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Refractory period in network 
models of excitable nodes: self-
sustaining stable dynamics, 
extended scaling region and 
oscillatory behavior
S. Amin Moosavi1,2, Afshin Montakhab1 & Alireza Valizadeh2

Networks of excitable nodes have recently attracted much attention particularly in regards to neuronal 
dynamics, where criticality has been argued to be a fundamental property. Refractory behavior, which 
limits the excitability of neurons is thought to be an important dynamical property. We therefore 
consider a simple model of excitable nodes which is known to exhibit a transition to instability at a 
critical point (λ = 1), and introduce refractory period into its dynamics. We use mean-field analytical 
calculations as well as numerical simulations to calculate the activity dependent branching ratio that 
is useful to characterize the behavior of critical systems. We also define avalanches and calculate 
probability distribution of their size and duration. We find that in the presence of refractory period 
the dynamics stabilizes while various parameter regimes become accessible. A sub-critical regime 
with λ < 1.0, a standard critical behavior with exponents close to critical branching process for λ = 1, 
a regime with 1 < λ < 2 that exhibits an interesting scaling behavior, and an oscillating regime with 
λ > 2.0. We have therefore shown that refractory behavior leads to a wide range of scaling as well as 
periodic behavior which are relevant to real neuronal dynamics.

Various physical, biological and chemical systems are composed of interacting excitable agents and thus networks 
of excitable nodes are widely used to model the behavior of such systems. Examples of such systems include 
tectonic plates1, 2, Neural networks3–7, models of self-organized criticality (SOC)8–11, and epidemic (contagion) 
spreading12–16. Oftentimes excitable nodes are modeled with threshold dynamics as in the case of sandpile models 
of SOC which are thought to underlie the wide range of scale-invariant behavior seen in Nature.

Criticality in cortical dynamics is by now a widely studied and well established field17. Neuronal avalanches have 
been reported as collective scale-invariant behavior of neurons in the cortical layers of mammalian brain3, 17–25.  
Probability distribution functions of duration and size of the neuronal avalanches are power law functions 
observed in a wide range of space and time which are thought to be hallmarks of critical systems. In addition to 
avalanche statistics, branching ratio has also been used to characterize various time-series in order to establish 
critical dynamics of the brain3. Criticality of the brain is therefore the subject of a myriad of theoretical as well 
as experimental studies26–34. Critical dynamics is believed to underlie many functional advantages in a healthy 
brain, including learning35, optimal dynamic range5, 36–39, efficient information processing32, as well as optimal 
transmission and storage of information4.

Many excitable agents often display refractory behavior. This behavior which is characterized by a time scale 
(i.e. refractory period) is a time during which the excited agent cannot be re-excited. The presence of such refrac-
tory period can clearly affect the collective dynamics of excitable nodes. Neuronal systems are perfect examples of 
networks of excitable nodes with refractory period40.
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A particularly useful model of excitable agents considers a random network of such nodes with quenched 
excitatory connection weights and probabilistic dynamics41. It is well-known that such a model exhibits a phase 
transition between stable and unstable regimes as the average weight of connections is increased37, 38, 42. More 
recently, it has been shown that the addition of inhibitory connections leads to a ceaseless dynamics which exhib-
its critical behavior by fine-tuning the system to the transition point associated with the mentioned instability43. 
This fine-tuning essentially leads to an intricate balance between excitatory and inhibitory connections which 
may not be a priori available and thus a non-generic behavior. Here, we propose to study the original model 
(without inhibitory connections) in the presence of refractory period. Interestingly, we find that refractory period 
leads to stable dynamics in the entire range of parameter. However, and perhaps more interestingly, we are able to 
identify a critical point with robust finite-size scaling behavior, a wide critical-like regime with interesting scaling 
behavior, as well as a regime with periodic behavior. Therefore, we show that refractory period in addition to 
stabilizing the dynamics leads to a wide range of parameters which show scaling or periodic behavior which are 
hallmarks of real neuronal dynamics.

This article is organized as follows: The following section discusses the model. Next, we show our analytical 
and numerical results, respectively. We close by providing concluding remarks.

Model
The model consists of N excitable nodes on a random directed graph where every two nodes are connected with 
probability q. The average out-degree and in-degree of the network is equal to 〈k〉 = qN. Weights of the connec-
tions (wij), that form the adjacency matrix of the network, are randomly chosen real numbers in the range of  
[0, 2σ] with the average connection weight of σ. If node i is not connected to node j, their connection weight is 
set to zero (wij = 0). Every node can be in one of active or quiescent states. Activity of the network is shown by 
the spatio-temporal binary variable, Ai(t), i.e. if the node i is active at time t then Ai(t) = 1 and when the node is 
quiescent Ai(t) = 0. The probability of a node to be activated at time t + 1 is equal to
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where δ A t0, ( )i
 is the Kronecker delta, which is equal to zero (one) if Ai(t) = 1 (0), implying refractory period of one 

time step, i.e. the activation probability of a node that is active at time t will be equal to zero at t + 1. f is a transfer 
function that transfers the total input of a node ∑ =( )w A t( )j
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In this work, our focus is on the aggregate activity of the system which is defined as the number of active nodes at 
each time step and is equal to = ∑ =x A t( )t i

N
i1 . We use xt as a dynamical variable to analyze stability as well as 

statistical properties of the system.
Before presenting our results, it is instructive to remark on properties of the model without a refractory 

period. It is well known that the behavior of this model, without a refractory period, is governed by the largest 
eigenvalue of the adjacency matrix37–39, 42 which is equal to λ = σ〈k〉 for the random graph that we use42, 44. It has 
been shown that this system exhibits stability and instability in activity for λ ≤ 1 and λ > 1, respectively. In the 
case of stability, the system requires external drive to be activated and x = 0 is the stable attractor of the dynamics. 
When unstable (λ > 1) the activity of the system increases and saturates at x = N. The critical point of the system 
is λ = 1 where the system undergoes a transition from stability to instability. Poised at the critical point, the sys-
tem exhibits scaling behavior for statistical properties of cascades of activity (avalanches) that start by an external 
perturbation. Our main goal in this paper is to scrutinize the behavior of the system when refractory period is 
introduced into the dynamics, i.e. delta function in Eq. (1). We are particularly interested in stability of dynamics 
and/or whether generic scaling behavior similar to cortical samples could arise in the model.

Results
Mean-field analysis.  Dynamics of the system with refractory period is governed by Eq. (1). It is clear that 
the dynamics is strongly affected by the interaction weights (wij). We can roughly explain the behavior of the 
system by considering different extremes of λ which is proportional to the average weight of connections σ. For 
small values of λ  1 the interaction weights are small and any activity that starts by an initial perturbation is 
expected to die out very fast leading to a stability of the fixed point x = 0. In the other extreme, for large values of 
λ  1, due to large values of interaction weights the probability of firing is expected to be equal to one for any 
node that receives input and is also quiescent at the time (see Eq. (1)). Therefore, at any given time, after a tran-
sient period, there are two sets of nodes: x that are active, and N − x that are in refractory period and will be active 
in next time step. Clearly, the system exhibits oscillations in this limit where all active nodes become quiescent 
and vice versa. We generally expect that there exists an important range of λ over which the system changes its 
behavior from a ceasing stable phase to a cease-less periodic phase. It is possible that the transition passes though 
a critical point or region.

In order to analyze the behavior of the model we use the aggregate activity of the system xt as a function of 
time, and calculate the activity dependent branching ratio b(M)45 which is the expectation value of xt+1/M when 
there are M active nodes at time t,
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It is clear from definition of b that for a given value of xt = M, if b(M) > 1 (b(M) < 1) an average increase (decrease) 
in activity is expected in the next time step. Therefore, b(M) can provide important statistical information about 
the behavior of the system for the entire range of possible values of xt.

Galton-Watson theory of branching process holds that a branching ratio less, equal or larger than one respec-
tively bespeaks sub-critical, critical and super-critical phases in a system46. But, the activity dependent branching 
ratio, due to its variability with respect to activity x, is different from the branching ratio defined in the 
Galton-Watson process and therefore provides much more information about the dynamics of a system. We thus 
consider criticality with regard to the activity dependent branching ratio. We define a system as critical if there 
exists a range R (M∈R) which is accessible by the long term dynamics of the system and exhibits two characteris-
tics: (i) the value of the activity dependent branching ratio must be equal to one over R in the thermodynamic 
limit, i.e. ∈ =→∞b M Rlim ( ) 1N , and (ii) R must go to infinity as N → ∞. Condition (i) has to do with critical 
systems being (on the average) unpredictable. Condition (ii) has to do with lack of characteristic scale for a critical 
systems in the thermodynamic limit. We note that b(M) has been used to ascertain criticality in a wide range of 
systems including sandpile models of SOC or solar flares45 as well as neural networks33.

We begin by employing a mean-field approach in order to calculate the activity dependent branching ratio, 
analytically. If there are M active nodes at a time t, then at time t + 1 every node will receive an input with the 
weight of M k

N
, and if a node is quiescent at time t will be activated with probability of σ( )f M k

N
. The largest eigen-

value of the connection matrix is λ = σ〈k〉 and the activation probability can thus be written as λ( )f M
N

. Since 
≥λ 0M

N
, two situations are possible: (a) ≤ ≤λ0 1M

N
: in this case =λ λ( )f M

N
M
N

, and the probability of having 
exactly xt+1 = z active nodes at t + 1 when there are xt = M active nodes at time t can be approximated as a bino-
mial probability function, i.e. due to the refractory period of one time step, there are N − M nodes that can be 
activated with probability λM

N
. (b) >λ 1M

N
: in this case =λ( )f 1M

N
 and every quiescent node that receives input in 

a time step will be activated in the next time step. Therefore, the conditional probability is obtained as:
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where the Kronecker delta indicates that all quiescent nodes will on the average be activated when Mλ/N > 1. We 
can therefore calculate the activity dependent branching ratio as:
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Having calculated the function b(M), we can present a mean-field analysis of the behavior of the system. As is 
clear from Eq. (5) the behavior crucially depends on the value of λ. Note that b(M) is a piecewise differentiable 
decreasing function of M, which has a linear as well as a nonlinear regime and goes to zero at M = N, see Fig. 1. 
For λ < 1 (see Fig. 1(a)), we have <

λ
M N  and we are in the linear branch of λ= − λb M M( )

N
 which is always less 

than one. This indicates that the activity of the system will on average decrease until reaching the fixed point of 
xt = x* = 0 for all initial perturbations. This is the stable sub-critical regime for which < ∀b M M( ) 1, . Note that, 
when λ → 1, →= =⁎b M( ) 1M x 0  and the stable fixed point is expected to exhibit critical behavior. Also note that in 
the N → ∞ limit, λ= ∀b M M( ) ,  for λ ≤ 1 which indicates subcritical behavior for λ < 1 and critical behavior 
for λ = 1.

For 1 < λ < 2 (see Fig. 1(b)), the line b(M) = 1 will intersect b(M) in the linear regime at = −
λ( )M N 1c
1 . 

Interestingly, due to the negative slope of b(M), x* = Mc will be the attractor of the dynamics as M < Mc (M > Mc) 
b(M) will be larger (smaller) than one which would indicate increased (decreased) average activity until x = Mc is 
reached where b(M) = 1. This indicates a stable, ceaseless ( ≠⁎x 0) dynamics which would exhibit critical behav-
ior as b(M = Mc) = 1. Note that for λ = 2 (see Fig. 1(c)), the critical attractor Mc will coincide with nonlinear 
regime of b(M) at =Mc

N
2

.
As λ is further increased, λ > 2 (see Fig. 1(d)) the line b(M) = 1 will intersect b(M) in the nonlinear regime and 

the simple analysis presented above will no longer hold. However, one can simply note that for >
λ

M N , 
= = −+E x x M N M( )t t1  (see Eq. (5)) and = − =+E x x N M M( )t t1  which would indicate a period-2 oscillat-

ing behavior. For the case when xt < N/2 (i.e. initial conditions in the linear regime), time evolution of the system 
will increase xt as b(M) > 1 in this regime until we reach =

λ
M N  after which the same periodic behavior would 

occur between =
λ

M N  and = −
λ

M N N . The fact that periodic behavior arises as a result of refractory period has 
previously been observed as in models of epidemic spreading47, 48. However, the case of refractory period larger 
than one presents an interesting case study, the details of which is presented in the Appendix.
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Figure 2 summarizes the mean-field behavior of the system. Three parameter regimes are presented. For 
0 < λ < 1 the activity dependent branching ratio at the stable attractor of the dynamics is equal to b(x*) = λ < 1 
and the system is sub critical. For 1.0 ≤ λ ≤ 2.0 the activity dependent branching ratio is b(x*) = 1.0 at the stable 
attractor of the dynamics and criticality is expected. For λ > 2 we have two values for the branching function 
and the dynamics jumps back and forth between these two values. λc = 1 and λp = 2 are the bifurcation points 
where the system changes behavior. while the value of λc is independent of refractory period, the value of λp (>1) 
depends on the choice of refractory period, see Appendix.

Numerical calculation of b(M).  The above results portray the general behavior of the system in mean-field 
approximation where fluctuations have been ignored. However, as is well-known fluctuations are very important 
and tend to dominate system behavior in the critical regime. We therefore propose to study our system by exten-
sive numerical simulations for N = 1 × 104 up to 8 × 104 and q = 0.01 in the range of 0.9 ≤ λ < 2 with particular 
focus on the critical behavior of the system. All activities are initiated by choosing a random site i and setting 
Ai(t = 0) = 1 and following the ensuing dynamics according to Eqs (1 and 2). xt is recorded for long times from 
which we can easily calculate b(M) numerically.

Figure 3 shows our results for b(M) for various system sizes and λ = 1.2 as well as λ = 1.0, where criticality is 
expected. In both cases, our results clearly show a linear behavior in accordance with Eq. (5), where 

λ= − λb M M( )
N

 provides a prefect fit to the data. Note that as N is increased the range of system’s activity 
increases as the slope (λ

N
) goes to zero. Therefore, one can expect that in the large system size limit b(M) → 1 for 

Figure 1. Activity dependent branching ratio for different parameter regimes of (a) λ < 1, (b) 1 < λ < 2, (c) 
λ = 2 and (d) λ > 2.

Figure 2. Activity dependent branching ratio evaluated at the attractors (x*) of the dynamics as a function of λ. 
See text for details.
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all accessible M indicating a critical behavior. We have also checked various other values of λ and have observed 
similar behavior to that of λ = 1.2 (above) for the range of 1 < λ < 2 (not shown).

Avalanche statistics. In order to better understand the behavior of fluctuations about the attractors x*, we 
have plotted the probability distribution function of system’s activity as p(x) in Fig. 4 for λ = 1.2, 1.0, and 0.9. For 

Figure 3. Activity dependent branching ratio for (a) λ = 1.2, (b) λ = 1 and different values of N = 104, 2 × 104, 
4 × 104, 8 × 104.

Figure 4. Probability distribution function of aggregate activity (p(x)) as a function of x for different values 
of N. Panel (a) is a linear plot showing a Gaussian function for λ = 1.2 with a maximum at x = xc = Mc. Inset is 
a log-log plot of the standard deviation ξ versus N. Panel (b) is a log-log plot showing power-law behavior for 
λ = 1.0, and panel (c) is a semi-log plot with λ = 0.9 showing exponential behavior.
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λ = 1.2 (Fig. 4(a)) we observe a Gaussian behavior which peaks exactly at = = −
λ( )x M N 1c
1 . It is interesting 

to note that our results indicate that the width of the Gaussian increases with the system size as ξ ∼ .N 0 5 (see inset 
of Fig. 4(a)), in accordance with the central limit theorem. For λ = 1.0 (Fig. 4(b)), we observe a distinctly different 
behavior as p(x) displays a power-law behavior with system size dependent cutoff. It is, however, important to 
note that p(x) is maximized at x = 0 as indicated by our mean-field analysis. In Fig. 4(c), we plot the same results 
for λ = 0.9 for various system sizes on a log-linear plot, all of which coincide on the same curve. We therefore 
conclude that p(x) displays an exponential behavior with a scale which is system size independent. Again, the 
attractor x = 0 appears as the most probable state, however, the size independent scale in (c) as opposed to size 
dependent scale in part (b) (and even (a)) is the distinction between sub-critical and critical systems.

As we have defined a critical system based on the behavior of b(M) (see above), we have shown that our system 
exhibits critical behavior in the range 1 ≤ λ < 2. However, distinctly different behavior is observed for P(x) as 
Mc = 0 (Fig. 4(b)) changes to ≠M 0c  (Fig. 4(a)). To better understand the critical behavior of the system we now 
turn our attention to avalanches. In the case of λ = 1.0 for which the stable attractor of the dynamics is x* = 0, the 
avalanches are well defined as the activity between two stabilities initiated by an external perturbation. For other 
values of 1 < λ < 2 over which the system exhibits self-sustaining behavior we define the avalanches (see Fig. 5), 
as the continuous aggregate activity of nodes above a threshold value xth. The number of time steps of an excur-
sion above xth is defined as duration (D) and the summation ∑ −x xD t th as the size (S) of an avalanche.

Probability distribution function of size and duration of avalanches (P(y), ∈y S D{ , }) are calculated for sys-
tems with different N over the parameter regime 1 ≤ λ ≤ 2. In the case of criticality, these probability distribution 
functions are expected to exhibit power-law behavior with a cutoff which is an increasing function of N. The usual 
scaling ansatz for such a behavior is ∼ τ β−P y y g y N( ) ( / )y

y y , where gy is a universal cutoff function that is identical 
for different system sizes. τy is the critical exponent and βy is referred to as the finite-size scaling exponent. When 
criticality holds, if we rescale → βy y N/ y and → τP y y P y( ) ( )y  then the plots of rescaled variables must collapse 
into one universal curve for the correct values of τy and βy

11.
Probability distribution functions of S are plotted in the main panel of Fig. 6 for systems with λ = 1.2 and 

different sizes. It is clearly seen that the plots exhibit a power-law region and a cutoff that increases by the system 
size. Inset panel of Fig. 6 shows collapse of the rescaled data of the main panel with exponents τS = 1.00 ± 0.01 
and βS = 0.50 ± 0.01. It must be noted that our numerical analysis show that different choices of xth does not 
change the values of τS and βS, and we choose xth = xc where we have better statistics for avalanche distribution 
functions. Our numerical analysis for other values of 1 < λ < 2 indicate that the same values of τS = 1.00 ± 0.01 
and βS = 0.50 ± 0.01 are also obtained.

However, the critical behavior obtained for λ = 1.0 is somewhat different. As shown in Fig. 7(a), we obtain 
τS = 1.46 ± 0.02 and βS = 1.00 ± 0.03 which are indication of a different universality class for λ = 1.0, where the 
critical exponent is close to the critical branching process, i.e. τS = 3/2. More importantly, however, our study of 

Figure 5. An avalanche is defined as excursion of the aggregate activity of nodes above a threshold value 
xth, D is the defined as the duration and the integral between xt and xth (the colored area) as the size (S) of the 
avalanche.

Figure 6. Main panel: probability distribution functions of avalanche sizes for systems with λ = 1.2 and 
different values of N. Inset panel: plots of rescaled data, collapsed into one universal curve with τS = 1.0 and 
βS = 0.5.
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finite-size scaling of avalanche sizes, in addition to b(M) → 1 presented earlier, provide firm evidence for critical 
behavior of the model in the range of 1 ≤ λ < 2. This could potentially provide an explanation to a wide range of 
criticality observed in neuronal systems, without any apparent tuning of parameters.

We have also calculated probability distribution functions of avalanche durations (P(D)). In Fig. 7(b), we 
have shown reslults for the λ = 1.0 case, where we obtain τD = 1.86 ± 0.02 and βD = 0.50 ± 0.01 again close to the 
exponent τD = 2.0 of the critical branching process. However, the model exhibits an unusual scaling behavior for 
D in 1 < λ < 2 range. For system sizes we have been able to study (i.e up to N = 8 × 104), probability distribution 
functions of avalanche durations do exhibit a power-law behavior. However, no appreciable increase is observed 
in the cutoff for the present system sizes. This behavior could possibly happen if the finite-size exponent βD is so 
small that the cutoff function does not change considerably for the system sizes we have considered here.

To shed light on such a behavior, we consider a scaling anzats that relates the size and duration of avalanches as:

∼ α γE S D N D( ) (6)

in which E(S|D) is the expectation value of S when D is given. As seen in Fig. 8, E(S|D) is a linear function of D for 
a given system size. Careful regression analysis shows that α = 0.50 ± 0.01 and γ = 1.00 ± 0.01. On the other hand, 
from the above numerical analysis, we know that the maximum value of avalanche sizes scales as ∼ βS Nmax

S. 
Due to the linear relation between E(S|D) and D we can write E(S|Dmax) = Smax. Using Eq. (6) we write 

∼ αS N Dmax max which leads to ∼ β α−D Nmax
S  and therefore gives βD = βS − α = 0.00 ± 0.02. The fact that β ≈ 0D  

indicates why we do not observe finite size scaling for avalanche durations despite the fact that we observe a 
power-law behavior for P(D) in a limited range of data. This is an interesting case whose full understanding 
requires further investigation with much larger system sizes than studied here.

Sensitive dependence to perturbations. An interesting property of critical dynamical systems, such as 
self-organized critical models, is that short-term evolution of perturbations is a power-law function of time and 
the system exhibits power-law sensitivity to initial conditions49. In order to present another evidence for criticality 
of the system in the parameter regime 1 ≤ λ < λp, we test this behavior in our model. In order to do that we con-
sider a system in this parameter regime and run the simulation until the system reaches its critical” state. At this 
point we pause the simulation for a moment. We have the activity vector = …t A t A t A t A tA( ) { ( ), ( ), ( ), , ( )}N1 2 3  
in an N dimensional space and make a copy of the system A′. Then, we introduce a small perturbation to A′ by 
changing a few randomly chosen elements ( ′Ai) from one to zero or vice versa. The difference between two sys-
tems, which is a distance in the N dimensional space, is defined as the Hamming distance (H) between A and A′ 
which is

Figure 7. Main panels: probability distribution functions of (a) avalanche sizes and (b) avalanche durations for 
systems with λ = 1.0 and different values of N. Inset panel: plots of rescaled data, collapsed into one universal 
curve with τS = 1.46, βS = 1.0, τD = 1.86, and βD = 0.5.
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∑= − ′H t A t A t( ) ( ( ) ( ))
(7)

N

i i
1

2

Now, we can study the short-term evolution of H(t). It must be noted that we used the same random seed for sim-
ulating both systems. In order to have firm results we need to do an ensemble averaging, therefore, we have done 
the above process for 2000 realizations. Time evolution of the ensemble-averaged Hamming distance is plotted in 
Fig. 9 for systems with refractory period of one time step, N = 40000 and different values of λ = 1.0, 1.2, 1.4, 1.6, 
1.8. It is observed that the system exhibits power-law sensitivity to initial conditions

∼ δH t t( ) (8)

This provides yet another evidence for criticality of the system in the parameter range of 1 ≤ λ < λp. Note that 
we have also included λc = 1.0 where criticality is well established. The exponent δ is an increasing function of λ 
indicating more chaotic behavior.

Concluding Remarks
Motivated by the fact that scaling behavior is observed in systems composed of interacting excitable nodes, and 
that excitable nodes can exhibit refractory period, as in neuronal systems, we have studied a simple model of 
excitable nodes on a random directed graph in the presence of refractory period. The behavior of the model with-
out refractory period has been well-studied previously.

We find that in the presence of refractory period the behavior of system undergoes dramatic changes and dif-
ferent dynamical regimes become accessible for the system. A sub-critical regime for λ < 1.0. A standard critical 
behavior with scaling and power-law behavior of avalanche sizes and durations, similar to the critical branching 
process, for λ = 1. An important regime with stable self-sustaining dynamics with interesting scaling behavior 
for 1 < λ < λp where activity dependent branching ratio goes to one in the thermodynamic limit and the sys-
tem exhibits power-law statistics in avalanche distribution functions as well as power-law sensitivity to initial 

Figure 8. Plots of E(S|D) versus D for systems with λ = 1.2 and different values of N. Dashed lines are plots of 
Nα × Dγ fitted to the data with α = 0.5 and γ = 1.0.

Figure 9. Short term evolution of the Hamming distance averaged over 2000 realizations for systems with one 
refractory time step, N = 40000, and different values of λ = 1.0, 1.2, 1.4, 1.6, 1.8. Linear fits are indications of 
power-law behavior.
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perturbations. The critical exponents associated with this new regime are distinct from those obtained from the 
standard critical point at λ = 1. Finally an oscillating regime with λ > λp where the dynamics oscillates between 
various well-defined states is observed. While our results highlights the importance of refractory period in net-
works of excitable nodes, it can also provide understanding for similar behavior observed in real neuronal sys-
tems. Branching ratios equal to one, as well as power law statistics in neuronal avalanches have been observed in 
a wide variety of real neuronal systems, with no apparent tuning of a parameter. The fact that our model exhibits 
similar behavior for a wide range of parameter (i.e. 1 ≤ λ < λp) is the main result of our study. The more general 
case of longer refractory periods does not change our general conclusions and the details of such generalization 
appear in the Appendix.

In a recent work Larremore et al. have shown that inhibition causes ceaseless dynamics at or near the critical 
point (λ <



1) in a similar model43. We, on the other hand, have also observed ceaseless stable dynamics but in a 
different parameter regime of λ > 1, when refractory period is included without inhibition. Both inhibition and 
refractory period are thought to decrease the level of activity in a system. However, they seem to lead to stable 
ceaseless dynamics in networks of excitable nodes. It would be interesting to study the effect of both these impor-
tant properties simultaneously to see if larger parameter regime with stable dynamics and scaling (critical) behav-
ior can be obtained.

It is generally believed that networks with small-world effect would exhibit critical behavior with exponents 
associated with critical branching process which correspond to mean-field exponents τS = 3/2 and τD = 2. Here, 
we have observed non-mean-field behavior with exponents which are significantly smaller than the critical 
branching process for a wide range of parameter in a small-world network of excitable nodes with refractory 
period. Of course, we have also obtained similar mean-field exponents for a particular value of λ = 1.

Although neuronal dynamics have been the main motivation of our work, other important dynamical pro-
cesses such as epidemic spreading could also have relevance to our work as refractory period is thought to be 
important in such spreading processes as well.

Numerical Details
Computer code simulations were developed in FORTRAN 90. In order to get good statistics for probability dis-
tribution functions of x as well as duration and size of avalanches, for each system size (N = 104, 2 × 104, 4 × 104, 
8 × 104) we performed simulations for 20 different realization of networks and 106 time steps for each network. 
Random networks were made by having every two node connected with a probability of q = 0.01.
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