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Spontaneous breaking of time-
reversal symmetry in topological 
superconductors
Igor N. Karnaukhov

We study the behavior of spinless fermions in superconducting state, in which the phases of the 
superconducting order parameter depend on the direction of the link. We find that the energy of 
the superconductor depends on the phase differences of the superconducting order parameter. The 
solutions for the phases corresponding to the energy minimuma, lead to a topological superconducting 
state with the nontrivial Chern numbers. We focus our quantitative analysis on the properties of 
topological states of superconductors with different crystalline symmetry and show that the phase 
transition in the topological superconducting state is result of spontaneous breaking of time-reversal 
symmetry in the superconducting state. The peculiarities in the chiral gapless edge modes behavior are 
studied, the Chern numbers are calculated.

Within a mean-field treatment of the problem, the superconducting state is characterized by the pairing of a 
macroscopic number of electrons with opposite spins. The superconducting ground state can be thought of as the 
condensation of a macroscopic number of such bosons, where they all have the same phase. The real supercon-
ducting order parameter breaks the U(1) symmetry and maintains the time-reversal symmetry. At the same time 
there is no absolute value for the phase of the wave function of a single piece of superconductor in free space: any 
phase can be chosen between 0 and 2π. The phase coherent tunneling across a junction between two supercon-
ductors implies a persistent current determined by the phase difference of the superconducting order parameters 
with the 2π periodicity. The Josephson effect has been considered in refs 1 and 2 in the framework of the Kitaev 
model3 (see also ref. 4).

The phase of the superconducting order parameter is not fixed in superconducting state, it does not break 
symmetry of the Hamiltonian (the phase difference is fixed in fact). When phases of superconducting order 
parameters of interacting superconductors are taken into account the time reversal symmetry is broken. The real-
ization of the topological states of the system depends on the presence or absence of particle-hole, time-reversal 
symmetries. We will show that a new order parameter, determined by the phase differences of the superconduct-
ing order parameter, spontaneously breaks the time-reversal symmetry and leads to the topological supercon-
ducting state. This scenario is suggested as a possible mechanism for realization of topological superconductors 
(TSCs).

Different mechanisms for realization of TSCs have been proposed5–10. The superconductors with chiral 
(d + id), (p + ip) order-parameters exhibit Majorana vortex bound states and gapless chiral edge modes, which 
carry spin currents11–14. The TSC with the (p + ip)-pairing of spinless fermions in two-dimension, which has 
chiral Majorana fermion states propagating along the edges, has been considered in ref. 15. The standard method 
for realizing topological states reduces to considering the symmetry breaking of the system due to the presence of 
additional interaction. The topological state are described in the framework of topological band theories16–21 (as 
a rule without interaction), which characterize a class of topological insulator or TSC by a topological invariant.

We demonstrate that due to stable solutions for phases of the superconducting order parameter (which acts 
as a new order parameter), spontaneous breaking of time-reversal symmetry leads to topological state of super-
conductors. A similar approach for describing the states of a topological insulator, realized on a hexagonal lattice, 
was proposed in ref. 22. In other words the continuous gauge symmetry is spontaneously broken by the stable 
thermodynamic state, the state of the system selects a global difference phases of the superconducting order 
parameter. The absence of any required interaction or external field is, of course, an experimental simplification 
in the investigation of topological states.
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Model
We will analyze the behavior of spinless fermions on the 2D lattices in the framework of the model of chiral 
p-wave superconductors3, We will only consider the short-range nearest-neighbor superconducting pairing, p– 
pairing between spinless fermions in the nearest-neighbor pairs of sites. The concerned Hamiltonian 
  = + Δ0  is written on the square and hexagonal (honeycomb) lattices as

∑ ∑ ∑ ∑ ∑μ= − − Δ = Δ + Δ + Δ + . .
< > − − −

† † † † † † †a a n a a a a a a h c2 , ,
(1)ij

i j
j

j x
x links

i j y
y links

i j z
z links

i j0 

where †aj  and aj are the spinless fermion operators on a site j with the usual anticommutation relations, nj denotes 
the density operator. The Hamiltonian (1) describes the hoppings of spinless fermions between the 
nearest-neighbor lattice sites with the magnitudes equal to unit (see in Fig. 1), μ is the chemical potential. Other 
terms represent pairing terms with superconducting order parameter Δx,y,z, which is determined along the link of 
different types: the x–, y– links in the square lattices and the x–, y–, z– links in the hexagonal lattice (see in Fig. 1), 
Δx = Δ exp (iφx), Δy = Δ exp (iφy), Δz = Δ exp (iφz), the components of the superconducting order parameter 
have different phases φx, φy, φz and Δ > 0 (see in Fig. 1). The phase differences φ = φx − φy in square and 
φ = φx − φz, ϕ = φy − φz in hexagonal and cubic lattices have a physical meaning. We consider a family of the two 
parameter models, in which the absolute value of the superconducting order parameter has the same value and 
does not differ in strength. We show that the nontrivial solutions φ = ±π/2 lead to p + ip superconducting state 
on a square lattice. The model Hamiltonian is convenient to determine in the real space3, 23, we ignore spin of the 
fermions and focus on the relatively simpler case of TSCs.

TSC on a square lattice
We consider a superconducting state with a spontaneously broken time reversal symmetry and show that the state 
of TSC is realized in the case of symmetry breaking. The energy per cell E(φ) is determined by the energies of 
excitations of fermions φ ε= ∑ ∑ ε ε<E k( ) ( )j jk k, ( )j F

, where j = 1, 2 enumerates the branches of the one-particle 
excitations εj(k)

ε μ φ= − + + + Δ + +k k k k k kk( ) ( 1) [( cos cos ) (sin 2cos sin sin sin )] , (2)j
j

x y x x y y
2 2 2 2 1/2

where εF is the Fermi energy, k = {kx, ky}. The one-particle spectrum Eq. (2) is symmetric with respect to zero 
energy, it includes two branches. At half filling a low energy band is filled, therefore the energy of the system 

φ ε= ∑E k( ) ( )k 1  is determined by a low energy branch. The energy is a periodic function of φ having periodicity 
π (see in Fig. 2(a–c)). In practice, values of Δ, μ  1. Therefore, we consider the low energy excitations for Δ, 
|μ| < 1. It was found numerically that nontrivial solutions φ = ±π/2 correspond to the minimums of the energy 
for arbitrary values of μ ≠ 0 and Δ ≠ 0. The solutions φ = 0, π, corresponding to a trivial topological phase, satisfy 
the maximums of the energy (see in Fig. 2). A trivial topological phase of superconductor is unstable.

The energy band structure of spinless fermions calculated in trivial and nontrivial topological phases is shown 
in Fig. 3. The gapless excitation spectrum is realized in the trivial topological phase for arbitrary parameters of the 
Hamiltonian (see in Fig. 3a). In the topological phase the spectrum of the superconductor is shown for the same 
parameters in Fig. 3b. The excitation spectrum varies greatly with φ: in TCS phase the gap in the spectrum of the 
excitations opens for arbitrary values of Δ ≠ 0 and μ ≠ 0, the spectrum contains chiral gapless edge modes that 
populate the bulk gap (see in Fig. 3b,c). The nonvanishing Chern numbers reveal the nontrivial topological prop-
erties of the superconductor. The Chern number is a topological invariant which can be determined for the band 
isolated from all other bands. In TSC state the nontrivial Chern number C = sign (μ) is realized if the excitation 
spectrum is gapped at a half-filling:

Figure 1.  Square (a), centered square (b) and hexagonal (c) lattices and the parameters of the model (hopping 
integrals and superconducting order parameters). The types of links on the lattices: 1 denotes the magnitude 
of the nearest-neighbor hopping integral, Δx, Δy (in square) and Δx, Δy, Δz (in hexagonal) lattices determine 
the pairing of spinless fermions located at the nearest-neighbor lattice sites along the links. The unit cells of the 
centered square and hexagonal lattices contain two atoms A and B. A strip geometry with edges is fixed along 
the x-direction for the square lattices.
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where integration is carried out over the Brillouin zone.
Let us consider the behavior of the system for arbitrary values of μ (without limiting |μ| < 1), the solu-

tions φ = ±π/2 correspond to a stable state of superconductor for arbitrary values of μ and Δ ≠ 0. For Δ ≠ 0 
the gap in the spectrum closes at μ = 0 in k = (0, π), (π, 0) and at μ = 2 in k = (π, π), at μ = −2 in k = (0, 0). 
Following Read and Green15, we expect two phases in the superconductor: a strong-pairing trivial phase with 
C = 0, and a weak-pairing topological phase with C ≠ 0. According to the calculations of the Chern number (3) a 
strong-pairing trivial phase with C = 0 is realized in the region |μ| > 2 and a weak-pairing topological phase with 
C = sign(μ) is realized at 0 < |μ| < 2 (see in Fig. 3d).

The nontrivial topological properties of a system are manifested in the existence of chiral gapless edge modes 
(in two dimensions) or surface states (in three dimensions) robust against disorder and interactions. The spec-
trum of TSC includes the chiral edge modes that connect the lower and upper bands. The edge modes determine 
the charge or spin Hall conductance σxy in the topological state. Calculations of edge states show that two chiral 
gapless edge modes are realized in the spectrum of TSC. The amplitude of the wave function of the edge states 
decreases exponentially away from the boundary, they are localized near the boundaries of the superconductor.

We have determined the phases of the superconducting order parameter in unit cell (see in Fig. 1). Due to 
the translational invariance, we have solved the model analytically for the uniform configuration. As a rule, the 
energy of different systems has minimum at the same uniform configurations of the gauge fields24, 25. In our 
case topological state, with static configurations φx(j), φy(j) for nonhomogeneous phases of the superconducting 
order parameter, is realized at φx(j) = φx, φy(j) = φy. Numerical calculations of the ground state energy of periodic 
phases on a square lattice with unit cell containing two and tree atoms confirm these considerations.

Note that the trivial topological state with φ = ϕ = 0, π is unstable in the model (1) defined on a cubic lattice. 
The nontrivial solutions for φ = 0, ϕ = ± π

2
 or φ = ± π

2
, ϕ = 0 correspond to the energy minimuma and sponta-

neously break the time-reversal symmetry in the 3D system.

TSC on a centered square lattice
The spectrum of the one-particle excitations includes four branches εj(k) symmetric with respect to zero energy, 
as result, φ ε= ∑ ∑=E k( ) ( )j jk1,2  at half-filling. According to numerical calculations of the ground state energy for 

Figure 2.  A square lattice. The ground state energy per atom as a function of the superconducting order 
parameter (Δ, φ) at μ = 0.2 (a), profile at Δ = 0.2 (b) and as a function of μ and φ at Δ = 0.2 (c). The ground 
state energy per atom of TSC as function of Δ and μ (d).
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different parameters Δ and μ and an arbitrary phase φ, the energy minima of the superconductor are realized at 
two nontrivial solutions φ = ± π

2
, which correspond to two fold degenerate state of TSC. The behavior of TSC 

with different crystalline symmetry (centered square and square) is the same. The energy is a π-periodic function 
of the phase φ. The calculation of the ground state energy per cell in the TSC state is shown in Fig. 4a. The topo-
logical state is determined by the gapped spectrum of fermions for arbitrary Δ ≠ 0 and |μ| < 1, with the gap 
illustrated in Fig. 4b (we do not consider an exotic case |μ| > 1). The spectrum of the excitations is gapped for 
arbitrary parameters of the model, TSC is the stable state of the superconductor. The energy spectra are shown in 
Fig. 5. The Chern number is equal to one, and the chiral gapless edge modes realize charge or spin Hall conduc-
tivity. We can talk about an universal topological behavior of the superconductors.

Taking into account noninteracting spinless fermions, we have considered a new mechanism for the realiza-
tion of TSCs. The analysis can be generalized to the case of fermions with spin degrees of freedom. In a small 
magnetic field h the chemical potentials of the electron subbands with different spins have opposite signs ∑ ↑h nj j  
and − ∑ ↓h nj j . In the case of triplet pairing of the electrons the Hamiltonian of the superconductor is determined 

Figure 3.  Low energy spectra of the one-dimensional strip along the x-direction as a function of the 
momentum directed along the edge. The energies are calculated for the following parameter sets: the gapless 
state with φ = 0 at μ = 0.1, Δ = 0.1 (a); the TSC gapped state with φ = π

2
 at μ = 0.1, Δ = 0.1 (b), μ = 0.5, Δ = 0.1 

(c). In the TSC state the edge modes cross the gap connecting the lower and upper bands and intersect at k = π. 
The Chern number as a function of Δ and μ (d): a strong-pairing trivial phase with C = 0 at |μ| > 2, a weak-
pairing topological phase with C = ±1 at 0 < |μ| < 2.

Figure 4.  A centered square lattice. The ground state energy per unit cell (a) and the gap in the spectrum (b) in 
the TSC state as functions of Δ and μ, the energy minimuma are reached at φ = ± π

2
.
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by the sum of two decoupled fermion subsystems with their Chern numbers C↑ = −C↓. The spin Chern number 
Cspin = (C↑ − C↓)/2 determines the spin current and the spin Hall conductivity.

TSC on a hexagonal lattice
We can continuously deform the hexagonal lattice by changing the angle between the translation vectors by π/2, 
using these perpendicular vectors as a basis of the translation group. The energy per unit cell E(φ, ϕ) depends on 
two phases φ and ϕ, it is a periodical function with the period 2π. The local minima of E(φ, ϕ) are reached at 
φ = ϕ = 0 and φ = − π

3
, ϕ = − π2

3
 or φ = − π2

3
 and ϕ = − π

3
. The first solution corresponds to the trivial topolog-

ical phase, the second one corresponds to the TSC state. Comparing E(φ, ϕ) calculated for these phase values (see 
in Fig. 6a) we determine the ground-state phase diagram of the superconductor in the coordinates of the coupling 
parameters (see in Fig. 6b). The phase of TSC is stable in the region of small values of Δ, μ, in practice for arbi-
trary values. In the TSC phase the fermion spectrum is gapped in contrast to gapless one in the trivial topological 
phase. The numerical calculations of the gap are shown in Fig. 6c. The gap closes along a line of the topological 
phase transition in the region of the TSC phase. The closing the bulk gap at certain values of Δ, μ leads to the 
corresponding change of the Chern numbers. We illustrate the transformation of the spectrum for μ = 0.4 and 
different values of Δ = 0.1, 0.3, 0.4 in Fig. 7, where Δ = 0.3 is the point of a topological phase transition between 
phases with the Chern numbers 2 and 1 (at the transition between phases with different Chern numbers, the bulk 
gap must close). A typical form of the behavior of the spectrum with the zig-zag boundary is shown in the TSC 
state for different values of Δ in Fig. 7b–d.

Conclusions
In this work we have derived a new approach for description of TSCs. We have shown that due to nontrivial stable 
solutions for the phases of the superconducting order parameter, the time-reversal symmetry is spontaneously 
broken. These solutions for the phases, which determine new topological order parameter in TSC, reveal the 
nontrivial topological properties of the superconductor. In this context, we have also shown that the TSC state is 
stable for arbitrary coupling parameters. We have calculated the Chern numbers, studied the chiral gapless edge 
modes and a Hall conductivity in the TSC state. Considering the square, centered square, hexagonal lattices, we 
have demonstrated that the nature of the TSC state is independent of the crystalline symmetry of the 2D system. 
In contradistinction to tradition approach when the non-trivial topological state of the superconductors arises 
from the spin-orbit coupling, we have considered the forming of the TSC state as a result of the phase transition 
with spontaneous breaking of symmetry. The spontaneous breaking of time-reversal symmetry (due to a new 
topological order parameter) is also realized in 3D superconductors.

Methods
Canonical functional of topological superconductor.  We show, that the Hamiltonian (1) with different 
phases of the superconducting order describes the BCS state. The Hamiltonian for spinless fermions is defined as 
  = + int0 , where  = − ∑< >n nint

g
ij i j2

. The interaction between fermions located at the nearest-neighbor 
lattice sites of a square lattice is additive in the x– and y– directions and is determined by the coupling parameter 
g > 0. The Stratonovich transformation maps interacting fermion systems to non-interacting fermions moving in 
an effective field. Replacing the sites of fermions interacting on a square lattice in the x–direction α= −i 1

2
 and 

α= +j 1
2

 and in the y–direction γ= −i 1
2

 and γ= +j 1
2

 we define the interaction term as 
+ → Δα α α α γ γ γ γ α α α− + + − − + + − − +

† † † † † †a a a a a a a a a a( )g
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2
1
2

1
2

1
2 1

2
1
2

1
2

1
2 1

2
1
2

 + Δ α α α+ −
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1
2
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 + Δ γ γ γ+ −
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2
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Δ Δ + Δ Δα α γ γ
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g x x y y
2

, , , , , where Δx,α = Δα exp (iφx) and Δy,γ = Δγ exp (iφy).
The canonical functional is defined as ∫ ∫= Δ −†a a e[ ] [ , ] SZ D D ,  where the action = ΔΔ⁎

S
g

2

∫ τ+ ∂ +
β

τ
†d a a eff0

  with  =eff 0 +  φ φ∑ Δ + ∑ Δ + . .− + − +
† † † †i a a i a a h c[exp( ) exp( ) ]x x links i j i j y y links i j i j

2 2
.

Figure 5.  Detail of the band structure for a system in the stripe geometry with the same parameters as in Fig. 3; 
the TSC gapped state with φ = π

2
 at μ = 0.1, Δ = 0.1 (a), μ = 0.5, Δ = 0.1 (b). Only the low energy excitations 

are shown, although all four bands were considered in the calculation.
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The BSC Hamiltonian for the interacting spinless fermions is defined as  = − ++ +C C C C( )BCS
g
V x x y y0 2

, 
where = ∑ −C i a asin kx y x y k k, k , . Using the Stratanovich transformation for BCS we obtain the following  
expression for the effective action ∫ τ μ= ∑ ∂ − + + + Δ

β
τ

+ ⁎S d a k k a C[ ( ( cos cos ))eff x y x xk k k0
 + Cx x∆ ++  

⁎ ⁎ ⁎C C ( )]y y y y g x x y y
2∆ + ∆ + ∆ ∆ + ∆ ∆+ . We expect that Δx,y are independent of τ because of translational invari-

ance. We can set Δx = |Δ| exp (iφx), Δy = |Δ| exp (iφy) and φ = φx − φy, it is easy to see, that the superconducting 
order parameter has the following form φΔ = Δgk k( ) ( , ) , φ φ= +g i k i kk( , ) [ sin exp( )sin ]x y .

We can integrate out the fermionic contribution for calculation of the action ω ε= ∑ ∑ + +
β

T kln[ ( )]
S

n nk
2

1
2eff

Δ

g
4 2

, where ωn = T(2n + 1)π are Matsubara frequencies. In the saddle point approximation the canonical func-
tional   will be dominated by the minimal action Seff that satisfies the following conditions ∂Seff /∂Δ = 0 and 
∂Seff /∂φ = 0. The first condition leads to the equation for |Δ| and Tc or the BCS gap equation 

= ∑ ∑
φ

ω ε+
T

g n
g

k
k

k
4 ( , )

( )n

2

2
1
2

. A numerical calculation of the integral at T = 0 showed that its value depends weakly on 
μ for 0.01 < μ < 0.2, the value of |Δ| exponentially depends on − ν

g
, where ν ∼ 1. The second condition 

∑ ∑ =
φ

φ ω ε

∂

∂ +
0n

g
k

k

k

( , ) 1
( )n

2

2
1
2

 determines the topology of the superconducting state. This condition is realized 

Figure 6.  A hexagonal lattice. The difference of the energies per unit cell − − −π π( )E E, (0, 0)
3

2
3

 at φ = − π
3

, 
ϕ = − π2

3
 and φ = ϕ = 0 as a function of μ and Δ (a), the ground-state phase diagram in the coordinates Δ, μ 

(b): trivial topological phase with the Chern number equal to 0, and nontrivial topological phases with C = 2 
and 1. The gap in the spectrum of TSC as a function of Δ and μ (c).

Figure 7.  Evolution of the spectrum of TSC calculated for system with zig-zag boundary along the profile of the 
gap at μ = 0.4 in the points marked in Fig. 6b (a) for Δ = 0.1 (the state with C = 2) (b), Δ = 0.3 (the point of the 
topological phase transition) (d), Δ = 0.4 (the state with C = 1) (c). The number of pairs of edge modes is equal 
to the total Chern number of the bands below the gap, the wave vector directed along the zig-zag boundary.
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both for trivial φ = 0, π and nontrivial φ = ± π
2

 solutions. From the numerical calculations of the energy of the 
superconductor it follows that the trivial solutions correspond to energy maximums whereas the nontrivial solu-
tions are stable and correspond to TSC state (see in Fig. 2). The topological trivial state of the superconductor is 
gapless, in the topological state the gap opens and increases with increasing φ, reaching a maximum value for 
φ = π/2. As a result, the energy of the superconductor decreases and reaches a minimum value at φ = π/2.
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