
1Scientific RepoRts | 7: 12873  | DOI:10.1038/s41598-017-07386-3

www.nature.com/scientificreports

Logic Synthesis of Recombinase-
Based Genetic Circuits
Tai-Yin Chiu1 & Jie-Hong R. Jiang  1,2,3

A synthetic approach to biology is a promising technique for various applications. Recent advancements 
have demonstrated the feasibility of constructing synthetic two-input logic gates in Escherichia coli cells 
with long-term memory based on DNA inversion induced by recombinases. Moreover, recent evidences 
indicate that DNA inversion mediated by genome editing tools is possible. Powerful genome editing 
technologies, such as CRISPR-Cas9 systems, have great potential to be exploited to implement large-
scale recombinase-based circuits. What remains unclear is how to construct arbitrary Boolean functions 
based on these emerging technologies. In this paper, we lay the theoretical foundation formalizing the 
connection between recombinase-based genetic circuits and Boolean functions. It enables systematic 
construction of any given Boolean function using recombinase-based logic gates. We further develop a 
methodology leveraging existing electronic design automation (EDA) tools to automate the synthesis 
of complex recombinase-based genetic circuits with respect to area and delay optimization. In silico 
experimental results demonstrate the applicability of our proposed methods as a useful tool for 
recombinase-based genetic circuit synthesis and optimization.

The development of synthetic biology shows the feasibility to implement computing devices with DNA genetic 
circuits in living cells. Synthetic cellular designs often intended to implement certain functions that make cells 
respond to specific environmental stimuli or even change their growth and cellular development. For instance, 
synthetic toggle switches1 and genetic oscillators2–5 can be used to control cell metabolism, synthetic counters6 
can be potentially applied to the regulation of telomere length and cell aggregation, and genetic logic gates7–10 
can achieve digital computation in response to stimulus input signals. In addition to these transcription-based 
DNA circuits, new emerging translational mRNA circuits11 are likely to have impact on mammalian regenerative 
medicine and gene therapy. Through the genetic engineering, synthetic cellular circuits are potentially useful to 
perform therapeutic and diagnostic functions.

For some situations where noxious chemical stimuli exist for many cell generations, the computational results 
from the synthetic circuits in parent cells are required to be propagated to their daughter cells so that the daughter 
cells can save time to respond to the environmental stimuli. To achieve this transgenerational memory, one pos-
sible method is to store the computational results in separate synthetic memory devices which can be duplicated 
in cell divisions. In the recent work of Siuti et al.12, a more efficient scheme for constructing synthetic cellular 
circuits with integrated logic and memory was proposed, where the computational result was automatically stored 
in the computing circuit configuration and the changes of configuration can be propagated to its descendant 
cells. The so-implemented circuits were built based on recombinases and tested in Escherichia coli cells and they 
showed a long-term memory for at least 90 cell generations. More recently, recombinase-based logic circuits 
has been applied in clinical uses. For instance, in recent work13 the authors demonstrate that biosensor made of 
recombinase-based logic gates can be used to detect pathological glycosuria in urine from diabetic patients. The 
ability to build complex recombinase-based logic circuits is an important step to enable widespread biomedical 
applications.

Specifically, the synthetic cellular circuits proposed by Siuti et al.12 used serine recombinases Bxb1 and phiC31 
to implement various two-input logic gates. A serine recombinase targeting a pair of non-identical recognition 
sites known as attB (attachment site bacteria) and attP (attachment site phage) is able to induce irreversible DNA 
inversion. As illustrated in Fig. 1(a), since the inversion makes the recognition sites become hybrid sites called 
attR and attL which cannot be targeted by the recombinase, no further inversion is allowed afterwards.
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We illustrate how recombinases take part in the implementation of two-input logic gates with the two-input 
AND gate example shown in Fig. 1(b). (As a convention, in this paper we read a DNA sequence from left to right 
assuming the 5′-to-3′ direction of the coding strand). Let molecules AHL and aTc be the stimulus inputs to a cell 
and act as inducers activating the expressions of recombinases Bxb1 and phiC31, respectively. These recombi-
nases when activated will irreversibly invert (flip) the DNA sequences flanked by their recognition sites (denoted 
by the colored triangle pairs). The DNA sequences being flanked can be a promoter, a transcription terminator, 
or a reporter, e.g., a green fluorescent protein (GFP). Inverting these DNA sequences will alter the output gene 
expression. In Fig. 1(b), two terminators were flanked by the recognition sites of recombinases Bxb1 and phiC31, 
and the output green fluorescent reporter is highly expressed only when both inducers AHL and aTc are in high 
concentration to activate BxB1 and phiC31 which together further flip and disable both terminators (denoted by 
letter “T”). Therefore, the circuit of Fig. 1(b) effectively implements a two-input AND gate. Note that such DNA 
sequence changes will survive through cell divisions and can be inherited to descendant cells in different genera-
tions. Hence the so-implemented logic function can achieve a long-term transgeneration memory.

Motivated by the viability and applicability of recombinase-based circuits, in this paper we formalize the 
construction of a general multi-input logic gate with its DNA sequence composed of series of promoters and 
transcription terminators targeted by multiple recombinases. We further characterize the set of Boolean functions 
realizable under such logic gates. In addition, we show a design flow for arbitrary Boolean function construction 
with cascaded recombinase-based logic gates. This automated design methodology is demonstrated by leveraging 
synthesis tool ABC14, an electronic design automation (EDA) tool developed at UC Berkeley, to synthesize cas-
caded multi-level recombinase-based circuits.

Methods and Results
To formalize the general multi-input gate construction, we use the three-input logic gates in Fig. 2(a–h) as exam-
ples to illustrate. Figure 2(a) shows a realization of a 3-input AND gate using three recombinases R1, R2, and 
R3, where molecule Ii is a stimulus input that activates the expression of recombinase Ri, for i = 1, 2, 3. Then Ri’s 
induce the inversions of their corresponding DNA sequence fragments. In order to express GFP in this gate, first 
we require R1 to invert the inverted promoter so that the RNA polymerase can bind to it and begin the transcrip-
tion of the downstream DNA sequence in which the GFP gene resides. Second, R2 is needed to flip the terminator 
to avoid the termination of transcription before reaching the GFP gene. Third, R3 is demanded to upright the GFP 
gene for the RNA polymerase to initiate GFP production. Collectively, to have GFP highly expressed all Ri’s must 
exist, and thus this circuit implements a 3-input AND gate. Note that this 3-input AND gate, where the promoter 
and the reporter gene GFP can be flipped by recombinases, is designed in a different fashion from the 2-input 
AND gate in Fig. 1(b), where only transcription terminators are inverted by recombinases. The additional choice 
of flipping the DNA fragments of promoter and GFP gives more flexibility for logic gate construction.

In Fig. 2(b–h) we present seven other basic 3-input gates implemented with recombinases. Special implemen-
tations with nested targeting sites are applied on the XOR gate in (g) and the XNOR gate in (h). In the XOR gate in 
(g), the existence of one or three recombinases results in one or three times of GFP gene flipping and thus making 
the upside-down gene become upright, while the existence of two recombinases makes the GFP gene flip twice 
and remain upside down. Similar situations happen in the XNOR gate in (h).

Since the implementations of multi-input gates are possible, we are not constrained to using only 3-input gates 
and basic gate types, such as AND, OR, NAND, NOR, XOR, and XNOR gates. Rather, we can construct complex 
logic gates with more inputs. Figure 2(i) shows an example of a 4-input logic circuit

= + ⊕O R R R R( ) ,1 2 3 4

which can be directly realized by a single 4-input complex logic gate, instead of cascading multiple two-input 
gates.

Formalism of Recombinase-Based Logic Gates. Syntax of well-formed sequences. We define the fol-
lowing syntax to formalize the DNA sequences of logic gates constructed with recombinases. Here the basic 

Figure 1. Recombinase-mediated DNA inversion and its application to the implementation of a logic gate. 
(a) Schematic illustration of the irreversible inversion of DNA sequences using serine recombinases. (b) 
Implementation of an AND gate using recombinases. The right-turn arrow represents a promoter; the red and 
blue triangles are the targeting sites of recombinases Bxb1 and phiC31, respectively; the letter T’s flanked by the 
targeting sites are transcription terminators; the green box represents the gene encoding the green fluorescent 
protein.
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elements composing a legal DNA sequence of a recombinase-based logic gate are “atomic terms”, including 
(inverted/non-inverted) transcription factors, (inverted/non-inverted) promoters, (inverted/non-inverted) 
genes, and targeting sites of recombinases. The syntax of DNA sequence forming a legal recombinase-based logic 
gate can be defined as follows.

Definition 1 An atomic term in a DNA sequence is a transcription terminator T, a promoter P, a gene G, an inverted 
transcription terminator , an inverted promoter , or an inverted gene . The syntax of an atomic term can be 
expressed in Backus-Naur Form as

 (1)

Let the targeting sites attP and attB of recombinase r in a DNA sequence be denoted as “{r” and “}r”, respec-
tively. In the sequel, the subscripts of {r and }r may be omitted for brevity when they are clear from the context or 
immaterial to the discussion. Note that targeting sites “{” and “}” of a recombinase must appear in a pair.

Definition 2 The syntax of a well-formed sequence (wfs) is recursively defined as follows.

〈 〉 = 〈 〉 | 〈 〉 | 〈 〉〈 〉.wfs atomic term wfs wfs wfs:: { } (2)ri

In this paper we concentrate on the special case of one-gene wfs (1g-wfs), where only one gene G, which is 
neither inverted nor sandwiched by targeting sites, appears at the end of the wfs and serves as the output. For  
example, , and  are 1g-wfs’s. Notice that under  
the 1g-wfs setting, the logic gate has a single output and the gene can only be transcribed in one direction from left 
to right.

A pair of targeting sites of a recombinase is called basic if it only flanks an atomic term. Otherwise, it is 
called non-basic. We call a 1g-wfs basic if it contains only basic pairs of targeting sites, and non-basic if it con-
tains some non-basic pair of targeting sites. For example,  is a basic 1g-wfs. In contrast, 

 and  are non-basic 1g-wfs’s.
Furthermore, a non-basic pair of targeting sites can be nested. That is, a non-basic pair of targeting sites can 

be flanked by another pair of targeting sites. For instance,  has nested two pairs of targeting 
sites targeted by the recombinases r3 and r4.

Figure 2. Examples of generalized multi-input recombinase-based logic gates. (a–h) Implementation of basic 
3-input logic gates using recombinases. The inputs of each gate from top to down are recombinases R1, R2, and 
R3, respectively; inducer Ii monitored by the cell activates the expression of Ri; the red, blue, and orange triangles 
denote the targeting sites of Ri, i = 1, 2, 3, respectively. (i) Schematic illustration of a 4-bit non-basic logic 
function = + ⊕O R R R R( )1 2 3 4 and corresponding implementation using recombinases.
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We discuss the logic functions induced by basic and non-basic 1g-wfs’s in the following.

Semantics of well-formed sequences – Basic well-formed sequences. We first study some reduction rules of basic 
1g-wfs’s. Let σ be the DNA sequence of a basic 1g-wfs excluding the output gene, that is, σ is a basic wfs without 
any gene. We denote a wfs without any gene as 0g-wfs. Because σ is made of components  
T{ }ri

, and  for any component C in σ the sequence σ can be decomposed into

σ σ σ= C ,1 2

where σ1 and σ2 are two 0g-wfs’s, if non-empty. We show that the logic gate induced by the 1g-wfs σG can be 
further reduced to an equivalent form according to the type of the component C.

When C is a transcription terminator T, then σ equals

σ σ σ≡ .T G G (3)1 2 2

This equivalence holds because any transcription that starts from σ1 to gene G is always blocked by the tran-
scription terminator T in the middle, making σ1T a don’t-care and thus removable.

When C is an inverted terminator , then σ equals

 (4)

This equivalence holds because the inverted terminator  never blocks the transcription and is thus 
removable.

When C is a promoter P, then σ equals

σ σ σ≡ .P G P G (5)1 2 2

This equivalence holds because no matter whether there is a transcription that starts from σ1 to G or not, a 
transcription can always start from the promoter P. Therefore, σ1 is a don’t-care and thus removable.

When C is an inverted promoter , then σ equals

 (6)

This equivalence holds because the transcription that begins at  proceeds across σ1 in the direction from 
right to left, it does not pass through G. As a result, the expression of G can not be initiated by  and thus  can 
be removed from the sequence.

When C is  since an atomic term A is equivalent to {A}r for recombinase r being in  
low concentration (denoted R = 0 by treating r as a Boolean variable R of value 0) or  for recombinase r being 
in high concentration (denoted R = 1 by treating r as a Boolean variable R of value 1), the reduction rules for C 
can be easily extended from the previous rules as summarized below.

σ σ
σ
σ σ

≡





=
=

T G
G R

G R
{ }

, for 0
, for 1 (7)

r1 2
2

1 2

 (8)

σ σ
σ

σ σ
≡






=
=

P G
P G R

G R
{ }

, for 0
, for 1 (9)

r1 2
2

1 2

 (10)

with the above analysis, we can derive the corresponding Boolean function of a given 1g-wfs. Consider the 1g-wfs 
σG with the sequence σ targeted by recombinases ri, = ...i n1, , . Activating the expression of gene G requires the 
recombinases ri’s have adequate (high or low) concentrations so that the 1g-wfs σG effectively reduces to PG. The 
Boolean function induced by σG is determined through a series of decisions made by ri’s. In essence, it corre-
sponds to a decision list15. To illustrate, consider the example  The decision list 
induced by the 1g-wfs σG is shown in Fig. 3. Note that given a sequence without non-basic targeting sites, the 
decisions always start from the rightmost to the leftmost components because a component closer to the gene 
may overwrite the effects imposed by the components on its left and thus it is of higher priority. Therefore, the 
Boolean function of σG is determined starting from R1 to R5. In order to reduce σ to P to express gene G, first we 
must require R1 to be 1. Otherwise if R1 = 0, σ becomes equivalent to a null sequence no matter what other Ri’s are. 
Next, if we let R2 be 1, we can have an equivalent sequence equal to P as wished. Otherwise we can let R2 be 0 and 
look for other possibilities for the reduction to P. If R2 = 0, we can easily tell that the only possibility occurs when 
R3 and R4 are both 0 and that the logic of R5 never affects the reduction. Collectively, the logic function of the gate 
σG is derived as ⋅ + ⋅R R R R( )1 2 3 4 , where symbol “+” denotes Boolean disjunction, symbol “·” denotes Boolean 
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conjunction, and symbol “−” or “!” denotes Boolean negation. In the sequel, we sometimes omit the conjunction 
symbol “·” in a Boolean expression.

In general, we can systematically convert any basic 1g-wfs to its corresponding logic function. To achieve this 
conversion, the operator Ω over a 1g-wfs is defined in Table 1. For an empty sequence ⊥, we define Ω[⊥] = 0. For 
example, the Boolean function of the 1g-wfs  is derived by

Semantics of well-formed sequences – Non-basic well-formed sequences. We extend the above derivation 
of Boolean function to non-basic 1g-wfs’s by having the operator Ω over a 0g-wfs {σ}r (which can be basic or 
non-basic) defined as

Figure 3. Decision list corresponding to 1g-wfs  Node labelled Ri is the decision for 
the logic value of Ri. Nodes labelled 0 (resp. 1) stand for gene G cannot (resp. can) be expressed. The sequences 
beside nodes are the equivalent sequences after the corresponding (partial) decisions.

component C operator Ω[σC]

T 0 · (Ω[σ])

P 1 + (Ω[σ])

{T}r R · (Ω[σ])

{P}r σ+ ΩR ( [ ])

1 · (Ω[σ])

0 + (Ω[σ])

σ⋅ ΩR ( [ ])

R + (Ω[σ])

Table 1. Operators for parsing basic 1g-wfs σCG, with (non-empty) 0g-wfs σ, component C, and gene G, to 
logic function.
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 (11)

where  is the inverted sequence of σ. To understand equation (11), consider a 1g-wfs σG with only one pair of 
non-basic targeting sites. Suppose σ = {σ1}r, where σ1 is a basic 0g-wfs. Then σ is equal to σ1 when R = 0 and to 

, the inverted sequence of σ1, when R = 1. For example, the logic function for  can 
be obtained by

For a 1g-wfs with multiple (possibly nested) non-basic pairs of targeting sites, its logic function can also be 
directly derived by the Ω operator. For example, the logic function for  can be obtained 
by

Non-basic pairs of targeting sites can be exploited to efficiently construct special Boolean functions. One of 
such special functions is the parity function. An n-input odd parity function can be realized by the 1g-wfs

When there is an odd number of Ri’s equal to 1, the 1g-wfs reduces to sequence PG and gene G can be 
expressed. Otherwise it reduces to sequence G and gene G cannot be expressed. On the other hand, the n-input 
even parity function can be realized by the 1g-wfs

.�� �P G{ { } }
n

r rn1

Construction of Multi-level Recombinase-Based Logic Circuits. With the recombinase-based logic 
gates built from 1g-wfs’s, we can cascade them to implement arbitrary complex multi-level circuits. For example, 
the logic function Z = (A + B)(A ⊕ B) can be implemented with the two-level circuit shown in Fig. 4(a), which is 
composed of an OR-gate, an XOR-gate, and an AND-gate. One possible DNA implementation of Z with cascade 
can be derived by converting each gate to their 1g-wfs realizations as shown in Fig. 4(b). The 1g-wfs’s that encode 
the genes R1, R2, and Z correspond to the OR, XOR and AND gates, respectively. The recombinases r1 and r2 as the 
inputs to the AND gate are the intermediate signals.

Because the basic 1g-wfs gates can implement decision list functions, they form a functionally complete set of 
primitive logic gates that can be composed to implement any Boolean function. Therefore the 1g-wfs gates can be 
collected as a library for the synthesis of complex logic circuits. By leveraging conventional logic synthesis tools in 
electronic design automation (EDA), recombinase-based logic circuits can be synthesized with the flow shown in 
Fig. 5(a). Given a Boolean function or circuit netlist as the input, it is first optimized by technology-independent 
techniques for circuit simplification. The simplified circuit is further optimized by technology-dependent 
techniques for technology mapping using the primitive gates in the given standard cell library. To achieve 
recombinase-based logic circuit synthesis, the main task is to provide the library while all other optimization 
tasks can be done using existing logic synthesis tools.

In this work, we adopt ABC14, an industrial-strength logic synthesis tool developed at UC Berkeley, for cir-
cuit synthesis and optimization. Given a circuit netlist, we first apply ABC to perform technology-independent 
optimization on the netlist, e.g., Boolean minimization to minimize the number of product terms and literals. We 
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Figure 4. Example of a cascaded recombinase-based logic circuit. (a) Logic circuit of Boolean function 
Z = (A + B)(A ⊕ B). (b) The corresponding DNA implementation of the circuit in (a) with gate cascade. A and 
B denote the recombinase inputs of the overall circuit. The genes R1 and R2 encode the recombinases r1 and r2, 
respectively, which are the inputs to the downstream AND gate. The protein encoded by the gene Z is the output 
of the circuit.

Figure 5. Illustration of the synthesis flow with an input circuit and a library of primitive gates. (a) Logic 
synthesis flow for the implementation of recombinase-based logic circuit. (b) Circuit diagram of an input circuit 
netlist example, ISCAS benchmark c17. Circuit c17 consists of six NAND gates with five inputs {A, B, C, D, E} 
and two outputs {Y, Z}. (c) Example of a library of DNA gates with area cost specified. The library contains 44 
different cells and each cell corresponds to a DNA logic gate defined by a 1g-wfs with up to three inputs. The 
variables a, b, and c in a function specification represents the recombinase inputs to a gate, and the variable O 
denotes the gate output.
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then use ABC to perform technology mapping to implement the area or performance optimized netlist using the 
1g-wfs gates in the library.

To illustrate the synthesis flow, we consider implementing ISCAS benchmark circuit c17 shown in Fig. 5(b) 
with recombinase-based genetic circuit realization. The circuit consists of five inputs A, B, C, D, and E, and two 
outputs Y and Z with functions






= +
= + .

Y AB BC D
Z BC D BC E

( )
( ) ( ) (12)

For area-driven synthesis of benchmark c17, there are 44 DNA gates defined by their 1g-wfs’s with up to three 
recombinase inputs. They are collected as the library as shown in Fig. 5(c). According to the experiment in the 
previous work12, where the promoters and transcription terminators used are roughly of the same length, we 
treat the area cost of both promoter and transcription terminator as unity. Therefore, the area cost of a DNA gate 
is defined as the number of atomic terms, excluding the output gene, that appear in the 1g-wfs of the gate. For 
example, the gate c3_1 corresponding to a 3-input OR gate has three inverted promoters as shown in Fig. 2(d). 
Hence, the area cost of c3_1 is counted as 3 units. By providing the c17 netlist and the library to ABC, the tool 
can perform optimization and technology mapping to find an area-optimized circuit composed of DNA gates of 
the library. Note that area minimization of a recombinase-based circuit effectively reduces the number of used 
promoters and terminators on the DNA strand implementation. Therefore, less effort is required to synthesize 
the intended DNA strand via DNA assembly methods, e.g., Gibson assembly16. More importantly, a shorter DNA 
sequence is more likely to succeed in vector insertion to deploy the genetic circuit into the host cell to conduct 
the intended computation.

Figure 6(a) shows the result described in Verilog language of the synthesized c17 recombinase-based circuit 
using library gates listed in Fig. 5(c). The synthesized circuit comprises gates c2_4, c2_5, c3_14, and c3_25, and 
the total area cost is 10 units. Note that the naive DNA circuit implementation of c17 circuit by converting the dig-
ital logic gates in Fig. 5(b) to the corresponding DNA gates results in a total area cost of 12 units. Compared to the 
naive implementation, the area cost of the circuit synthesized by ABC technology mapping decreases. The logic 
functions of Y and Z in the synthesized circuit can be easily verified to be consistent with equation (12), implying 
the correctness of the synthesis result. The DNA circuit of module c17 in Fig. 6(a) is plotted in Fig. 6(c), where the 
symbols A, B, C, D, E, n7, and n8 represent some serine recombinases. In practice, to have recombinases achieve 
site-specific recombination in a synthetic genetic circuit, recombinases that have been reported to function out-
side their native hosts may be used. For example, well-reported recombinases17–29, such as φC31, φBT1, R4, BxB1, 

Figure 6. Synthesis results of circuit c17 in Verilog descriptions and in DNA circuit implementations. (a) Tool 
ABC synthesized c17 circuit in Verilog description. (b) Manually designed c17 circuit in Verilog description. 
(c) DNA circuit implementation of the ABC synthesized circuit in (a). (d) DNA circuit implementation of 
the manually designed circuit in (b). In both (c) and (d), symbols A, B, C, D, and E indicate the recombinase 
inputs, the proteins encoded by the genes Y and Z are the outputs of the circuit, and the DNA gates encoding 
recombinases n7 and n8 and proteins Y and Z are the gates g0, g1, g2, and g3, respectively, in the modules c17 
and c17_1.
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TP901-1, RV, SPBc, TG1, φFC1, MR11, φ370, φK38, A118, W β, and BL3 integrase, can be plausible molecular 
parts for realization of the recombinase signals in Fig. 6(c).

Note that there can be more than one area-optimized circuit of a logic function. For comparison, in Fig. 6(b) 
we show another manually designed DNA implementation of c17 circuit whose area cost is 10 units as well. The 
corresponding DNA circuit is plotted in Fig. 6(d). Notice that the two circuits in Fig. 6 differ not only in their 
constituent logic gates, but also in their logic depths. The circuit of Fig. 6(c) is of two logic levels, whereas that of 
Fig. 6(d) is of three logic levels. There are six longest paths in the former circuit:











→ →
→ →
→ →
→ →
→ →
→ → .

A n Y
B n Y
B n Y
B n Z
C n Y
C n Z

7 ,
7 ,
8 ,
8 ,
8 ,
8

They involve a cascade of two logic gates. On the other hand, there are two longest paths in the latter circuit:

→ → →
→ → → .{B n n Y

C n n Y
7 8 ,
7 8

They involve a cascade of three logic gates. In digital electronic circuits, a longer circuit path often corresponds 
to a longer propagation delay between circuit input and output signals. Similarly in biological circuits, a longer 
circuit path involves more transcription and translation cascades, resulting in a longer response time of output 
gene expression to input stimuli. Here, the former and latter circuits involve two (n7 and Y) and three (n7, n8, 
and Y) gene expression cascades, respectively. Therefore, although these two circuits have the same area cost, the 
circuit of Fig. 6(c) is preferred due to its better performance, i.e., shorter input-to-output response time. In addi-
tion, we will detail in Section Discussion that the delay optimization may present fewer foreign genes and thus 
impose less metabolic burden on the host cell. In the in silico experiments, we will synthesize circuits with area or 
performance optimized.

To demonstrate the feasibility of the proposed synthesis flow, we conduct in silico experiment on other 67 
ISCAS benchmark circuits using recombinase-based DNA gates. We expanded the library such that it includes 
all 684 DNA gates with decision list functions up to five inputs. In the library, the area cost of a gate is determined 
by the number of atomic terms, excluding the output gene, appearing in its corresponding 1g-wfs. To reduce the 
number of gene expression cascades, we simply assume each logic gate is of the same unit delay. By specifying 
a unit delay for each gate in the library, the delay of a synthesized circuit equals the logic level, which equals the 
number of gene expression cascades in the longest path in the circuit. Consequently, under the unit delay model 
the performance-driven logic synthesis minimizes the delay time between input stimuli and output response 
in the synthesized recombinase-based circuit. Note that this simple unit delay model is not meant to reflect the 
timing behavior of actual biological systems, but to facilitate the logic synthesis algorithm to perform circuit logic 
level minimization.

The experimental results of 54 (out of the 67) circuits are shown in Table 2. The numbers of primary inputs/
outputs, the number of inverters, and the number of logic gates (with the number of included buffers, if non-zero, 
reported in parentheses) are listed Columns 2, 3, and 4, respectively. The circuits were synthesized under two 
optimization settings: one for area optimization and the other for delay optimization. The results of area opti-
mization are reported in Columns 5–7 and those of delay optimization are reported in Columns 8–10. For each 
synthesized circuit, its number of DNA gates, total area, and gate level are shown. In the naive implementations 
of benchmark circuits by simply converting the digital logic gates to the corresponding DNA gates, the total area 
of a DNA circuit can be roughly calculated as “#inverter” + 2 × “#gate”. Compared to the naive implementation, 
the circuits synthesized by ABC have much less area cost. Taking circuit b18 for example, we observe that the 
total area of the naive implementation is about 202110 which is much larger compared to the area 101870 of the 
area-optimized implementation and 105328 of the delay-optimized implementation. On the other hand, compar-
ing area and delay optimized b18 circuits, delay optimization reduces the number of gate levels from 137 to 51 at 
cost of increasing area by 3500 units.

Discussion
Area vs. Delay Optimization. To pursue area or delay optimization in genetic circuit synthesis is a matter 
of tradeoff, and may depend on the intended application and/or biological feasibility. Nevertheless, Table 2 reveals 
that when the library of recombinase-based logic gates is used in ABC for logic synthesis, delay optimization often 
achieves effective reduction (62% on average) in logic level, or circuit depth, with a slight increase (7% on average) 
in circuit area compared to area optimization. Taking the largest circuit b18 benchmark for example, from area 
to delay optimization, the area cost increases by 3.39% while the logic level decreases by 62.77%. Particularly, in 
practice since we are limited by the biotechnology and the metabolic burden, circuits to be synthesized cannot 
be as large as b18 benchmark, which only serves as a proof of concept. Instead, small circuits, such as b06, are 
more likely to be implemented. For benchmark b06, the area cost increases by 10.71% (56 to 62) and the logic 
level decreases by 50% (6 to 3) from area to delay optimization. Moreover, the delay optimization helps reduce 
metabolic burden (to be discussed below). These facts imply that delay-driven optimization may often be a proper 
objective for logic synthesis of recombinase-based genetic circuits.
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circuit name

benchmark profile area optimization delay optimization

#PI/#PO #inverter
#gate 
(#buffer) #DNA gate area #level #DNA gate area #level

b03 34/34 16 106 91 217 7 79 228 4

b04 77/74 105 547 373 852 22 358 881 8

b06 11/15 7 32 25 56 6 24 62 3

b07 50/57 61 322 257 583 23 235 615 8

b08 30/25 26 123 90 224 12 85 233 5

b09 29/29 24 116 106 228 10 96 240 5

b10 28/23 32 140 100 260 11 96 298 4

b11 38/37 148 578 333 788 25 301 829 8

b12 126/127 113 831 707 1648 15 673 1786 6

b13 63/63 52 237 172 381 12 153 401 4

b14 277/299 1531 8236 2851 6947 124 2791 7749 18

b17 1452/1512 4474 26303 15344 37726 104 14802 39178 28

b18 3357/3343 20372 90869 43018 101870 137 40277 105328 51

b20 522/512 3068 16614 6119 14497 128 6111 16545 21

b21 522/512 3089 16938 6173 14724 121 6147 16631 21

b22 767/757 4491 24671 9302 22107 124 9286 24908 21

c432 36/7 40 120 79 200 25 91 276 11

c499 41/32 40 162 407 794 21 335 833 11

c880 60/26 63 320 (26) 234 530 26 208 553 8

c1355 41/32 40 506 (32) 394 781 19 328 878 10

c1908 33/25 277 603 (162) 336 690 28 271 736 13

c2670 233/140 321 872 (196) 409 956 19 400 1002 9

c3540 50/22 490 1179 (223) 566 1473 36 553 1649 14

c5315 178/123 581 1726 (313) 942 2202 25 908 2333 12

c6288 32/32 32 2384 1825 3709 89 1502 3995 38

c7552 207/108 876 2636 (534) 1149 2496 59 1084 2754 11

s208 19/10 35 61 39 100 8 39 105 3

s298 17/20 44 75 55 125 7 52 138 3

s344 24/26 59 101 82 178 11 67 175 4

s349 24/26 57 104 84 179 11 67 175 4

s382 24/27 59 99 78 172 8 70 191 3

s386 13/13 41 118 71 186 7 61 195 3

s400 24/27 56 106 80 173 9 76 220 3

s420 35/18 74 122 79 202 11 72 196 4

s444 24/27 62 119 75 169 9 74 210 3

s510 25/13 32 179 116 311 8 102 324 4

s526 24/27 52 141 88 202 11 79 223 3

s641 54/43 272 107 94 217 17 82 232 6

s713 54/42 254 139 90 212 16 85 237 6

s820 23/24 33 256 130 353 8 129 394 4

s832 23/24 25 262 132 358 9 135 406 4

s838 67/34 149 241 163 415 12 142 398 5

s1196 32/32 141 388 243 647 17 236 734 6

s1238 32/32 80 428 278 734 17 259 790 7

s1423 91/79 167 490 341 775 50 313 815 13

s1488 14/25 103 550 299 820 12 272 910 4

s1494 14/25 89 558 303 829 11 279 920 4

s5378 214/228 1775 1004 844 1843 14 780 1849 7

s9234 247/250 3570 2027 1065 2379 20 986 2442 9

s13207 700/790 5378 2573 2006 4075 26 1818 4153 9

s15850 611/684 6324 3448 2224 4946 35 2131 5018 16

s35932 1763/2048 3861 12204 6776 14953 9 5565 14718 5

s38417 1664/1742 13470 8709 6147 14319 23 5858 14551 10

s38584 1464/1730 7805 11448 7066 16905 37 6243 16433 11

avg ratio 1.00 1.00 1.00 0.92 1.07 0.38

Table 2. Results of technology mapping of ISCAS benchmark circuits.
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Metabolic Burden. One of the advantages of recombinase-based genetic circuits is its low metabolic burden 
imposed on the host cell30. Unlike a classic genetic circuit requiring continuous production of and action by acti-
vators or repressors to maintain the output gene expression, the output gene expression in a recombinase-based 
genetic circuit is determined by its DNA configuration, which is changed by DNA inversion or excision by recom-
binases; no further continuous recombinase supply and action is needed afterwards. This permanent configura-
tion change is understood as a long-term (nonvolatile) memory, leading to the advantage of a lower metabolic 
burden on the host cell. This advantage may allow more complex genetic circuit implementation using recombi-
nases. For example, recombinase-based finite state machines have been implemented in E. coli cells31. Moreover, a 
6-input AND gate, a 2-data-input 4-select-input Boolean logic look-up table, a full adder, a full subtractor, and a 
half adder-subtractor were implemented in human embryonic kidney and Jurkat T cells32. Furthermore, we have 
shown recombinase-based logic gates can be adopted in the conventional logic synthesis flow for efficient circuit 
optimization. Because an efficient design can reduce metabolic burden and outperform an inferior counterpart 
even with the same functionality33, complex circuit implementation may benefit from the automation and opti-
mization method proposed in this report.

Even with recombinase based construction, implementing a large circuit in a living cell may still be challeng-
ing due to the increase of metabolic burden34 caused by two major effects. First, a larger synthetic circuit requires 
more cellular energy to maintain its presence in the host cell35. Second, a large number of introduced genes 
will compete for the transcriptional and translational resources, resulting in resource redistribution36 and unex-
pected coupling among seemingly unconnected modules37, and thus leading to cell growth defects and poorly 
predictable circuit behavior. One approach to address these issues is to separate the target circuit into sub-circuits 
and implement the circuit across a consortium of host cells7,38–40. In particular, the consortium is divided into 
colonies of the same number of the sub-circuits. Each colony is composed of a strain implementing one of the 
sub-circuits. The sub-circuits are connected through cell-cell communication by wiring molecules (for example, 
quorum-sensing molecules and yeast pheromones) or metabolites like benzoic acid. Collectively, the whole cell 
population implements the target circuit. This distributed strategy may also apply to a large recombinase-based 
circuit implementation. For instance, the c17 circuit in Fig. 6(a) may be implemented by distributing the gates g0, 
g1, g2, and g3 into four strains of cells.

We note from Table 2 that when using recombinase-based logic gates as the library for a target circuit synthe-
sis, the option of delay optimization introduces fewer DNA gates, each of which contains a gene, than the option 
of area optimization. Hence, delay optimization is preferred over area optimization due to a lower metabolic 
burden imposed by fewer foreign genes in the delay-optimized circuit.

Experimental Steps for Circuit Realization. Given a target Boolean function to be implemented as a 
genetic circuit, our method can be applied as the first step to build the blueprint for the wet-lab construction by 
using the logic synthesis tool ABC to derive the area or delay-optimized circuit. The next task is to associate the 
abstract signals of the synthesized netlist with concrete biochemical parts, including promoters, recombinases, 
and genes, for wet-lab implementation. After this association step, the DNA molecule of the genetic circuit is 
readily to be constructed by Gibson assembly16, Unique Nucleotide Sequence (UNS) Guided assembly41, or other 
assembly methods. Note that the promoters used here should have the ability to strongly promote transcription. 
After the assembly, the DNA constructs are transformed/transfected into cells using a standard protocol, such as 
the polyethylenimine (PEI) protocol. The cells should be kept and maintained in custom or standard media, such 
as Luria-Bertani (LB) medium and Dulbecco’s Modified Eagle’s medium (DMEM), and grown for one to two days 
in a stimuli-free medium. To test the synthetic circuit, cells have to be exposed to stimuli and grown for several 
hours, and then the fluorescence response from cells is measured by a flow cytometer. For each sample of the 
measurement, the same number of cells should be used for consistency. After creating a gate using forward scatter 
(FSC) and side scatter (SSC) and applying a proper fluorescence threshold on each fluorescent protein channel, 
the percentage of cells in an ON state is determined by flow cytometry analysis.

Alternative Genetic Circuit Construction with CRISPR/Cas9 Systems. Cas9 nucleases42 may pos-
sibly be exploited to achieve gene expression effects equivalent to what recombinases can achieve. For example, 
Cas9 nucleases are able to induce DNA deletion43,44, defective Cas9 nucleases (dCas9) can repress transcription by 
blocking transcriptional initiation or elongation45, and dCas9 fused with a transcriptional activator is capable of 
activating gene expression46. Specifically, DNA deletion of P and T may achieve an effect equivalent to inverting P 
and T, respectivley; transcription repression may achieve an effect equivalent to inverting P and ; transcription 
activation may achieve an effect equivalent to inverting  and T. These mechanisms allow CRISPR/Cas9 systems 
to be utilized as recombinase replacements for the implementation of decision list logic functions.

Conclusion
In this paper, we generalized the two-input recombinase-based DNA logic gates to multi-input cases. We for-
malized the syntax of recombinase-based logic gate construction, and obtained the Boolean function semantics 
of well-defined DNA sequences of recombinase-based logic gates. We also showed how to synthesize multi-level 
recombinase-based logic circuits using existing logic synthesis tools. In silico experimental results demonstrate 
the feasibility and efficiency of our proposed methods as a tool for recombinase-based genetic circuit minimi-
zation. As recombinase-based logic circuits have been used in clinical biomarker detection and tested in human 
cells, our tool can be useful to automate complex recombinase-based circuit construction for biologists to imple-
ment advanced biomedical applications.
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