edge-edge 
hybridization induced by finite-size effect; while the high-temperature ZT first exhibits the bulk-state behavior 
and then the edge-state one, indicative of a bulk-to-edge transition in the TE transport. Our theoretical results 
have demonstrated that in order to obtain the high ZT in designing thermoelectric devices, one should consider 
the following two points. (i) The smaller for 2DTI ribbon widths, the higher for ZT at low temperature, because 
that can suppress the phonon conductions. (ii) The nonmagnetic impurity density must be high to achieve the 
edge-states dominating the TE transport, comparing with the bulk states. The theoretical results may lead to a 
basic understanding of thermoelectric properties of 2D TIs. These systematic results could be relevant for poten-
tial applications of 2D TIs in high-performance thermoelectric devices.
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