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Prognostic value of a 25-gene assay 
in patients with gastric cancer after 
curative resection
Xiaohong Wang1, Yiqiang Liu2, Zhaojian Niu4, Runjia Fu3, Yongning Jia3, Li Zhang2, Duanfang 
Shao3, Hong Du3, Ying Hu1, Xiaofang Xing3, Xiaojing Cheng3, Lin Li3, Ting Guo3, Ziyu Li3, 
Qunsheng Ji5, Lianhai Zhang  1,3 & Jiafu Ji1,3

This study aimed to develop and validate a practical, reliable assay for prognosis and chemotherapy 
benefit prediction compared with conventional staging in Gastric cancer (GC). Twenty-three candidate 
genes with significant correlation between quantitative hybridization and microarray results plus 
2 reference genes were selected to form a 25-gene prognostic classifier, which can classify patients 
into 3 distinct groups of different risk of mortality obtained by analyzing microarray data from 78 
frozen tumor specimens. The 25-gene assay was associated with overall survival in both training 
(P = 0.017) and testing cohort (P = 0.005) (462 formalin-fixed paraffin-embedded samples). The risk 
prediction in stages I + II is significantly better than that in stages III. Analysis demonstrated that this 
25-gene signature is an independent prognostic predictor and show higher prognostic accuracy than 
conventional TNM staging in early stage patients. Moreover, only high-risk patients in stage I + II were 
found benefit from adjuvant chemotherapy (P = 0.043), while low-risk patients in stage III were not 
found benefit from adjuvant chemotherapy. In conclusion, our results suggest that this 25-gene assay 
can reliably identify patients with different risk for mortality after surgery, especially for stage I + II 
patients, and might be able to predict patients who benefit from chemotherapy.

Gastric cancer (GC) is an aggressive malignancy with high rate of recurrence in patients even undergoing cura-
tive resection. Post-operative management depends on accurate prognostic staging to identify the individuals at 
high risk for relapse. Modest efficacy and considerable toxicities associated with adjuvant chemotherapy. Many 
factors can affect the prognosis of GC patients, such as TNM stage, while this has limited ability to stratify patients 
according to their likely outcome1. Moreover, there also have great variation in the histological appearance of 
GC2. So the current evaluation system for GC is insufficient for predicting the outcome of GC treatment. A more 
precise staging test would give clinicians the ability to identify patients with statistically heterogeneous outcomes 
from within otherwise homogeneous clinical groups.

GC is a multistage process involving the accumulation of genetic and epigenetic alterations which may be the 
important prognostic factors. Gene expression profiling is useful for classifying tumors for various types of cancer 
patients, and can predict the prognosis for patients with various types of cancer3, 4. However, most prognostic pre-
diction models focused on breast cancer and lung cancer5, 6, only a few studies on GC prognosis7, 8. The profiling 
genes selected in GC studies have varied considerably. Gene expression profiles were also different according to 
the microarray platform and the analytic strategy used9–14.

In certain research situations, performing such analyses on archival formalin fixed paraffin-embedded 
(FFPE) surgical specimens would be advantageous as large libraries of such specimens with long-term follow-up 
data are widely available. To systematically validate the microarray results, branched DNA signal amplifi-
cation (Quantigene Plex, QGP), quantitative hybridization assays, which can measure 3 to 80 target RNAs 
per well with unparalleled accuracy and precision, was used15, 16. In this study, we developed and validated a 

1Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Central Biobank Facility, 
Peking University Cancer Hospital and Institute, Beijing, China. 2Department of Pathology, Peking University Cancer 
Hospital and Institute, Beijing, China. 3Department of Surgery, Peking University Cancer Hospital and Institute, 
Beijing, China. 4Department of General Surgery, Affiliated Hospital of Qingdao University, Shandong Province, China. 
5Asia & Emerging Markets Innovative Medicine, AstraZeneca R&D, Shanghai, China. Xiaohong Wang, Yiqiang Liu, 
Zhaojian Niu and Runjia Fu contributed equally to this work. Correspondence and requests for materials should be 
addressed to L.Z. (email: zlhzlh@hotmail.com) or J.J. (email: jijiafu@hsc.pku.edu.cn)

Received: 15 December 2016
Accepted: 28 June 2017
Published online: 8 August 2017

OPEN

http://orcid.org/0000-0001-9464-0233
mailto:zlhzlh@hotmail.com
mailto:jijiafu@hsc.pku.edu.cn


www.nature.com/scientificreports/

2SCIENTIFIC REPORTS | 7: 7515 | DOI:10.1038/s41598-017-07604-y

prognosis-associated 25-gene assay using QGP on FFPE samples. And we also investigated the chemotherapy 
benefit in different risk group.

Results
Screening of candidate biomarkers by microarray and establishment of a 31-gene prognostic 
algorithm. Detailed clinicopathological characteristics of the selecting, training, and testing sets were shown 
in Table 1. For initial screening of candidate biomarkers by microarray profiling, we selected 78 patients with 
qualified frozen tissues in the first batch.

On Affymetrix microarray analysis of tumors from the 78 cancer and 24 matched adjacent non-cancerous 
gastric mucosa, 2880 genes showed significantly differential expression between the GC tissues and adjacent 
non-cancerous gastric mucosa. We used a Cox proportional hazards modeling as the main analytical test used to 
develop the prognostic algorithm (to build a prognostic classifier), which selected31 target genes (Table 2) in the 
78-patient selecting cohort. Among them, 14 genes were correlated with patient prognosis analyzed by hazard 
ratios from univariate Cox regression, including 6 protective genes (XAF1, IFITM1, NCOA7, GZF1, APAF1, and 
TCF7L2, with hazard ratio less than 1), and 8 risk genes (DYRK2, UBA2, EPHB2, PDCD5, FADD, MARCKS, 
B3GALT6, and ITCH, with hazard ratio more than 1), while 17 genes were related to classical oncogenic pathways 
or potential therapeutic targets in GC from previous publication, including MMP2, EGFR, MMP7, MET, ERBB2, 
CDK1, CDK6, SRC, IGF1R, CDK4, PDGFRB, ERBB3, PARP1, FRAP1, CDK3, FLT4, and KDR.

Selecting Cohort Training Cohort* Test Cohort

N = 78 N = 102 N = 360

Age at resection (years; mean32) 61.1 ± 9.83 61.38 ± 9.51 58.97 ± 12.26

Sex

 Male 58 (74.36%) 79 (77.45%) 246 (68.33%)

 Female 20 (25.64%) 23 (22.55%) 114 (31.67%)

Differentiation

 Well-Moderately differentiated 15 (19.23%) 11 (10.78%) 108 (30%)

 Poorly differentiated 63 (80.77%) 91 (89.22%) 239 (66.39%)

 Undetermined 0 0 13 (3.61%)

Lauren Subtype

 Diffuse Type 26 (33.33%) 35 (34.31%) 75 (20.83%)

 Intestinal Type 38 (48.72%) 42 (41.18%) 242 (67.22%)

 Mixed Type 14 (17.95%) 25 (24.51%) 43 (11.94%)

Location

 Cardia 27 (34.62%) 30 (29.41%) 105 (29.17%)

 Non-cardia 51 (65.38%) 72 (70.59%) 255 (70.83%)

TNM Stage

 I 3 (3.85%) 6 (5.88%) 36 (10%)

 II 17 (21.79%) 23 (22.55%) 90 (25%)

 III 48 (61.54%) 73 (71. 57%) 234 (68.82%)

 IV 10 (12.82%) 0 0

T Stage

 1 0 (0%) 1 (0%) 20 (5.11%)

 2 7 (8.97%) 7 (9.84%) 40 (10.46%)

 3 26 (33.33%) 45 (31.15%) 101 (30.9%)

 4 45 (57.69%) 49 (59.02%) 199 (53.53%)

N Stage

 0 14 (17.95%) 19 (18.63%) 96 (26.67%)

 1 11 (14.10%) 15 (14.71%) 53 (14.72%)

 2 19 (24.36%) 28 (27.45%) 78 (21.67%)

 3 34 (43.59%) 40 (39.22%) 133 (36.94%)

M Stage

 0 68 (87.18%) 102 (100%) 360 (100%)

 1 10 (12.82%) 0 0

Vascular invasion

 V(−) 31 (39.74%) 43 (42.16%) 179 (49.72%)

 V(+) 42 (53.85%) 55 (53.92%) 181 (50.28%)

 Not recorded* 5 (6.41%) 4 (3.92%) 0

Table 1. Clinical and pathological characteristics of patients in three cohorts. *There is 51 cases overlapped in 
selecting cohort and training cohort.
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gene Gene name Chromosome
Reference 
sequence Protein location

Relevant biological 
functions and pathways

Role in 
algorithm

P* 
value

Correlation 
Coefficient

P# 
value HR(95%CI)

Survival associated genes from Chip results

XAF1 XIAP associated factor 1 17p13.1 NM_017523 cytoplasm, nucleus
Affect the progress of 
the apoptosis signaling 
pathway

prognosis 0 0.583 0 0.564 (0.424–0.752)

IFITM1 interferon induced 
transmembrane protein 1 11p15.5 NM_003641 membrane, plasma 

membrane Influence cell invasion prognosis 0 0.74 0.001 0.639 (0.489–0.834)

DYRK2
dual-specificity tyrosine-
(Y)-phosphorylation 
regulated kinase 2

12q15 NM_003583 cytoplasm, 
nucleus,membrane

Tyrosine 
autophosphorylation 
and catalyzed 
phosphorylation of 
histones H3 and H2B

prognosis 0 0.53 0.001 2.078 (1.347–3.205)

NCOA7 nuclear receptor 
coactivator 7 6q22.32 NM_181782 intracellular, 

nucleus

Cell wall macromolecule 
catabolic process, 
positive regulation of 
transcription

prognosis 0 0.581 0.003 0.514 (0.330–0.801)

UBA2 ubiquitin-like modifier 
activating enzyme 2 19q12 NM_005499 cytoplasm, 

nucleoplasm
SUMO-activating 
enzyme for the 
sumoylation of proteins

prognosis 0 0.577 0.011 2.064 (1.184–3.599)

EPHB2 EPH receptor B2 1p36.1-p35 NM_004442 membrane Angiogenesis, axon 
guidance prognosis 0 0.56 0.013 1.593 (1.101–2.305)

PDCD5 programmed cell death 5 19q13.11 NM_004708 cytoplasm, nucleus Apoptotic process prognosis 0 0.451 0.02 1.756 (1.094–2.820)

FADD Fas (TNFRSF6)-associated 
via death domain 11q13.3 NM_003824 membrane, plasma 

membrane

Apoptotic signaling 
pathway,TRIF-dependent 
toll-like receptor 
signaling pathway

prognosis 0 0.665 0.033 1.579 (1.038–2.403)

B3GALT6
UDP-Gal:betaGal beta 
1,3-galactosyltransferase 
polypeptide 6

1p36.33 NM_080605 Golgi membrane Carbohydrate metabolic 
process prognosis 0 0.595 0 2.256 (1.484–3.428)

MARCKS myristoylated alanine-rich 
protein kinase C substrate 6q22.2 NM_002356 plasma membrane Energy reserve metabolic 

process prognosis 0.001 0.409 0.015 1.985 (1.141–3.452)

GZF1 GDNF-inducible zinc 
finger protein 1 20p11.21 NM_022482 nucleolus

Negative regulation of 
transcription, DNA-
templated

prognosis 0.011 0.323 0 0.564 (0.424–0.752)

APAF1 apoptotic peptidase 
activating factor 1 12q23 NM_013229 cytoplasm, nucleus

Activation of cysteine-
type endopeptidase 
activity involved in 
apoptotic process

prognosis 0.029 0.28 0.001 0.279 (0.127–0.610)

ITCH itchy E3 ubiquitin protein 
ligase 20q11.22 NM_031483

cytoplasm, 
nucleus, 
membrane

Notch signaling pathway, 
apoptotic process, 
inflammatory response

prognosis 0.224 0.158 0.005 2.475 (1.311–4.671)

TCF7L2 transcription factor 
7-like 2 10q25.3 NM_030756 cytoplasm

Canonical Wnt receptor 
signaling pathway, fat cell 
differentiation

prognosis 0.645 0.061 0 0.209 (0.112–0.389)

GC therapeutic targets

EGFR epidermal growth factor 
receptor 7p12 NM_005228 membrane, 

cytoplasm
MAP kinase kinase 
kinase activity, cell 
proliferation

prognosis 0 0.691

MMP7 matrix metallopeptidase 7 11q21-q22 NM_002423
plasma membrane, 
extracellular 
region

Metalloendopeptidase 
activity, regulation of cell 
proliferation

prognosis 0 0.656

MET met proto-oncogene 7q31 NM_000245 plasma membrane Activation of MAPK 
activity, cell proliferation prognosis 0 0.534

ERBB2
v-erb-b2 avian 
erythroblastic leukemia 
viral oncogene homolog 2

17q12 NM_004448 plasma membrane Cell proliferation, ATP 
binding prognosis 0 0.743

CDK1 cyclin-dependent kinase 1 10q21.1 NM_001786 cytoplasm, nucleus DNA repair, DNA 
replication prognosis 0 0.498

CDK6 cyclin-dependent kinase 6 7q21-q22 NM_001259 cytoplasm, nucleus G1/S transition of mitotic 
cell cycle prognosis 0 0.661

IGF1R insulin-like growth factor 
1 receptor 15q26.3 NM_000875 plasma membrane

Inactivation of MAPKK 
activity, insulin receptor 
signaling pathway

prognosis 0 0.486

CDK4 cyclin-dependent kinase 4 12q14 NM_001259 cytoplasm, nucleus G2/S transition of mitotic 
cell cycle, cell division prognosis 0 0.561

SRC v-src avian sarcoma 20q12-q13 NM_005417 cytoplasm, nucleus Ras protein signal 
transduction prognosis 0.001 0.403

KDR kinase insert domain 
receptor 4q11-q12 NM_002253 plasma membrane Angiogenesis, endothelial 

cell differentiation prognosis 0.002 0.397

MMP2 matrix metallopeptidase 2 16q13-q21 NM_004530
plasma membrane, 
extracellular 
region

Regulation of 
vascularization and the 
inflammatory response

prognosis 0.086 0.221

Continued
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We then derived a formula (Supplementary materials and methods) to calculate the risk score for their risk of 
mortality for every patient based on their individual 31-gene expression levels. Those GC patients with a high-risk 
thirty-one gene signature had a shorter median overall survival than the patients with intermediate-risk gene sig-
nature and low-risk gene signature (median survival: 13.42 months vs. 32.24 months vs. not reached, P < 0.001, 
Fig. 1B). Moreover, we also validated our model in the publicly available gastric cancer data set (GSE62254). 
Similar to our previous results, those GC patients with a high-risk thirty-one gene signature also had a shorter 
median overall survival than the patients with intermediate-risk gene signature and low-risk gene signature 
(median survival: 37.93 months vs. 45.77 months vs. not reached, P < 0.001, Supplementary Figure S).

Gene selection by quantitative hybridization assay in GC. Since in clinical settings where repro-
ducibility, cost, and widespread availability are key priorities, we then aimed to establish a practical prognostic 
algorithm based on FFPE tissue samples, we systematically measured the expression 31 genes from microarray 
analysis in 61 matched FFPE tissues by QGP.

For each of the 31 genes, the correlation between relative expression status by QGP and that by microarray 
was statistically analyzed. Twenty three genes with strong correlation between two assays were selected, including 
APAF1, NCOA7, XAF1, IFITM1, EGFR, MMP7, MET, ERBB2, CDK1, CDK6, SRC, IGF1R, CDK4, KDR, FADD, 
EPHB2, PDCD5, MARCKS, GZF1, UBA2, MMP2, DYRK2, and B3GALT6 (Table 2). We test this 23 gene algo-
rithm in 78 frozen microarray setting, the survival difference for each group is obvious, those high-risk gene 
signature GC patients had a shorter median overall survival than the patients with intermediate-risk gene signa-
ture and low-risk gene signature (median survival: 13.42 months vs. 28.95 months vs. 48.13 months, P < 0.001, 
Fig. 1C).

The twenty-five-gene signature and survival in GC. Then we identified the gene-signature by quan-
titative hybridization assay. Reference genes were TBP and PGK1 (Supplementary materials and methods). We 
establish a 25-gene (23 correlated genes plus 2 reference genes) prognostic algorithm based on FFPE tissues. And 
the coefficient for each of the 23 genes was derived from the previous cohort and formula of risk score calculating 
for each patients was changed accordingly.

In order to remove excess statistical confounding factors, patients with TNM stage IV were excluded in the 
training and testing cohort (the characteristics of this group is shown in Table 1). Then we evaluated this 25-gene 
assay in the FFPE tissue from the training cohort of 102 patients. Those high-risk GC patients were with a shorter 

gene Gene name Chromosome
Reference 
sequence Protein location

Relevant biological 
functions and pathways

Role in 
algorithm

P* 
value

Correlation 
Coefficient

P# 
value HR(95%CI)

Survival associated genes from Chip results

XAF1 XIAP associated factor 1 17p13.1 NM_017523 cytoplasm, nucleus
Affect the progress of 
the apoptosis signaling 
pathway

prognosis 0 0.583 0 0.564 (0.424–0.752)

PDGFRB
platelet-derived growth 
factor receptor, beta 
polypeptide

5q33.1 NM_002609 plasma membrane
G-protein coupled 
receptor signaling 
pathway, cell migration

prognosis 0.148 0.187

ERBB3
v-erb-b2 avian 
erythroblastic leukemia 
viral oncogene homolog 3

12q13 NM_001982 plasma membrane
Growth factor binding, 
negative regulation of cell 
adhesion

prognosis 0.154 0.185

PARP1 poly (ADP-ribose) 
polymerase 1 1q41-q42 NM_001618 nucleolus

DNA damage response, 
detection of DNA 
damage

prognosis 0.458 0.097

FRAP1 mechanistic target of 
rapamycin 1p36.2 NM_004958 membrane, 

cytoplasm
TOR signaling, ATP 
binding, drug binding, 
cell growth

prognosis 0.738 0.044

FLT4 fms-related tyrosine 
kinase 4 5q35.3 NM_001258 cytoplasm, plasma 

membrane

Blood vessel 
morphogenesis, negative 
regulation of apoptotic 
process

prognosis 0.745 −0.043

CDK3 cyclin-dependent kinase 3 17q25.1 NM_002021 cytoplasm, nucleus

Cyclin-dependent 
protein serine/threonine 
kinase activity, G0 
to G1 transition, cell 
proliferation

prognosis 0.892 0.018

Reference genes

TBP TATA box binding protein 6q27 NM_003194 nucleolus
Transcription initiation; 
RNA elongation; 
transcription

Reference

PGK1 phosphoglycerate kinase 1 Xq13.3 NM_000291 cytoplasm
ATP binding; 
phosphoglycerate kinase 
activity; carbohydrate 
metabolic process

Reference

Table 2. Representative amplified genomic loci and genes by microarray analysis. P* values for the correlation 
coefficients were estimated by Pearson correlation test. P# values for the hazard ratios were estimated by 
univariate Cox regression analysis of the microarray data.
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median overall survival than the intermediate-risk and low-risk patients (median survival: 18.22 months vs. 37.02 
months vs. 48.13 months, P = 0.017, Fig. 1D).

To confirm that the 25-gene algorithm had similar prognostic value in different populations, we tested it in an 
independent cohort of 360 patients. The general condition between patients in training cohort and test cohort is 

Figure 1. Study design and the combined gene signature and survival in GC. Panel A showed the study design. 
Kaplan–Meier survival curve estimated the overall survival according to the 31 gene microarray signature (B) 
and 25-gene microarray signature33. Kaplan-Meier survival curves for training and testing cohort according to 
25-gene signature were showed in Panel D and E.
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comparable (Table 3S). We applied the cutoff ’s value for categorization in training group to the independent test 
set of 360 patients. Similar to the training cohort, our results showed that patients with a high-risk gene signature 
had a shorter median overall survival than those with a low-risk gene signature (median survival: 34.39 months 
vs. 37.77 months vs. not reached, P = 0.005) (Fig. 1E).

Figure 2. Twenty-five-gene signature and survival in GC at different TNM stages. Overall survival of patients 
with stage I + II and III + IV in the first cohort (A and B), stage I + II in training cohort33, and stage I + II in 
testing cohort (D); Panel E showed the overall survival with stage I + II disease in combined training and testing 
cohorts; Panel F: ROC curves compare the prognostic accuracy of the gene signature with clinicopathological 
risk factors in combined training and testing cohorts GC.

Variables

Multivariate analysis

HR (95%CI) P value

Age 1.022 (0.997–1.048) 0.087

25-gene signature

 Low-risk

 Intermediate-risk vs. low-risk 5.325 (2.061–13.758) 0.001

 High-risk vs. low-risk 6.248 (2.320–16.826) <0.001

TNM stage

 II vs. I 3.057 (1.432–6.526) 0.004

Differentiation

 Poorly vs. Well-Moderately 2.510 (1.309–4.813) 0.006

Table 3. Multivariate analysis of prognostic factors by Cox proportional hazard model in stage I + II GC.

http://3S
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Twenty-five-gene signature and survival in different TNM stages GC patients. We also investi-
gated the gene signature in tumor tissues obtained from GC patients with stage I and II or stage III and IV. First, 
we analyzed the gene signature in tumor specimens obtained from patients in the selecting cohort including 
78 cases with stage I and II or stage III and IV. TNM stage I and II disease combined GC patients, those with a 
high-risk gene signature had a shorter overall survival than those with a low-risk gene signature (median survival: 
9.97 months vs. 59.93 months vs. not reached, P < 0.001, Fig. 2A), among patients with stage III and IV disease, 
overall survival also showed similar results (median survival: 13.42 months vs. 28.95 months vs. 48.13, P < 0.001, 
Fig. 2B).

Moreover, the associations between the gene signature and prognosis in training and testing cohort were also 
analyzed with stage I and II or stage III respectively. In the subgroup analysis of 29 patients with TNM stage I 
and II of training cohort, those with a high-risk gene signature had a shorter overall survival than those with an 
intermediate-risk gene signature and low-risk gene signature (median survival: 21.45 months vs. 63.39 months 
vs. not reached, P = 0.002, Fig. 2C). In the subgroup analysis of 126 patients with stage I and II disease of testing 
cohort, those with a high-risk gene signature also showed a shorter overall survival than those with a low-risk 
gene signature (median survival: 68.64 months vs. not reached vs. not reached, P = 0.014, Fig. 2D), while either in 
original training or testing cohort the overall survival in the stage III group did not differ significantly (training 
cohort: P = 0.194; testing cohort: P = 0.264, figure not shown).

Twenty-five-gene assay is an independent prognostic factor in stage I and II patients. Moreover, 
we also noted similar results in the patients with stage I and II disease combined training and testing cohort, 
those with a high-risk gene signature showed a shorter overall survival than those with a low-risk gene signature 
(median survival: 54.57 months vs. not reached vs. not reached, P < 0.001, Fig. 2E).

Age, sex, gene signature, differentiation, vascular invasion, and TNM stage were included in the Cox multivar-
iate regression analysis. According to the analysis, the high-risk gene signature, differentiation, and tumor stage 
II were significantly associated with death from any cause among the 155 patients (Table 3) (hazard ratio for the 
high-risk signature vs. the intermediate-risk signature: 5.325, 95% confidence interval, 2.061 to 13.758, P = 0.001; 
high-risk signature vs. the low-risk signature: 6.248, 95% confidence interval, 2.320 to 16.826, P < 0.001).

The 25-gene signature based classifier also showed significantly higher prognostic accuracy than any clinico-
pathological risk factor, including TNM stage and differentiation (Fig. 2F). Thus, this signature can add prognos-
tic value to clinicopathological prognostic features.

Twenty-five-gene signature and adjuvant chemotherapy. We noted adjuvant chemotherapy can 
enhance survival in all 436 patients (another 26 cases chemotherapy information was missed, median survival: 

Figure 3. Prediction effect of chemotherapy benefit in different risk group. Kaplan-Meier survival curves for all 
patients (A–D), stage I + II (E–H), and III (I–L) in different-risk groups, which were stratified by the receipt of 
chemotherapy.
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29.62 months vs. 50.79 months, P = 0.003, Fig. 3A), including high-risk median survival (median survival: 23.08 
months vs. 48.42 months, P = 0.024, Fig. 3B), and intermediate-risk group (median survival: 29.55 months vs. 
44.41 months, P = 0.041, Fig. 3C), while the overall survival in the patients with low-risk did not differ signifi-
cantly (median survival: 59.30 vs. not reached, P = 0.513, Fig. 3D, Table 4S).

In the 149 stage I and II cases, adjuvant chemotherapy did not enhance survival (median survival: not 
reached vs. not reached, P = 0.101, Fig. 3E). Results from subgroup analysis using our twenty-five-gene signa-
ture based classifier showed that patients in the high-risk group had a favorable response to adjuvant chemo-
therapy (median survival: 36.59 months vs. not reached, P = 0.043, Fig. 3F). While the overall survival in the 
patients with either intermediate-risk or low-risk did not differ significantly (intermediate-risk group: P = 0.719; 
low-risk group: P = 0.498, Fig. 3G and H). In the 287 stage III cases, adjuvant chemotherapy can enhance survival 
(median survival: 19.99 months vs. 29.03 months, P = 0.004, Fig. 3I). Results from subgroup analysis using our 
twenty-five-gene signature based classifier showed that patients with either the high-risk or intermediate-risk 
had a favorable response to adjuvant chemotherapy (median survival of high-risk group, 16.54 months vs. 21.80 
months, P = 0.054, Fig. 3J; intermediate-risk group, 17.85 months vs. 32.24 months, P = 0.012, Fig. 3K), while the 
overall survival of patients in low-risk group did not differ significantly (P = 0.912, Fig. 3L, Table 4S).

Moreover, the associations between adjuvant chemotherapy and prognosis in different lymph node metastasis 
group were also analyzed (N negative, P < 0.001, Fig. 4A; N positive, P = 0.967, Fig. 4E), we found that adjuvant 
chemotherapy can improve survival in GC patients with either high-risk (P = 0.012, Fig. 4B) or intermediate-risk 
(P = 0.001, Fig. 4C) group in lymph node metastasis positive group. In the other patients including lymph node 
metastasis positive group with low-risk (P = 0.454, Fig. 4D) and all lymph node metastasis negative group 
(High-risk group, P = 0.567, Fig. 4F; Intermediate-risk group, P = 0.51, Fig. 4G; Low-risk group, P = 0.347, 
Fig. 4H), overall survival is not significantly different between the chemotherapy and no chemotherapy group 
(Table 4S). The results indicate that our classifier could successfully identify patients who were suitable candidates 
for adjuvant chemotherapy.

Discussion
Our practical, quantitative-hybridization-based assay reliably identified GC patients at high risk for mortality after 
surgical resection, discriminating such patients with greater accuracy than use of NCCN criteria alone. Among 
the twenty three genes, most of them can be generally classified into the following types: epidermal growth factor 
receptor, cell cycle factor, angiogenesis, matrix metalloproteinase, and apoptosis genes17–21. Moreover, some genes 
also involved in notch signaling pathway, Tor signaling pathway, regulation of transcription22, 23, MAPK signa-
ling pathway, and metabolic process24, 25. Although other groups have developed gene signatures prognostic of 
survival in GC9, none of these previous studies used FFPE samples. Furthermore, most previous studies did not 
subject their prognostic signatures to large-scale, independent validation. Taken together, our assay for GC is the 
first of its kind in these important respects: the performance of the assay in one of the studies in a laboratory that 
was independent from the laboratory in which the assay was developed, the relatively large sizes of the independ-
ent testing cohorts, and the potentially large disparity between the genetic background of one of the test cohorts 
and that of the original training cohort used for development of the assay.

In this study, we noted that in stage I and II GC patients, those with a high-risk gene signature also showed 
a poor overall survival than those with a low-risk gene signature, while the overall survival of the patients with 
stage III did not differ significantly. This is probably because the consideration of palliative nature of surgical 
treatment in stage III group. The survival of patients with this stage will be affected significantly by many clinical 

Figure 4. Prediction effect of chemotherapy benefit in different risk group. Kaplan-Meier survival curves for N 
(−) (A–D) and N (+) (E–H) in different-risk groups, which were stratified by the receipt of chemotherapy.

http://4S
http://4S
http://4S
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and treatment factors other than genetic background of the cancer, and some gene classifiers study were more 
willing to focus on early stage cancer26.

Now two large Asian randomized Phase III studies (the ACTS GC and CLASSIC trials) have confirmed the 
survival benefit for postoperative chemotherapy after curative D2 lymph node dissection in patients with GC27, 

28. But not all patients, especially in patients with early stage need chemotherapy and can benefit from it29, 30. In 
our study, these results indicate that our classifier could successfully identify patients with different stage who 
may benefit from adjuvant chemotherapy. The results indicate that the 25-gene signature could be used to select 
early stage GC patients at high risk for adjuvant chemotherapy and advanced stage at either intermediate or high 
risk for adjuvant chemotherapy. Meanwhile, it may spare early stage at either low-risk or intermediate-risk and 
advanced stage at low risk patients from for unnecessary chemotherapy.

In conclusion, we identified a 25-gene signature associated with prognosis in GC, and validated it in another 
360 cases. Statistical analysis demonstrated it is an independent prognostic predictor. The predicting role of it in 
stage I and II is significantly better. Moreover, the patients with high-risk assay had a chemotherapy benefit in 
stage I and II GC, while low-risk patients in stage III were not found benefit from adjuvant chemotherapy.

Materials and Methods
Patients and samples. All of the patients with GC included in this study were diagnosed and surgically 
treated in Peking University Cancer Hospital between 1996 and 2007 and followed up to January 2013. This 
investigation was approved by the Institutional Review Boards of the hospital, informed consent was obtained 
from each patient, and all methods were performed in accordance with the relevant guidelines and regulations. 
All the frozen samples were collected and stored by Central Biobank Facility and all FFPE samples by Pathological 
Department of hospital. All frozen sample for this investigation passed the histological re-assessment containing 
at least 70% tumor cells. All FFPE tissues samples were hematoxylin-eosin (HE) stained and evaluated for one 
slide by two pathologists (YL and BD) and manually dissected to remove non-cancerous mucosa and mesenchy-
mal tissues to guarantee at least 80% tumor cells. The TNM stage of GC was classified according to the 7th edition 
of classification recommended by the American Joint Committee on Cancer (AJCC)31. This investigation was 
performed after approval by Ethics Committee of Peking University Cancer Hospital. Informed general consent 
was obtained from each patient at the time of collection.

Study design. The study design is shown in Fig. 1. At first, the frozen tissues from 78 patients (78 cancer 
tissues and 24 matched normal tissues) were profiled by Affymetrix Hu133Plus2 arrays for mRNA expression. 
Then analysis of microarray data generated candidate biomarkers related to prognosis and consensus therapeu-
tic targets. And only biomarkers with comparable expression detected by quantitative Quantigene assay in the 
matched FFPE tissues were selected to develop a multiple gene assay, which was then tested and validated in two 
cohorts of patients with FFPE tissue samples.

In the expression profiling assay, the frozen tissues from all stages (I-IV) patient with complete clinicopatho-
logical and follow-up information were randomly selected and retrieved from the Central Biobank Facility. In 
the following quality control test, samples with tumor percentage <70% by histology evaluation and poor RNA 
quality were excluded.

In the test and validation phase, only patients with TNM stage I-III GC undergoing curative resection (histo-
logically negative resection margin), and with complete clinicopathological and follow-up information available, 
were included. The reason for exclusion of stage IV from the validation cohort is because the consideration of 
palliative nature of surgical treatment for stage IV patients. The survival of patients with stage IV will be affected 
significantly by many clinical and treatment factors other than genetic background of the cancer. Patients with 
FFPE tissues not available or fail to pass the quality assessment were also excluded.

Microarray Analysis. Total RNA were extracted from frozen tissues and profiled by Affymetrix Hu133Plus2 
arrays for mRNA expression according to the manufacturer’s specifications. Robust Multi-array Analysis (RMA) 
algorithm provided by software Expression Console was used to call gene level expression values from raw sig-
nals. Based on the algorithm published, only the best probe set was selected to represent gene expressions. Any 
gene without probe set with informative score < 0.5 is removed from this analyses.

Quantitative hybridization Assay in FFPE tissues. After manually dissected the FFPE slides to remove 
non-cancerous mucosa with scalpels, tissue homogenates were prepared according to the procedure described 
in the QuantiGene Sample Processing Kit for FFPE Tissues (Panomics, Inc., Fremont, CA). Briefly, 200ul of 
homogenizing solution supplemented with 2 µl of proteinase K (50 µg/µl) were incubated with 6 deparaffinized 
5 µm sections overnight at 65 °C. Then the tissue homogenate was separated from debris by brief centrifugation, 
and transferred to a new tube.

Standard probe design software was used to design specific oligonucleotide probe sets for detecting target 
genes by QuantiGene plex 2.0 Reagent Systems (Panomics, Inc.), which gives 400-fold signal amplification. And 
the assay was performed according to protocols recommended by manufacturer (Panomics, Inc.). Briefly, probe 
set oligonucleotides were mixed with the sample solution into a 96-well plate. Target RNA was captured during 
an overnight incubation at 54 °C. Unbound material was removed by three washes with 200 µl of wash buffer 
followed by sequential hybridization of RNA amplifier molecules, then pre-amplifier hybridization, amplifier 
hybridization, and label probe hybridization were performed. Finally, plate were prepared for analysis after 
Streptavidinconjugated Phycoerythrin (SAPE) working reagent was added.

Gene Signature and Statistical Analysis. First, the genes which showed significantly differential expres-
sion between the GC tissues and adjacent non-cancerous gastric mucosa were selected from the 78 microarray 
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results. Then we used a Cox proportional hazards modeling as the main analytical test used to develop the prog-
nostic algorithm. Hazard ratios from univariate Cox regression analysis were used to determine which genes 
were associated with death. Protective genes were defined as those associated with a hazard ratio for death of less 
than 1; risk genes were defined as those associated with a hazard ratio for death of more than 1. For genes that 
were significantly correlated with survival, we used a linear combination of the gene-expression coding values 
weighted by the regression coefficients to calculate a risk score for each patient. Resultant predicted risk scores 
from the training cohort were divided at the 33rd and 67th percentiles to generate cutoff s for categorization of 
risk score as low-risk, intermediate-risk, and high-risk. Kaplan–Meier analysisi was used to compare survival the 
survival distributions of two or more groups of a between-subjects factor with the log-rank test. Multivariate Cox 
proportional hazards regression analysis with backward, stepwise selection was used to evaluate independent 
prognostic factors associated with survival. The correlation of the microarray and QGP results was indexed by 
Pearson’s correlation test. P < 0.05 was considered to indicate statistical significance, and all tests were two-tailed.

Significance. This study develops and validates a practical, reliable assay which can identify patients with 
different risk for mortality after surgery, and might be able to predict patients who may benefit from chemother-
apy in GC.
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