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Prediction of infarction volume 
and infarction growth rate in acute 
ischemic stroke
Saadat Kamran1,2, Naveed Akhtar1,2, Ayman Alboudi3, Kainat Kamran4, Arsalan Ahmad5, 
Jihad Inshasi3, Abdul Salam1, Ashfaq Shuaib1,6 & Uvais Qidwai7

The prediction of infarction volume after stroke onset depends on the shape of the growth dynamics 
of the infarction. To understand growth patterns that predict lesion volume changes, we studied 
currently available models described in literature and compared the models with Adaptive Neuro-Fuzzy 
Inference System [ANFIS], a method previously unused in the prediction of infarction growth and 
infarction volume (IV). We included 67 patients with malignant middle cerebral artery [MMCA] stroke 
who underwent decompressive hemicraniectomy. All patients had at least three cranial CT scans prior 
to the surgery. The rate of growth and volume of infarction measured on the third CT was predicted with 
ANFIS without statistically significant difference compared to the ground truth [P = 0.489]. This was not 
possible with linear, logarithmic or exponential methods. ANFIS was able to predict infarction volume 
[IV3] over a wide range of volume [163.7–600 cm3] and time [22–110 hours]. The cross correlation [CRR] 
indicated similarity between the ANFIS-predicted IV3 and original data of 82% for ANFIS, followed 
by logarithmic 70%, exponential 63% and linear 48% respectively. Our study shows that ANFIS is 
superior to previously defined methods in the prediction of infarction growth rate (IGR) with reasonable 
accuracy, over wide time and volume range.

The temporal evolution of ischemic stroke lesion is a highly dynamic process. Research in animal stroke models 
suggest that pattern of infarction growth is stroke model-specific and the logarithmic growth pattern has been 
used to most commonly described it1–6. The calculation of the rate of tissue loss or prediction of infarction vol-
ume at a particular point in time after stroke onset depends on the shape of the growth function of the typical 
ischemic stroke and the pattern of infarction growth in human stroke is most frequently assumed to be linear7, 
or logarithmic8, 9. Ischemic stroke lesions evolve dynamically during the acute phase showing wide variations in 
the growth rate with no correlation between time and diffusion lesion volume10. There is significant inter-species 
difference in time to reach maximal infarct volume compared to humans2, 5, 11, likely related to the species-specific 
differences in the vascularity and size and structure of the cerebrum. The optimal time point to perform imaging 
to predict the size of the infarction is not known. There is risk with very early imaging as it may underestimate the 
stroke volume. These factors highlight some of the difficulties in predicting stroke volume.

Prediction of infarction volume [IV] and infarction growth rate [IGR] in acute ischemic stroke can have 
important therapeutic implications. Decompressive surgery in malignant middle cerebral artery (MCA) stroke 
trials has traditionally sought to limit the treatment to less than 48 hours based on infarction size on CT scan and 
clinical deterioration12, 13. The accurate selection of patients for decompressive surgery is a laborious process and 
the time from onset of symptoms to surgery is very frequently based on clinical deterioration and the size of the 
infarction. Approaches that utilize tissue-based markers, for example, IGR and IV may be more helpful in the 
determination of the timing of surgery. Quantification of infarction evolution can also be used to determine the 
efficacy of therapy and may also be used as a surrogate outcome measure for stroke trials14.

The purpose of this study was to investigate infarction growth pattern that predict lesion volume at variable 
time intervals in patients with large vessel occlusion in the anterior circulation. We used various infarction growth 
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models described in literature2–9 and compared them with Adaptive Neuro-Fuzzy Inference System [ANFIS] a 
method that has not been previously used to predict infarct volume and growth rate.

ANFIS is a biologically inspired algorithm utilizing two very powerful features of brain that are fundamental 
to the learning process; pattern modeling and perceptive inference. The brain is a highly sophisticated pattern 
matching system that utilizes repeated exposures over a pattern being learnt. This develops pattern-related path-
ways that are later used as pattern memory. The perceptive inference is related to the decision making capability 
of brain in spite of approximate and not too accurate data, implying that the brain does not work with exact 
thresholds but a range of values around that threshold. These two features of brain are computationally described 
as two separate techniques; Artificial Neural Networks (ANN) and Fuzzy Inference System (FIS). Fuzzy logic is a 
solution to complex problems with diverse applications. The applicability of fuzzy logic is not limited to research 
only, but has been used in clinical neurology15–17, imaging18 and neurosurgery19, 20.

Results
The pooled data had 137 patients who had undergone decompressive hemicraniectomy between 2007–2014. 
Sixty-seven patients had undergone at least three cranial CT scans prior to surgery. There was no statistically 
significant difference between training and testing data as regards patient age, risk factors, IV1 [P = 0.291], time 
of 1st CT [P = 0.569], time of 2nd CT [P = 0.615], time of 3rd CT [P = 0.947], IGR1 [P = 0.428], IGR2 [P = 0.888] 
but IV2 was larger in training group [P = 0.020] [Tables 1 and 2 and Fig. 1].

Whereas ANFIS was able to predict the IGR3 and IV3 without any statistically significant difference compared 
to the ‘ground truth’ or original data, all other methods failed. No significant difference was found in the mean 
ANFIS-predicted and mean ground truth IGR3, 4.75 ± 3.67 ml/hr vs. 4.94 ± 7.15 ml/hr [P = 0.489] and mean 
ANFIS predicted and mean ground truth IV3 332.01 ± 112.21 cm3 vs. 352.65 ± 108.18 cm3 [P = 0.457] [Table 2]. 
Although natural logarithmic method performed better than the linear and exponential there was a significant 
difference in the predicted and original IGR3 and IV3 values [P = 0.00], followed by exponential [P = 0.00] and 
linear [P = 0.01] [Table 2] in comparison with the original data. The cross correlation [CRR] indicated similarity 
between the ANFIS-predicted IV3 and original data of 82%. This compared to70% for logarithmic 70%, 63% for 
exponential 63% and 48% for linear methods [Table 2].

Though ANFIS showed no statistically significant difference over all, there were six patients where a deviation 
from the ground truth IV was observed [Table 2, Fig. 1]. The difference was seen in two patients in whom a large 
change occurred between the second and third scans. In both patients the IV2 increased by >280 ml to reach 
IV3 in 19 and 75 hours [time CT3-time CT2] respectively, ANFIS underestimated the predicted IGR3 and IV3. 
In spite of a significant change in IV2 to IV3 of 170 and 200 in additional two patients, ANFIS error was not very 
significant. In one patient there with a time difference of 211 hours between CT2 and CT3 and another patient in 
whom the infarct grew only 24 ml over 29 hours, both patients had IGR2 < 0.8 ml/hr, and ANFIS over and under 
estimated the IGR and IV, respectively. Hence in patients with abrupt large change in infarct volume > 280 ml and 
very low infarct growth over 24 hours [<0.8 ml/hr.] ANFIS was not able to predict IGR3 and IV3 accurately. None 
of the methods used were able to predict IGR3 and IV3 on the six patients. However, in comparison to ANFIS, 
all other methods showed significantly larger errors [Fig. 1]. ANFIS was able to predict IV3 over a wide range of 
volume [163.7–600 cm3] and time [22–110 hours]. Although ANFIS was able to accommodate changes in IV of 
up to 200 cm3, it was unable to predict larger changes. Similarly at very slow growth [IGR of 0.8 ml/hr], ANFIS 
also failed to predict the IV3. In addition, the high order variability of ANFIS-predicted values was in agreement 
with the ground truth as shown by the skewness and Kurtosis [Table 2].

Training data n = 41 Test data n = 26 P value

Age 50.95 ± 13.11 56.19 ± 12.023 0.105

Gender 34[82.9%] 24[92.3%] 0.465

Diabetes 12[29.3%] 9[34.6%] 0.646

Hypertension 22[53.7%] 19[73.1%] 0.112

Dyslipidemia 12[29.35] 12[46.2%] 0.160

Coronary artery disease 7[17.1%] 5[19.2%] 0.822

Congestive Heart Failure 4[9.8%] 2[7.7%] 0.773

Infarct Volume 1st CT cm3 73.26 ± 76.30 75.08 ± 58.67 0.291

Infarct Volume 2nd CT cm3 250.94 ± 114.55 218.62 ± 79.36 0.020

Infarct Volume 3rd CT cm3 352.65 ± 108.18 —

Time 1st CT hours 6.39 ± 6.76 5.15 ± 5.77 0.569

Time 2nd CT hours 37.26 ± 24.48 28.27 ± 29.97 0.615

Time 3rd CT hours 74.11 ± 54.37 64.24 ± 68.01 0.947

1st IGR ml/hr 5.61 ± 3.07 6.74 ± 3.61 0.428

2nd IGR ml/hr 8.33 ± 6.75 9.46 ± 7.94 0.888

3rd IGR ml/hr 4.94 ± 7.15 —

Table 1. Data used for training ANFIS and testing for all methods used. Values are mean with percentage, mean 
age with standard deviation. 
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Discussion
In our study we used IGR rather than absolute IV because growth rate is a more generalized parameter that maps 
infarction volume growth into a more compact range of values thus making it easier to model. This is because 
variability in IGR is smaller than that of IV and the information of volume and time can both be captured in IGR. 
Conventional mathematical techniques employ parametric data models such as linear, exponential or polynomial 
models. These models are likely not appropriate in evaluation of highly nonlinear stochastic data, essentially the 
type of data usually seen in growth and volume determination of ischemic stroke. The data extrapolated from 
primate and rodent brain is model specific1, 2. The high degree of variability of cerebral infarction in humans 
suggests that highly nonlinear data of human ischemic stroke may require more innovative methodology. We 
used ANFIS because it produces unconventional classification models and deals with the degree of truth and not 
true or false, also known as approximate reasoning. ANFIS hypothesize relationships within the data, and newer 
learning is able to produce complex characterizations of those relationships. Moreover, it is highly flexible and can 
accommodate a variety of complexities such as unequally spaced time points, non-normally distributed measures, 
complex nonlinear and time-varying covariates. Hence, ANFIS provides an alternative method to the difficult 

Age Risk Factor
Vessel 
Occlusion

Original 
volume ANFIS

Linear 
Model

Logarithmic 
Model

Exponential 
Model

Time to 
CT3 

66 DM, CAD MCA 326.32 307.32 126.19 272.7 82.15 21.3

38 HTN MCA 348.82 407.58 205.59 334.54 236.17 48.3

53 HTN, DyL ICA, MCA, 
ACA 650 600.84 506.22 445.11 360.03 64.3

74 HTN ICA, MCA, 
ACA 306.2 267.07 107.35 209.95 192.48 73.5

48 HTN, DyL, CAD ICA, MCA, 
ACA 194.7 213.98 49.57 124.43 23.34 26.3

54 HTN ICA, MCA, 
ACA 374.72 364.5 351.02 297.75 234.02 65.5

65 DM, HTN, DyL, 
CAD

ICA, MCA, 
ACA 272.4 249.16 123.23 265.25 59.31 56.3

52 HTN, DM, DyL, 
CAD, CHF MCA 288.92 172.52 146.65 197.32 190.42 373.15

69 HTN, DM, DyL MCA 390.48 327.67 163.19 242.27 196.09 49

54 HTN, DyL MCA 336 372.48 531.1 266.35 235.62 110

82 HTN ICA, MCA, 
ACA 135 163.7 305.96 120.35 56.9 50.5

52 DM, HTN, DyL ICA, MCA, 
ACA 281.11 295.89 309.57 246.23 206.05 81.4

50 DM, DyL MCA 406.38 352.34 252.12 274.78 123.86 37

60 DM, HTN MCA 321.21 352.98 348.33 387.2 73.91 22

54 HTN ICA, MCA, 
ACA 374.6 359.26 134.17 227.37 173.83 48.3

41 DyL ICA, MCA, 
ACA 437.5 465.99 163.76 396.31 229.25 49.3

67 CHF MCA 279.22 348.29 386.31 303.61 182.61 49

34 None MCA 387.53 365.76 181.65 330.65 266.04 73

53 HTN, DyL MCA 281.4 313.21 215.17 248.03 124.74 35.3

60 DM, HTN MCA 479 268.16 663 236.89 35.04 32.4

35 None ICA, MCA, 
ACA 217.44 266.79 198.55 262.16 132.69 42.36

51 DM, DyL MCA 131.8 167.91 84.61 69.47 26.06 32.45

60 HTN, CAD MCA 492.34 368.07 284.84 226.06 206.55 125

35 HTN MCA 326.6 361.09 428.09 287.98 206.48 60.05

61 DM, HTN, DyL MCA 220 244.11 68.78 121.23 102.56 53.4

60 HTN ICA, MCA, 
ACA 372.6 318.78 211.04 357.78 146.5 29.35

P Value 1.00 0.32 0.01 0.00 0.00

Skewness 0.57 0.69 0.96 −0.13 0.13

Kurtosis 4.03 4.49 3.32 2.92 2.60

CORR 1.00 0.82 0.48 0.70 0.63

Table 2. Individual patient data of third infarct volume, original and predicted by various methods at time 
of CT3, CORR Cross correlation, and high order variability of predicted values by various methods used for 
IV3 prediction. Infarct volume is in cm3, Time CT3 in hours. DM-diabetes mellitus, HTN-hypertension, DyL-
dyslipidemia, CAD-coronary artery disease, CHF-congestive heart failure, ICA-internal carotid artery, MCA-
middle cerebral artery, ACA-anterior cerebral artery.
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mathematical modeling of complex nonlinear problems and meets the mathematical modeling requirements of 
a system21.

Our data shows that ANFIS was the only method able to predict infarct growth rate and in turn infarction 
volume at variable time intervals without significant difference to the original data [measured IV3]. Except for 
the extreme changes in infarction volume or large time difference between imaging (leading to very slow IGR), 
ANFIS predicted IGR3 and IV3 across wider time and volume ranges. Our study also reveal that logarithmic 
model performed better than linear and exponential methods, however, none of the three standard methods were 
able to predict IV3 and IGR3 as close to the ground truth as ANFIS. Failure of ANFIS to predict IV and IGR in 
two patients and variations seen were due to the values being outside the bounds of data (statistical outliers). The 
error plots (Fig. 1) showed ANFIS to have the lowest number of errors compared to wider variations in error by 
the other three methods.

The dynamics of infarction growth in patients with large vessel occlusion has not been well documented 
although some studies report a natural logarithmic pattern9, 22. Human stroke may grow initially in a linear pattern 
followed by slower growth due to space limitation from cranium and dural attachments. In a primate stroke mod-
els, using longitudinal DWI, a natural logarithmic growth pattern has been reported in the acute stage of infarc-
tion2. The diffusion MRI based evolution of infarction in macaques has been shown to be closer to what has been 
observed in humans than in rodent models4. Our data supports these observations of infarction evolution follow-
ing a natural logarithmic growth pattern but the cross correlation of natural logarithmic values with original data 
was only 70% compared to 82% with ANFIS. During the hyper-acute stage [1–6 hours] infarction growth can be 
mapped by both linear and natural logarithmic growth patterns2. The data from animal studies show that natural 
logarithmic growth can predict the infarction volume for up to 48 but not at 96 hours2. In the our study logarith-
mic model performed better in predicting IV in less than 48 hours, where as both exponential and linear models 
failed, similar to the studies in primate stroke models2. These results are however not shared in other reports using 
primate stroke models4. The infarction volume prediction beyond 48 hours yielded mixed results with all models 
except with ANFIS. ANFIS was able to predict infarction volume closest to the actual measured size.

All growth patterns [linear, logarithmic and exponential] except ANFIS fail to predict the lesion volume in 
the sub-acute stage [beyond 48 hours] of stroke. This is likely related to the time of maximal infarction volume 
and collateral circulation. In primate stroke models the maximal lesion volume is reached within 48 hours2. In 
rodents, the infarction growth likely stops within 3 to 6 hours of MCA occlusion5, 23. This compares to 70–74 hours 
in humans, indicating a significant species difference in growth patterns24.

It is a common clinical practice to base prediction models on an “average” patient with assuming similar clinical 
and anatomical characteristics. Unfortunately, this may be problematic when calculating the growth patterns for 
individual patients. The growth rate of early DWI lesions in acute stroke is highly variable as shown by the lack of 
correlation between time and diffusion lesion volume10. Lesions with poor collateral circulation will have rapid 
penumbral loss and will grow rapidly11, 25. In addition, the growth patterns may be affected by the presence of preex-
isting risk factors and concurrent medications, highlighting the difficulties in accurately predicting infarct growth.

The use of non-contrast CT scan based data [IGR, IV] and ability to test the accuracy of various methods at the 
level of individual predictions over wide time ranges adds strength to our study. Nevertheless, prediction models 
have limitations. Our data shows that IGRs are quite variable with possible abrupt changes. These translate into 
dynamic changes that various infarction growth models are not able to capture. Infarctions in two patients in our 
series showed abrupt growths, over variable periods, where all growth pattern estimations failed to predict the 
IV3 and IGR3. The linear method, specifically, was unable to predict IV3, because the growth in linear model is 
based on a static slope that is calculated in the beginning only using the first two initial volume and correspond-
ing time values. Hence, this slope value does not change throughout the stroke evolution and is not affected by 
the dynamic changes in the infarction evolution. A major shortcoming of the logarithm formula is that maximal 
infarction volume does not reach a plateau at the infinite point in time unlike the clinic scenario. Therefore, this 
pattern cannot be used for prediction of the infarct volume in the chronic stage2. The major disadvantage of 
ANFIS is that its accuracy limits are defined by the bounds of the data itself. We can understand ANFIS error by 
an example of a stretched sheet constrained on the ends so that it cannot be moved from the sides. However, the 
centre of the sheet can be stretched up or down to a limit to attain a maximum or minimum value [Fig. 2]. Hence, 

Figure 1. Comparison of mean squared of prediction error showing less errors by ANFIS compared to other 
prediction methods.
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the positive and negative peaks cannot attain any value beyond a ‘stretchable’ limit of the function as defined by 
the underlying data set. In ANFIS, the error cancellation in the backward pass is similar to the peaks shown in 
Fig. 2. Hence, not all errors can be cancelled by counter gradient values. However, within specific limits of the 
data set, a large number of errors can be eliminated. In addition, the data training of ANFIS requires specialized 
software from ANN and fuzzy computation domains.

Our study has several limitations. First, our sample size may be small to reliably estimate the growth models. 
For ANFIS to eliminate this limitation, larger data sets are needed so that the correlated data implications can 
be modelled in stages rather than sudden large gradients (usually seen as outliers). Second the use of CT instead 
of DWI MRI, which is more sensitive for detecting ischemia, may have led to less accurate estimation of the 
first infarction volume. In routine clinical practice CT is the imaging modality used for repeat imaging rather 
than MRI due to cost and logistical issues as the patients are usually intubated and managed in intensive care 
units. Third, for the IGR measurement on CT scans, we presumed that CT changes were present when the stroke 
symptoms began. It is possible that the hypodensity developed at a later time interval; hence the first IGR may 
have a different value. We observed relatively large variations in standard deviation of the mean IGR. The wide 
variation in IGR has been observed by others as well and likely reflects the genetic variation in collaterals and the 
rate of collateral failure11, 25, 26. We speculate that the extreme changes in infarct volume that were not predicted 
by ANFIS may have been due to the failure of collateral circulation. The addition of collateral circulation status 
assessment may have improved ANFIS prediction. Fourth, during training we repeated Monte Carlo simulation 
30 times based on our observation. We noticed that error did not change significantly after 25 iterations and a 
mature model stage had been reached.

In conclusion, we have shown that ANFIS can predict IGR and IV with reasonable accuracy, over wide time 
range while linear, natural logarithmic and exponential methods failed to predict IGR and IV. The prediction of 
IGR and IV, with large abrupt changes and extremes of growth remain undetermined even with ANFIS. Perhaps 
addition of collateral circulation to the predictive model will improve the results and extend its utility to less 
severe/smaller strokes and their growth pattern.

Methods
We selected patients from our pooled decompressive hemicraniectomy [DHC] database from three tertiary 
referral centers in three countries [Hamad General Hospital, Qatar; Rashid Hospital, Dubai, UAE; and Shifa 
International Hospital, Pakistan]. Only patients with three brain-computed tomography [CT] scans during same 
hospital admission showing evidence of acute ischemia were selected. All patients had large vessel occlusion 
[ICA, MCA] on imaging. Patients were excluded if significant contralateral infarction or pre-existing infarction 
was present on the initial CT, only two imaging studies were performed or if imaging was uninterruptable, with 
parenchymal hematoma or hemorrhage with ventricular extension.

Infarct Volume calculation [IV]. Measurement of the infarct volume [IV] was made using open source 
image analysis software OsiriX version 5.627.

Infarct Growth Rate calculation [IGR]. For first infarct growth rate [IGR 1] calculation we assumed the 
stroke volume to be zero prior to stroke onset.

Infarct growth rate 1[IGR1] = Δ volume (IV CT1–0)/Δ time (time CT1- stroke onset time)
Second infarct growth rate [IGR2] was measured on second CT [CT2]
IGR2 = Δ volume (IV CT2- IV CT1)/Δ time (time CT2-time CT1)
And third infarct growth rate [IGR3] was measured on third CT
IGR3 = Δ volume (IV CT3- IV CT2)/Δ time (time CT3-time CT2)
We used MATLAB 2015 for programming all prediction methods and for ANFIS, Fuzzy Logic toolbox was 

used in addition to core MATLAB coding environment.
For prediction of IGR3 and infarct volume on third CT [IV3], linear, natural logarithmic, exponential and 

ANFIS methods were used. The logarithmic and exponential equations have been used in previous publication2.

Figure 2. Typical constrained data set with dynamic values.
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1. Linear method. For the linear method following equation was used
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2. Natural logarithmic method [ln]. For natural logarithmic function following equation was used
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3. Exponential method [exp]. The exponential fitting was tested using the following equation
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where V1: Infarct volume from 1st CT scan, V2: Infarct volume from 2nd CT scan, V3L: Predicted Infarct volume 
at t3 using Linear model (Equation 1), V3E: Predicted Infarct volume at t3 using Exponential model (Equation 2), 
V3G: Predicted Infarct volume at t3 using Logarithmic model (Equation 3), t1: Time at which 1st CT scan was per-
formed, t2: Time at which 2nd CT scan was performed, and t3: Time at which 3rd CT scan was performed.

4. Adaptive Neuro-Fuzzy Inference System [ANFIS].
ANFIS Artificial Neural Networks (ANN) and Fuzzy Inference System (FIS). ANFIS mathematically mimics 

the decision making process of the real neurons. In human brain, the learning process leads to the establishment 
of specific patterns of interconnections [dendrite-dendrite, dendrite-axon, axon-axon] made by a group of neu-
rons. These interconnections are established in response to specific data inputs. The specific connections in the 
neuronal network excite (‘fire’) when a known pattern related to prior learning is received. In the same manner, 
ANFIS system mathematically groups the input data into clusters [like neurons] [groups G1, G2, G3 in Fig. 3] 
(through a process called Fuzzification).

The fuzzification of the input data is done by mapping the input data for the two inputs;IGR1 and IGR2, into 
three Gaussian membership functions [degree of truth and not absolute values] each named G1, G2 and G3 [also 
referred to as clustered data] Clustered data is not absolute numbers but the degree of conformity to the hypoth-
esis i.e. IGR3 [Fig. 3]. The regrouping of these clusters, based upon their relevance to output groups [outG1, 
outG2, outG3, Fig. 3] is done through logical rules [Π in Fig. 3] Logical rules [Π in Fig. 3] are problem specific 
i.e. measurement of IGR3.

A set of following three logical rules [Π] connects the in the input [IGR1, IGR2] to the output, outG1, outG2, 
outG3 of IGR 3.

If (IGR1 is G1) and (IGR2 is G1) then (IGR3 is outG1)
If (IGR1 is G2) and (IGR2 is G2) then (IGR3 is outG2)
If (IGR1 is G3) and (IGR2 is G3) then (IGR3 is outG3)
The logical rules [Π] represent the mathematical version of perceptive inference of brain also known as FIS 

[decision making capability of brain in spite of approximate and not too accurate data]. The information pro-
cessing between input [IGR1, IGR2] and final output IGR3 is happening on clustered data [G1, G2, G3,][degree 
of truth or approximate data and not actual values] for both inputs [IGR1, IGR2]. However, the desired output 
[IGR3] has to be a discrete value. The output after rule application is still a cluster [comprising a range of values 
around the final IGR3]. To get the actual value of IGR3 from this cluster the centroid is calculated for the cluster. 

Figure 3. ANFIS structure and functioning explanation, superimposed on neurons to show the similarity 
between ANFIS and neuronal network structure and function.
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This process is called de-fuzzification [Σ in Fig. 3]. The centroid is a mean value of the cluster, which is the desired 
IGR3 actual value. Using the same procedure a decision surface was built by covering all the implications of the 
input data space [Fig. 4]. Each such centroid represents a grid-intersection point on the overall decision surface 
[Fig. 4].

The training process, tunes the connecting weights [shown in the figure as W], which are similar to the neu-
ronal connections in brain. This is similar to the natural neurons making connections while being trained [den-
drite to dendrite, dendrite to axon, axon to axon, axon to dendrite etc.].

ANFIS based parametric identification systems utilizes a hybrid learning rule combining the back-propagation 
gradient descent and a least-squares method. Initially, the input data is transferred through the network layers 
with initial weights and parameter values until they produce an output, called the Forward Pass. The generated 
output is then compared with the actual output from the data to calculate the error. Using the resulting error, the 
weights and control parameters are re-calculated, transferring the products of these gradients and error back to 
the input layer, called the backward pass. At any point, the weights are correlated through the output and error 
values simultaneously.

Data training. The ANFIS system requires training on the type of data that will be later analyzed. Sixty 
percent of the data [41 patients randomly selected] was used for model training, using proposed prediction algo-
rithm. To further enhance the performance, a Monte Carlo Simulation [MCS] method was repeated 30 times. 
In each repetition of Monte Carlo simulation 60% data was randomly selected, training and testing are repeated 
in the same fashion, mean squared error is calculated for each repetition and compared with previous one. The 
model with least mean squared error was kept for the next repetition so that at the end of MCS, the best model 
was obtained that covers all the modalities of the presented random data.

Testing. After completion of training and developing best model, testing was performed on the remaining 
40% [26 patients] data.

Following data was provided to all the methods used, IGR1, IGR2, time of CT1, time of CT2, and time of CT3 
for the prediction IGR3 at time of CT3 [Table 1].

To calculate the IV3 from the output data [IGR3] following equation was used

= + − .V V IGR3(t t )3 2 3 2

where, V3 is the infarct volume3 at time t3 [time CT3], V2 is the infarct volume on second CT at time t2 [time 
CT2], and IGR3 is the predicted infarct growth rate at time t3 [time CT3].

Statistical Methods. Statistical analyses were performed using Statistical Package for Social Sciences 
Version 22 (SPSS). Descriptive and inferential statistics were used to characterize the study sample and test 
hypotheses. Descriptive results for all quantitative variables (e.g. age) were presented as mean ± standard devia-
tion (SD) (for normally distributed data). Numbers (percentage) were reported for all qualitative variables (e.g. 
gender). Bivariate analysis was performed using Independent sample t-test or Mann Whitney U-test whenever 
appropriate to compare all the quantitative variable (e.g. age, Infarct volume etc.) between training and test data 
groups. While all the qualitative variable (e.g. Gender, HTN etc.) between above two groups were compared by 
using Pearson Chi-square test or Fisher exact test as appropriate. A “P” value < 0.05 (two tailed) was considered 
statistically significant. The Cross correlation [CRR] was carried out between various methods of prediction. To 
calculate the high order variability of predicted values skewness and Kurtosis was also calculated.

Compliance with Ethical Standards. The study adhered to the tenets of the declaration of Helsinki and 
was approved by the Institutional Review Board of Hamad Medical Corporation, Rashid Hospital, Dubai and 
Shifa International Hospital, Pakistan. Approval letters are enclosed with the manuscript.

Figure 4. Final decision surface built by covering all the implications of the input data space. (a) 3D surface 
view, and (b) View from top [contour view]. X-axis represents IGR1 input; Y-axis IGR2 input while the output 
IGR3 is shown on the z-axis based on the above rules.
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