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Compressive sampling based on 
frequency saliency for remote 
sensing imaging
Jin Li1,2, Zilong Liu3 & Fengdeng Liu1

In saliency-based compressive sampling (CS) for remote sensing image signals, the saliency information 
of images is used to allocate more sensing resources to salient regions than to non-salient regions. 
However, the pulsed cosine transform method can generate large errors in the calculation of saliency 
information because it uses only the signs of the coefficients of the discrete cosine transform for low-
resolution images. In addition, the reconstructed images can exhibit blocking effects because blocks 
are used as the processing units in CS. In this work, we propose a post-transform frequency saliency 
CS method that utilizes transformed post-wavelet coefficients to calculate the frequency saliency 
information of images in the post-wavelet domain. Specifically, the wavelet coefficients are treated 
as the pixels of a block-wise megapixel sensor. Experiments indicate that the proposed method yields 
better-quality images and outperforms conventional saliency-based methods in three aspects: peak 
signal-to-noise ratio, mean structural similarity index, and visual information fidelity.

Remote sensing integrated camera (RSIC) technologies have become a new focus of research in small- and micro-
satellite photography1–3. Compressive sampling (CS) is considered the holy grail of RSIC technologies because it 
can improve the degree of integration of camera systems, compression systems, high-capacity storage systems, 
and high-speed image transmission systems. Efficiently performing CS is a key task in RSIC technology. Many CS 
imaging systems with various characteristics have recently been proposed4–6. CS is a novel sampling theory that 
functions at a much lower sampling rate than the Nyquist frequency7, 8. To reconstruct signals from significantly 
limited samples, CS relies on the fact that most natural signals are sparse and compressible, consistent with a 
proper basis function. A number of theoretical contributions to CS have been achieved in the past few years. For 
example, in 2010, Ying et al. proposed a saliency-based CS (S-CS) scheme based on the features of the human 
visual system (HVS) in which sensing resources are allocated to different blocks based on a saliency map9. This 
scheme allocates more sensing resources to salient regions than to non-salient regions to improve the reconstruc-
tion quality. S-CS is suitable for remote sensing imaging because remote sensing image interpretation mainly 
relies on the manual operations of interpreters. To some extent, the perceptual quality of remote sensing images 
can be influenced by visual attention, and the HVS pays more attention to salient regions of an image than to the 
rest of the image10.

S-CS can be modelled using a cross-correlation sampling system in which the optical signal is simultaneously 
sampled by a low-resolution (LR) sensor and a high-resolution (HR) sensor. In this paper, a block-wise meg-
apixel sensor (BMPS) is used as the HR sensor. The BMPS is composed of multiple imaging units, each of which 
is a 16 × 16 pixel image block. Meanwhile, the LR sensor captures LR images. First, the saliency information is 
detected from the LR sensor images using the pulsed cosine transform (PCT) method. Next, the saliency infor-
mation is calculated as follows:

= ⊗ −S G abs C sign C X( ( ( ( ( ))))) , (1)I
1 2

where G represents a two-dimensional Gaussian low-pass filter, ⊗ denotes the convolution operation, abs(·) 
represents the absolute value function, C−1 is a two-dimensional inverse discrete cosine transform (DCT), sign(·) 
is the signum function, C(·) is a two-dimensional DCT, and X is the LR image. On the basis of the saliency 
information map, the number of sensing measurements can be calculated by applying the saliency monitoring 
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algorithm to each corresponding image block, and then the BMPS processing is performed to complete the sens-
ing sampling process. However, this remote sensing imaging process is subject to several inevitable drawbacks. 
First, the PCT method can generate significant errors in the calculation of the saliency information because it 
uses only the signs of the DCT coefficients. Second, the reconstructed images can exhibit blocking effects because 
image blocks are used as the processing units during the BMPS processing. Third, block-based S-CS in the image 
domain lacks robustness because it is incompatible with progressive coding, which is an important part of remote 
sensing applications. Finally, this method depends on an auxiliary LR sensor to perform compressive imaging, 
and the auxiliary LR sensor and its subsequent processing introduce a calculation process that can increase the 
load of the camera system.

Based on all of the above considerations, we thus propose a post-transform frequency saliency CS (PTFS-CS) 
method. In PTFS-CS, a post-wavelet transform to calculate the saliency information, using an approach that is 
proposed for the first time in this paper, and an optimized S-CS process is added to the calculation to obtain a 
better-quality image. The post-wavelet transform is defined as a secondary transform in the wavelet domain; 
i.e., the blocks of wavelet coefficients are further transformed using an orthonormal basis dictionary. The BMPS 
is composed of an image sensing layer (ISL), a wavelet transform layer (WTL), and a compressed sensing layer 
(CSL). The ISL acquires the original digital image through photoelectric conversion and analogue-to-digital 
conversion. The WTL applies a wavelet transform to the original image. The resulting images in the wavelet 
sub-bands are defined as the BMPS images. The CSL performs saliency-based CS in the post-wavelet domain. 
First, each pixel of a BMPS image is treated as a wavelet coefficient in PTFS-CS. Second, the spatial frequency 
in the post-wavelet domain is used to calculate the saliency information. Finally, S-CS is performed in the 
post-wavelet domain. The proposed PTFS-CS method has the advantages of high accuracy of the saliency infor-
mation and high imaging quality without blocking effects. This method has potential applications in microsatel-
lites, integrated cameras, and star trackers and also has potential to become a remote sensing CS imaging standard 
in the future.

Results
The overall architecture of the proposed PTFS-CS method is described diagrammatically in Fig. 1. The 
PTFS-CS procedure consists of two main parts, namely, CS and ground reconstruction. In CS, a complementary 

Figure 1. Overall architecture of the proposed PTFS-CS scheme.
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metal-oxide-semiconductor (CMOS) sensor is used to obtain the original image layer, as shown in Fig. 1. A 
three-level wavelet transform is performed in the original image layer to obtain the BMPS image. Next, a DCT is 
applied to the BMPS image to obtain the transformed post-wavelet coefficients. Afterwards, the saliency infor-
mation calculation module obtains the saliency map by using (10). The constant matrices Q4 × 4 and R4 × 4, the 
latter of which is defined in (11), are saved in a parameter table for the saliency calculation. The sensing controller 
then directs the measurement sampling module to perform sensing sampling on the basis of the saliency map. 
The measurement data obtained through sensing sampling are transmitted to a ground reconstruction model 
(GRM) via multiple high-speed optical fibre transmission channels (OFTCs), in-orbit satellite downlink provid-
ers, ground receivers, and OFTCs. The GRM reconstructs the DCT coefficients, wavelet coefficients, and original 
images using a recovery algorithm based on orthogonal matching pursuit (OMP), an inverse DCT, and an inverse 
discrete wavelet transform (DWT), respectively. Considering the properties of the HVS, the PTFS-CS method 
exploits saliency information based on spatial frequency in the post-wavelet domain to allocate more sensing 
resources to salient regions than to non-salient regions. Based on the theory of CS, a recovery algorithm will 
obtain higher image quality for an image block with more sensing sources; thus, for a given number of sensing 
measurements for the entire image, the PTFS-CS method can reconstruct the salient regions much better than 
conventional compressive sampling. In addition, the proposed method is easy to implement. In particular, the 
saliency algorithm and the sensing measurement sampling process require only multiplication and addition oper-
ations, without iterative search algorithms. Such calculations are easy to implement on the hardware platforms of 
remote sensing cameras.

In this paper, experimental tests of the proposed method based on remote sensing images are reported. A 
wavelet transform is applied to the remote sensing images to obtain BMPS images. Each image block in the BMPS 
images has dimensions of 16 × 16 pixels. Next, a DCT is applied to the BMPS images to obtain transformed 
post-wavelet coefficient blocks. After the DCT, an optimized saliency calculation method is applied to generate a 
saliency information map, as shown in Fig. 2(a).

After the saliency information is calculated, a sensing measurement is performed on the transformed 
post-wavelet coefficient blocks to obtain sensing measurement images. Next, the sampled images are recon-
structed using the orthogonal matching pursuit algorithm. The inverse DCT is computed to obtain the wave-
let transform. Finally, the inverse DWT is computed to obtain the reconstructed image, as shown in Fig. 2(b). 
Figure 3 shows the reconstruction results of two saliency-based CS methods. As seen from the magnified regions 
of the three images, the reconstructed images obtained using the PCT-CS method exhibit blocking effects.

To test the performance of our method (a new post-wavelet saliency algorithm), we compare our method with 
two other CS algorithms, namely, PCT-CS9 and CS without a saliency map (CS-WSM). These three methods were 
applied to generate multiple reconstructed images for statistical analysis. As the first step, the reconstructed 
images were analysed in terms of the peak signal-to-noise ratio (PSNR). The compression ratio (CR) is the ratio 
between the number of sensing measurements (samples) and the number of BMPS imaging units. The PSNR can 
be calculated as = ⋅PSNR 10 log (MAX /MSE)10

2 , where MAX is 2B−1, with B being the bit depth of each pixel, 
and MSE is the squared error between the original and reconstructed images. Because the bit depth of the test 
images used in this study was 8 bits, the PSNR was set to ×10 1og(255 /MSE)2 . A test image database of 150 
remote sensing images depicting a variety of urban and natural scenes was used to measure the corresponding 
PSNRs. All images have dimensions of approximately 512 × 512 pixels. The average PSNR value was calculated as 
the final PSNR. The PSNRs calculated for the three different methods are shown in Table 1. Figure 4 Shows several 
images reconstructed using the different methods at different CRs.

Two additional image quality assessment indexes were also analysed: the mean structural similarity index 
(MSSIM)13 and the visual information fidelity (VIF)14. The MSSIM and VIF are defined based on the structural 
information extracted by the HVS. The MSSIM values at different compression ratios are shown in Fig. 5, and 
the VIF results are shown in Fig. 6. Finally, we tested and analysed our approach on a self-developed CS testing 

Figure 2. A saliency information map (a) and the corresponding reconstructed image (b).
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platform to verify its performance and feasibility. The testing platform includes image simulation sources, an 
S-CS system, a CS server, a decoding unit, and a display system. The CS server produces simulated images, which 
are transmitted to the image simulation source unit. The image simulation source unit adjusts the output line 
frequency, image size, and output time to simulate the output of a CCD sensor. The CS system uses a Virtex-PRO 
Xilinx FPGA with a 32-bit MicroBlaze as its processor. The simulated images are 3072 × 1024 pixels in size. The 
depth of each pixel is 8 bits per pixel. The compressed bitstreams are decoded by the decoding unit. The CS server 
injected remote sensing images with different texture information into the image simulation source unit to test 
the performance of the proposed approach. The proposed method offers the complete integration of imaging and 
compression, which is useful for improving the degree of integration of a micro-camera system. We used two 
transform-based coding methods, JPEG200015 and CCSDS-IDC16, for a comparison of the compression perfor-
mance. Table 2 shows the results obtained for the different algorithms.

To test the compression time of our method, the CCD line frequency was set to 7.2376 kHz. The size of each 
band was 3072 × 128 pixels. We compare the compression time of our algorithm with those of the other algo-
rithms in Table 3. The processing time of our algorithm is 0.024 µs per sample, which is shorter than those of the 
other methods. Consequently, the compression of 3072 × 128 pixels requires only 8.25 milliseconds. In future 
applications, this algorithm could be optimized further on an FPGA on the basis of the CCD imaging principle.

Discussion
As seen from Table 1, the results of PCT-CS are more satisfactory than those of CS-WSM. The experimental 
results of our method are the best among the three tested methods. The average PSNR values for our method 
are higher than those for the other two because our method possesses several advantages compared with the 
others. First, the saliency calculation method is more efficient, meaning that more high-frequency information 
is retained in the reconstructed images. Second, the reconstructed images do not exhibit blocking effects because 
the DCT and CS processes are performed in the wavelet domain rather than in the original image domain. Third, 
any remaining redundancies between local neighbouring wavelet coefficients can be exploited because the wave-
let coefficients are further transformed by the DCT and CS processes. Fourth, a sparser representation can be 
achieved in the CS process because it is performed in the post-wavelet domain. These advantages ensure that the 
proposed method can achieve a higher PSNR at a given CR. As seen from Figs 3~6, the method proposed in this 
paper uses the most optimal CS techniques, utilizing the post-wavelet method to perform CS and the transformed 

Figure 3. Reconstructed images obtained via PCT-CS and our method with M = 190 when the block size is 
16 × 16 pixels: the original image (a); the reconstructed image obtained via PCT-CS, which exhibits blocking 
effects (b); and the reconstructed image obtained using our method, which does not exhibit blocking effects (c).

CR CS-WSM (dB) PCT-CS (dB) Our method (dB)

0.30 20.81 21.13 28.45

0.40 23.61 25.56 29.96

0.50 25.43 27.82 31.32

0.60 27.88 29.27 33.09

0.70 31,75 32.99 34.87

0.80 34.89 37.38 38.42

Table 1. PSNRs of Three Different Methods.
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coefficient method for the saliency calculation; thus, compared with the traditional saliency-based approaches, 
our proposed method achieves better results. The results presented in Table 2 indicate that the proposed method 
performs slightly better than the JPEG2000 algorithm and yields improvements of between 0.66 dB and 2.48 dB 
compared with the CCSDS-IDC method. These results demonstrate that the edge and texture information is 
preserved in the reconstructed images.

According to the test results presented in Table 3, our method requires the shortest processing time because 
it utilizes only sensing measurements in the encoding process. For the decoding process, our method requires a 
relatively longer time because it uses an OMP-based algorithm to recover the original images. The complexity of 

Figure 4. Reconstructed images obtained using different methods at different CR values.

Figure 5. MSSIM values at different compression ratios.
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the encoding part of our method is low, whereas the decoding part has a higher complexity. Conventional com-
pression algorithms usually encode the transformed coefficients using bit-plane encoding17 or embedded block 
coding with optimization truncation18, and the complexities of the encoder and decoder are basically the same. 
In our method, some of the complexity of the encoder is transferred to the decoder, which is very suitable for 
in-orbit applications because the encoder usually operates on a satellite platform with limited resources (such as 
power, memory and processing capacity), whereas the decoding operations are performed on the ground, where 
processing resources are not limited and multiple cutting-edge technologies (such as graphical processing units 
(GPUs)) can be utilized to speed up the decoding process.

Conclusions
In this paper, we propose the PTFS-CS method, which treats wavelet coefficients as the pixels of a block-wise 
megapixel sensor and utilizes the spatial frequency in the post-wavelet domain to calculate the saliency infor-
mation to guide the allocation of more sensing resources to salient regions than to non-salient regions. We prove 
that, as demonstrated by our experimental results, the use of frequency saliency for the allocation of sensing 
resources in the post-wavelet domain for remote sensing cameras can yield better images in terms of the PSNR, 
MSSIM, and VIF. The proposed post-wavelet saliency algorithm outperforms CS-WSM and PCT-CS and can sat-
isfy the high quality requirements of a CS imaging camera. Thus, the proposed method offers significant benefits 
for future research based on remote sensing image analysis.

Method
S-CS based on a post-wavelet transform. Figure 7 illustrates the principle of S-CS based on a 
post-wavelet transform. The BMPS consists of three layers, namely, an image sampling layer, a discrete wavelet 
transform (DWT) layer, and a CS layer. Photoelectric conversion and an analogue-to-digital (AD) converter are 
applied in the image sampling layer to digitize the image data; the digitized image data are regarded as the original 
images. In the DWT layer, a DWT is applied to the original images to extract wavelet sub-bands. In this paper, 
these wavelet sub-bands are defined as the BMPS images. Next, a DCT is applied to the BMPS images to obtain 

Figure 6. VIF values at different compression ratios.

Bit rate CCSDS-IDC (dB) JPEG2000 (dB) Our method (dB)

0.5 25.98 27.42 27.54

0.8 29.70 30.36 30.37

1.1 32.58 34.47 34.91

1.4 34.16 36.64 36.96

1.7 35.55 37.37 37.75

2.0 36.78 38.17 38.63

Table 2. PSNRs of Three Different Methods.

Method Compression time (µs/sample)

Our method 0.024

CCSDS-IDC17 0.025

JPEG200018 0.11

Table 3. Compression Times of Different Algorithms.
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the DCT coefficients. The DCT is performed in the DWT domain. Therefore, we regard the DCT coefficients as 
the post-wavelet transformed coefficients. In our method, CS is performed in the post-wavelet transform domain 
based on the saliency information, as shown in Fig. 7.

In the post-wavelet S-CS process, each image block in the BMPS images contains 4 × 4 wavelet coefficients, 
and it is further transformed by using a basis function to perform S-CS. Theoretically, this basis function can be 
chosen to be a DCT, a bandelet basis function, principal component analysis, or a Hadamard transform. In this 
paper, we use the DCT as the basis function. For the implementation of post-wavelet S-CS, the different imaging 
units of the BMPS are denoted by LHi, HLi, and HHi, i = 1, 2, 3. In this paper, each imaging unit is divided into 
several blocks, denoted by I, with NI coefficients (specifically, NI = 256). To simplify the calculation, in each imag-
ing unit of the BMPS, the NI coefficients are divided into 16 coefficient blocks, which are called “wavelet blocks”. 
As NI is set to 256 in this paper, each wavelet block is composed of 4 × 4 wavelet coefficients. When the distance 
(difference in coefficients) between adjacent wavelet blocks is greater than four pixels, the coefficient correlation 
between the adjacent wavelet blocks is relatively weak. Let f represent one wavelet-transformed block, which 
includes 16 wavelet coefficients that are expressed as N(N = 16) vector elements. Therefore, f can also be consid-
ered as a vector with N elements in RN. Let D be the post-wavelet transform dictionary, and let B denote the 
orthonormal basis function. The orthonormal basis consists of N basis vectors. Let the orthonormal basis be ϕn, 

∈n N[1, ]. Then, ϕ= ={ }n n
N

1. Let fb be a post-wavelet transformed coefficient block. Then, the post-wavelet trans-
form can be expressed as

∑ φ φ= ⋅ .=f f , (2)
b

n n
b

n
b

1
16

In each imaging unit of the BMPS, the post-wavelet transform is applied to all wavelet blocks. Let F be the set of 
transformed post-wavelet blocks from one imaging unit of the BMPS. Then, = { }F f f f, , ,b b

N
b

1 2 b
, where 

=N N( 16)b b  is the number of transformed post-wavelet blocks in F. Let Ω be the saliency map of the BMPS. 
Therefore, Ω =

=
{ }Fq q

Q

1
, where Q is the number of imaging units in the BMPS. Let Γ τ τ τ= { }, , , M1 2 q

 represent 
a sensing measurement matrix, where Mq is the number of sensing measurements and satisfies Mq ≪ NI. Mq is 
determined by the saliency map, and ∝M Fq q. Thus, the CS process can be expressed as Φ ΦΨ Φ= = = ′Y f f fb , 
where Y is the new sample, Φ is the sensing basis function, Ψ is the representation basis function, and Φ′ is an 
incoherent sampling matrix. Because Mq ≪ NI, image compression is achieved. After the CS process, the new 
sample Y is used to recover the original signal. Generally, the recovery of a signal 

∼
f b from Y may be an ill-posed 

problem because Mq ≪ NI. However, such recovery is possible when the sensing basis function Φ and the rep-
resentation basis function Ψ are incoherent, i.e., when any two vectors of Φ and Ψ are weakly correlated. With high 
probability, the incoherent sampling matrix Φ′ possesses the restricted isometry property (RIP) when 

× ×M c K N Klog( / )q I , where c is a positive constant and K is the sparsity coefficient11, 12. If the RIP is satis-
fied, then an accurate reconstruction signal 

∼
f b can be reconstructed via Ψ=

∼
⁎f xb , where x  is the solution to 

the l1 norm minimization problem, = ′′x xarg lx
min

1
, s.t. Φ= ′ ′y x .

Fast saliency algorithm using spatial frequency. The saliency information is calculated in the 
post-wavelet transform domain via CS in the BMPS channel instead of the LR sensor channel. We use f′ to repre-
sent the two-dimensional BMPS image signal. The post-transformed coefficient matrix g can be obtained from 
ψ ψ′f  ( ψ ψ= ′g f T), where ψ is the basis matrix in D (the post-wavelet transform dictionary). Because the basis 
matrix in D is the DCT basis, ψ is an orthogonal transform matrix of the DCT that consists of the cosine coeffi-
cients, and ψT consists of the transposed coefficients. As the basis matrix is orthogonal, the inverse matrix of ψ is 
equal to its transpose ψ ψ=−( )1 T . Consequently, the relationship between f′ and g can also be expressed as 

Figure 7. Principle of S-CS based on post-wavelet processing.
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ψ ψ= ′g fT . In the above-described transformation process, the total energy of the image f′ is constant before and 
after the transformation. An important energy constraint between f′ and g can thus be built as follows:

∑ ∑ ∑ ∑′ = .f i j g i j( , ) ( , ) (3)i j i j
2 2

This energy constraint can also be expressed as ′ ′ =f f ggtrace( ) trace( )T T , where trace(·) represents the trace oper-
ation for a matrix. The derivative or gradient is a natural basis for the spatial features of an image. The gradient of 
an image can be used to calculate its spatial frequency, which reflects the saliency of the image. In this paper, we 
use the frequency saliency information of each BMPS block, which can be expressed as

∑ ∑ ∑ ∑= + =
×

×





∂ + ∂





= = = =
E E E

I J
f f1 ,

(4)
H V

x

I

y

J

x
x

I

y

J

y
2 2 2

2 1

2

1 2

2

where EH and EV are the horizontal and vertical frequencies, respectively, of the image block; 
∂ = ′ − ′ −f f x y f x y( , ) ( 1, )x ; and ∂ = ′ − ′ −f f x y f x y( , ) ( , 1)y . In each block, we let ∆fx and ∆fy denote the 
difference matrices in the horizontal and vertical directions, which are composed of the ∂fx and ∂fy values, respec-
tively. The cyclic matrix K is expressed as

=












− ...
− ...

...

... −

...












.

×

K

1 0 0 0
1 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0 (5)I J

On the basis of (5), the saliency components can be calculated as ∆ = ′f f Kx  and ∆ = ′f K fy
T . Thus, the following 

two saliency equations can be obtained:

ψ ψψ ψ ψ ψ∆ = ′ = =f f K g P gP , (6)x
T T T

ψ ψ ψ ψ ψ ψ∆ = ′ = =f K f P g P g( ) , (7)y
T T T T T T

where P is the transformed coefficient matrix of K. After the application of a ×4 4 DCT, P is expressed as the 
f o l l o w i n g  m a t r i x :  = − . − . . − . − .×P [0 0 0 0; 0 6533 0 2929 0 2706 0; 0 0 9239 1 0 3827;4 4
. − . − . ×0 2706 0 0 6533 1 7071]4 4P.As described in (6) and (7), gP and Tg are the transformed coefficients of ∆fx 

and ∆fy, respectively. Therefore, (4) can be expressed as

∑∑
×

× ∂ =
×
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=
×

=
×

= =I J
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I J
trace f f

I J
trace gP gP

I J
trace gPP g
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1 ( [ ( ) ]) 1 [ ( )],
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(9)
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2

The frequency saliency information can also be expressed as +
×

trace gPP g trace g PP g[ ( ) ( )]
I J

T T T T1 . Let 
=Q PPT, where the matrix Q is constant because P is the transformed coefficient matrix of K. Next, Kcan be 

transformed by using an 8 ×  8  or  4  ×  4  DCT to obtain the f ixed matr ix  shown below : 
= . .× ×Q [0000; 00 585800; 0020; 0003 4142]4 4 4 4. In (9), the matrix Q is a diagonal matrix. Thus, (4) can be 

expressed as
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=










. . .
. . . .
. . . .
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×

R
0 0 5858 2 0000 3 4142

0 5858 1 1716 2 5858 4 0000
2 0000 2 5858 4 0000 5 4142
3 4142 4 0000 5 4142 6 8284 (11)

4 4

4 4

According to (10), the saliency information in the frequency domain for each BMPS block can be expressed 
in terms of its transformed coefficients. Moreover, the relationship between the bit rate r and the number M of 
nonzero post-transformed coefficients quantized using a nearly uniform step quantization can be expressed as 
r ≈ γ0M, where γ0 is a constant parameter. The post-transformed coefficients g(u, v) in (10) can be replaced with

=






≠
=

.
⌊ ⌋
⌊ ⌋

I
g u v
g u v

1, ( , ) 0
0, ( , ) 0 (12)

m

According to (12), the elements of g(u, v) only take values of “1” and “0”; thus, the saliency information can be rap-
idly calculated, and the calculation can be easily implemented in hardware systems. After the saliency map is estab-
lished based on Eqs (10) and (12), the sensing resources are allocated according to the established saliency map. Each 
imaging unit of the BMPS consists of a 16 × 16 pixel block. Considering that the post-transform saliency CS process 
is performed in the post-wavelet domain, the smallest number of BMPS sensing measurements (samples) is allo-
cated to the lowest-resolution post-wavelet sub-band. For the post-wavelet sub-bands at other resolutions, the CS 
matrices have different sizes because the different imaging units contain different amounts of information. The 
sensing sampling process can be expressed as Φ Φ Φ… = … …Y Y Y X X X[ , , , ] diag( , , , )[ , , , ]L1 2 L

T
1 2 L 1 2

T, where L is 
the number of imaging units of the BMPS, diag(·) denotes a diagonal matrix, and ΦP (p = 1, 2, …, L) is the CS sensing 
matrix of the pth imaging unit and is determined based on the saliency information map. Finally, the measured data 
sample Y is processed via quantization, entropy coding and packing to obtain the final encoded bitstream, which can 
be reconstructed by a recovery algorithm on the ground.
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