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Greenberger-Horne-Zeilinger 
states-based blind quantum 
computation with entanglement 
concentration
Xiaoqian Zhang1, Jian Weng1, Wei Lu2, Xiaochun Li3, Weiqi Luo1 & Xiaoqing Tan3

In blind quantum computation (BQC) protocol, the quantum computability of servers are complicated 
and powerful, while the clients are not. It is still a challenge for clients to delegate quantum 
computation to servers and keep the clients’ inputs, outputs and algorithms private. Unfortunately, 
quantum channel noise is unavoidable in the practical transmission. In this paper, a novel BQC protocol 
based on maximally entangled Greenberger-Horne-Zeilinger (GHZ) states is proposed which doesn’t 
need a trusted center. The protocol includes a client and two servers, where the client only needs to own 
quantum channels with two servers who have full-advantage quantum computers. Two servers perform 
entanglement concentration used to remove the noise, where the success probability can almost reach 
100% in theory. But they learn nothing in the process of concentration because of the no-signaling 
principle, so this BQC protocol is secure and feasible.

Blind quantum computation (i.e. BQC)1–7 is still a challenging research field, where a client has not enough quan-
tum computability, and delegates her quantum computing to the servers who have full-advanced quantum comput-
ers. In long-distance BQC, quantum entanglement plays an important role and three mainly blind entangled states 
have already been studied which are blind brickwork state1, blind topological state2 and Affleck-Kennedy-LiebTasaki 
(i.e. AKLT) state3. Some BQC protocols1, 4–6 are based on the blind brickwork state which is proposed by Broadbent 
et al.1. Later, Barz et al.7 demonstrated the blindness of the brickwork state. Broadbent et al.1 in 2009 proposed a 
single-server BQC protocol based on single-qubit states and double-server BQC protocol based on the entangle-
ment swapping of Bell states. However, the quantum entanglement of Bell states in double-server BQC protocol1 
will suffer quantum channel loss due to the influence of noisy channel. To solve this problem, Morimae and Fujii4 
proposed a method of entanglement distillation to extract high-fidelity Bell states, meanwhile its security can also 
be guaranteed. Li et al.5 proposed a triple-server BQC protocol based on Bell states. Sheng and Zhou6 proposed a 
double-server BQC protocol based on Bell states, where the deterministic entanglement distillation can remove the 
noise that transforms pure entangled states into mixed entangled states. As we can see that the aims of BQC proto-
cols1, 4–6 are all to obtain the single-qubit states ±θi

 with θ ∈ …π π π{ }0, , , ,i 4
2
4

7
4

 to create the blind brickwork 
states1. The other two blind graph states2, 3 can also be used to perform BQC successfully. The 
Raussendorf-Harrington-Goyal (i.e. RHG) lattice2, which the blindness is guaranteed in a topological manner, is 
used to perform four quantum measurements {X, Y, Z, T} only known by clients. Compared with the cluster states, 
AKLT states can be prepared efficiently and simply in linear optics with biphotons8. Recently, more and more inter-
esting BQC protocols are proposed9–18. In BQC, the quantum channel noise is still an urgent problem. Previous 
works4, 6, 14 have studied quantum channel noises in BQC protocols. For example, Takeuchi et al.14 proposed three 
BQC protocols based on decoherence-free subspace (i.e. DFS) to resist the collective noise of quantum channel.

The new BQC protocol is based on maximally GHZ entangled states, where there are three participants (a client 
Alice, two servers Bob and Charlie). The BQC protocol is divided into four steps. First, Bob prepares initial GHZ 
states, remains one photon and sends other two photons to Alice. Alice disturbs the orders of two photons and 
sends to Charlie. Second, Bob and Charlie perform entanglement concentration to get ideal maximally entangled 
states, where two identical less-entangled states can be used to concentrate a maximally entangled state by two-step 
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parity check and project measurements. Third, Bob performs Pauli operations on his photons under Alice’s instruc-
tion. Then Charlie performs measurement on one photon with the basis {|0〉, |1〉}. Alice randomly chooses 
θi ∈ …π π( ){ }0, , ,

4
7
4

 and sends to Charlie. Charlie performs measurement on the other photon and Bob gets the 
single-qubit. Finally, Alice and Bob perform single-server BQC protocol.

This BQC protocol has four contributions. First, two servers can communication with each other without 
degrading the security. Second, it does not need a trusted center. The task of preparing initial entangled states can 
be assigned to Bob. Third, Bob and Charlie don’t need to exchange their classical information. If they collude, they 
don’t know any information about Alice’s inputs, outputs and algorithms. The last one, entanglement concentra-
tion can be used to remove the channel noise.

Results
BQC protocol based on maximally GHZ entangled states. Photons are the best physical systems for 
the long-distance transmission of entangled states, thus entangled photons states are used as quantum information 
carriers in BQC. In this BQC protocol, we use |0〉 and |1〉 to express photons. In entanglement concentration, we 
use |H〉 and |V〉 to express photons, where |H〉 is equal to |0〉 and |V〉 is equal to |1〉. In this section, we propose the 
BQC protocol based on maximally GHZ photons entangled states = + + +GHZ ( 001 010 100 111 )A B C

1
2j j j

 
( = …j n1, 2, , ) (Fig. 1). The cross-Kerr nonlinear can be used to construct a CNOT gate in ref. 19. There are also 
many other methods to realize it19–23. In the BQC protocol, we suppose that these quantum devices are all ideal. 
The client owns quantum channels with two servers and quantum disturbing device.

•	 Bob generates enough maximally GHZ entangled states GHZ A B Cj j j
, where the subscripts Aj, Bj and Cj repre-

sents photons Aj, Bj and Cj. Bob keeps photons sequences SB = [B1, B2, …, Bn] and sends photons sequences 
SA = [A1, A2, …, An] and SC = [C1, C2, …, Cn] to Alice successively. After receiving photons sequences, Alice 
disturbs the order of photons sequences SA and SC. The reordered photons sequences are rewritten as 
S A ′ =  [ ′A1 ,  ′A2 ,  … ,  ′An ]  and S C ′ =  [ ′C1 ,  ′C2 ,  … ,  ′Cn ] ,  meanwhile  GHZ A B Cj j j

 is  remarked as 
| ∈′ ′

⟩GHZ t t n( , {1, 2, , })A B C 1 2t j t2 1
. The orders of photons sequences SA′ and SC′ are different and only known 

by Alice. Then Alice sends photons sequences SA′ and SC′ to Charlie. Due to the effect of quantum channel 
nois e ,  the  maximal ly  entang led  s tates  ′ ′GHZ A B Ct j t2 1

 e volve  into  less-entang led  s tates 
α β δ η′ = + + +′ ′GHZ 001 010 100 111A B Ct j t2 1

, where |α|2 + |β|2 + |δ|2 + |η|2 = 1. In order to get states 
′ ′GHZ A B Ct j t2 1

, Bob and Charlie firstly perform entanglement concentration.
•	 Bob performs one of four operations {I, σx, iσy, σz} randomly chosen by Alice on photons Bj and ′ ′GHZ A B Ct j t2 1

 
states evolve into one of four states | ′ ′{ GHZ A B C1 t j t2 1

, ′ ′GHZ A B C2 t j t2 1
, ′ ′GHZ A B C3 t j t2 1

, ′ ′ }GHZ A B C4 t j t2 1
.
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Figure 1. Schematic diagram of BQC protocol is based on maximally GHZ entangled states with z-basis ({|0〉, 
|1〉}) measurement M1, basis ± θ−e0 1i i  measurement M2, Pauli operations U, Bell measurement BM, 
Charlie’s measurement outcome ci. The order of photons sequences Aj and Cj ( ∈ …j n{1, 2, 3, , }) are disturbed 
and rewritten as ′At2

 and ′Ct1
 (t1, ∈ …t n{1, 2, 3, , }2 ). Photons ′At2

 and ′Ct1
 belong to Charlie, and Bj belongs to 

Bob, where ′At2
, Bj and ′Ct1

 (t1 ≠ t2 ≠ j) belong to a GHZ state.
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Since the orders of sequences SA′, SB and SC′ are different, both Bob and Charlie cannot know which state 
′ ′GHZu A B Ct j t2 1

 (u∈{1, 2, 3, 4}) they shared.

•	 Charlie performs measurement on photons ′Ct1
 using the basis {|0〉, |1〉} under the guidance of Alice. Alice 

randomly chooses θ π π π∈ …{0, /4, 2 /4, , 7 /4}i  and sends to Charlie. Charlie performs measurement on the 
basis | ± |θ−⟩ ⟩e{ 0 1 }i i  and Bob obtains photons states | ±θ π+ ⟩ci i

, where ci (∈{0, 1}) is Charlie’s measurement 
outcome. Because the orders of ′At2

 and Bj are different, Bob can not know anything even if Charlie tells the 
value of θi to Bob.

•	 Alice, Bob and Charlie repeat (1–3) steps such that Bob obtains single-photon states | ±θ π
=

+⨂ ⟩
i

n

c
1

i i
 successfully. 

The remaining steps are the same as steps (2–3) of the BFK protocol1 or steps (2–5) of blind topological BQC 
protocol2. The blindness of graph states and the correctness of quantum computation have already been 
exhibited in refs 1 and 2 in detail.

In the step 1 of this BQC, entanglement concentration is used to remove the noise. In the following, the pro-
cess of entanglement concentration is showed with optical system.

Entanglement concentration of pure maximally GHZ entangled state. In a practical transmis-
sion, there exist two kinds of quantum channel noises, i.e. pure maximally entangled states evolve into mixed 
states or less-entangled states. Entanglement purification24–28 is applied to extract high-fidelity maximally entan-
gled states from mixed entangled states. Entanglement concentration29–45 is often used to distill less-entangled 
states into pure maximally entangled states by local operations and classical communication (i.e. LOCC). Bennett 
et al.29 firstly proposed an entanglement concentration protocol by using Schmidt projection. In 2003, Zhao 
et al.42 not only demonstrated the entanglement concentration scheme in ref. 30 but also verified a quantum 
repeater in experiment. Li et al.39 proposed two protocols to concentrate hyper-entangled GHZ states by using 
a single-photon state of two freedoms and two less-entangled states respectively. Sheng et al.32 proposed to con-
centrate arbitrary W states by using two steps. Afterwards, a universal concentration scheme of an arbitrary 
less-entangled N-photon W state is proposed in ref. 43. Here, we consider a special quantum channel noise, 
i.e. pure maximally entangled states evolve into less-entangled states, which can be distilled by entanglement 
concentration. In the following, we give the entanglement concentration of GHZ states that were experimentally 
prepared in refs 46–48.

The first round of entanglement concentration. In the BQC, the maximally GHZ states can be rewritten in the 
form of

= + + +GHZ HHV HVH VHH VVV1
2

( ), (2)a b c1 1 1

where we define |H〉 = |0〉 and |V〉 = |1〉. The subscripts a1, b1 and c1 represent the spatial-mode of photons ′At2
, Bj 

and ′Ct1
. We consider the noisy model that pure maximally entangled states evolve pure less entangled states. 

Suppose less-entangled pure photons states are

α β δ η′ = + + +GHZ HHV HVH VHH VVV , (3)a b c1 1 1

where four real numbers α, β, δ, η satisfy |α|2 + |β|2 + |δ|2 + |η|2 = 1.
Two identical less-entangled states, which the parameters are all unknown, can distill a maximally entangled 

state in Eq. (2). The schematic of entanglement concentration is shown in Fig. 2. Here, only Alice knows whether 
entanglement concentration is successful and the correct orders of ′At2

, Bj and 
′

Ct1
.

After passing HWP90°, the state ′GHZ a b c1 1 1
 evolves to

α β δ η′ = + + +GHZ VVH VHV HVV HHH , (4)a b c2 2 2

where polarization photons a1, b1 and c1 are flipped and relabeled as a2, b2 and c2.
The entanglement concentration is divided into two steps. In the first step, the system composed of six photons is
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After both a1 and a2 (b1 and b2, c1 and c2) pass parity check device (Fig. 3), Bob and Charlie can get some specific 
quantum state by choosing phase shifts. Here, we suppose that Bob and Charlie are honest to perform the entan-
glement concentration. The concrete process of the parity check device is given in Methods.

For b1 and b2, a1 and a2, c1 and c2, if Bob and Charlie all choose ±2θ phase shifts of odd-parity check states, 
the state is

ϕ α β

δ η

= +

+ +

HHV VVH HVH VHV

VHH HVV VVV HHH (6)

a b c a b c1
2 2

2 2
1 1 1 2 2 2

with the probability α β δ η= + + +p11
1 4 4 4 4, where pvj

m represents the probability of obtaining ϕ a b c a b c1 1 1 1 2 2 2
 

with the number of rounds v = …v k( 1, 2, 3, , ), the number of steps j (j = 1, 2) in vth round and the quantum 
state m (m = 1, 2, 3, 4) in jth step of vth round.

If Bob chooses 0 phase shift of even-parity check states for b1 and b2, Charlie chooses 0 phase shift of 
even-parity check states for c1 and c2, and ±2θ phase shift of odd-parity check states for a1 and a2, the state is

ϕ αβ

δη

| 〉 = | 〉| 〉 + | 〉| 〉

+ | 〉| 〉 + | 〉| 〉

HHV VHV HVH VVH

VHH HHH VVV HVV

( )

( ) (7)
a b c a b c2 1 1 1 2 2 2

with the probability α β δ η= +p 2( )11
2 2 2 2 2 .

If Bob chooses ±2θ phase shift of odd-parity check states for b1 and b2, Charlie chooses 0 phase shifts of 
even-parity check states for a1 and a2, c1 and c2, the state is

ϕ αδ

βη

| 〉 = | 〉| 〉 + | 〉| 〉

+ | 〉| 〉 + | 〉| 〉

HHV HVV VHH VVH

HVH HHH VVV VHV

( )

( ) (8)
a b c a b c3 1 1 1 2 2 2

with the probability α δ β η= +p 2( )11
3 2 2 2 2 .

If Bob chooses 0 phase shift of even-parity check state for b1 and b2, Charlie chooses ±2θ phase shift of 
odd-parity check states for c1 and c2, and 0 phase shift of even-parity check states for a1 and a2, the state is

Figure 2. The schematic diagram of polarization-entanglement concentration. The sources is used to produce 
polarization-entangled states. Photons a1(a2) and c1(c2) belong to Charlie, where Bob retains photons b1(b2). 
HWP is half-wave plate which HWP90° flips the horizontal and vertical polarization states. HWP45° just likes a 
Hadamard operation to rotate horizontal and vertical polarization states. The polarizing beam splitters (PBSs) 
are used to transmit horizontal polarization |H〉 and reflect vertical polarization |V〉. QNDi (with i = 1, 2, 3) 
represents quantum nondemolition detections. Detectors DB1

 and DB2
 belong to Bob, DA1

, DA2
, DC1

 and DC2
 

belong to Charlie.

Figure 3. Schematic diagram of QND49. ±θ = χt represents the cross-Kerr nonlinearity media that introduces 
the phase shift θ when photons pass through the media. |χ〉 〈χ| is homodyne measurement that can distinguish 
different phase shifts. The signal photons |α1〉, |α2〉 and |α3〉 are related to a1 and a2, b1 and b2, c1 and c2 
respectively. Here x1 and x2 can be specifically expressed as a1 and a2 (b1 and b2, c1 and c2).
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ϕ αη

βδ
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with the probability α η β δ= +p 2( )11
4 2 2 2 2 .

We give an example for PBSs measurement. After passing through HWP45°, ϕ a b c a b c1 1 1 1 2 2 2
 evolves into
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If the detectors DA1
, DB1

, DC1
 (or DA2

, DB2
, DC2

) are triggered, we will get

ϕ α β δ η= + + +HHV HVH VHH VVV , (11)a b c11
(1) 1 2 2 2 2

1 1 1

where ϕ γ
vj

a b c

m( )

1 1 1

 represents the quantum state with the number of rounds v = …v k( 1, 2, 3, , ), the number of 

steps j (j = 1, 2) in vth round, the quantum state m (m = 1, 2, 3, 4) in jth step of vth round, and the quantum state 
(γ) (γ = 1, 2, 3, 4) of PBSs measurement for the states ϕε a b c a b c1 1 1 2 2 2

 (ε = 1, 2, 3, 4).
If the detectors DA1

, DB1
, DC2

 (or DA2
, DB2

, DC1
) are triggered, we get

ϕ α β δ η= − − + .HHV HVH VHH VVV (12)a b c11
(2) 1 2 2 2 2

1 1 1

Bob and Charlie perform unitary transformation σ σ⊗z
B

z
A on photons a1 and b1 of state ϕ a b c11

(2) 1

1 1 1
 to get 

ϕ a b c11
(1) 1

1 1 1
.

If the detectors DA1
, DB2

, DC1
 (or DA2

, DB1
, DC2

) are triggered, we will get

ϕ α β δ η= − + − + .HHV HVH VHH VVV (13)a b c11
(3) 1 2 2 2 2

1 1 1

Charlie performs unitary transformation σ σ⊗z
A

z
C on photons a1 and c1 of state ϕ a b c11

(3) 1

1 1 1
 to get ϕ a b c11

(1) 1

1 1 1
.

If the detectors DA1
, DB2

, DC2
 (or DA2

, DB1
, DC1

) are triggered, we will get

ϕ α β δ η= − − + + .HHV HVH VHH VVV (14)a b c11
(4) 1 2 2 2 2

1 1 1

Bob and Charlie perform unitary transformation σ σ⊗z
B

z
C on photons b1 and c1 of state ϕ a b c11

(4) 1

1 1 1
 to get 

ϕ a b c11
(1) 1

1 1 1
.

For the three states ϕ a b c a b c2 1 1 1 2 2 2
, ϕ a b c a b c3 1 1 1 2 2 2

 and ϕ a b c a b c4 1 1 1 2 2 2
, we have the similar results
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The four quantum states ϕ a b c11
(1) 1

1 1 1
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1 1 1
 and ϕ a b c11

(1) 4
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 are not destroyed by quantum 

non-demolition detections. They are used as the initial states in the second step of the first round and rewritten as 
ϕ a b c12

1
1 1 1

, ϕ a b c12
2
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, ϕ a b c12

3
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4
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.

In the second step, for quantum state

ϕ α β δ η| 〉 = | 〉 + | 〉 + | 〉 + | 〉
α β δ η+ + +

HHV HVH VHH VVV( ),
(16)a b c12

1 1 2 2 2 2
1 1 1 4 4 4 4

photons are all flipped by HWP90° and relabeled as a2, b2 and c2. We will get

ϕ α β δ η| 〉 = | 〉 + | 〉 + | 〉 + | 〉 .
α β δ η+ + +

VVH VHV HVV HHH( )
(17)a b c12

1 1 2 2 2 2
2 2 2 4 4 4 4
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After parity checks and PBSs measurement, we obtain four quantum states

ϕ α β δ η
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The probabilities of getting quantum states ϕ a b c12
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4 4 4 4 2

12
2

4 4 4 4

4 4 4 4 2

12
3

4 4 4 4

4 4 4 4 2

12
4

4 4 4 4

4 4 4 4 2

These are all failed cases, but they can be used as the initial states in the second round.
For quantum state

ϕ| 〉 = | 〉 + | 〉 + | 〉 + | 〉αβ

α β δ η

δη

α β δ η+ +
HHV HVH VHH VVV( ) ( ),

(20)a b c12
2

2( ) 2( )1 1 1 2 2 2 2 2 2 2 2

its process of concentration is the same as ϕ a b c12
1

1 1 1
 and we can get

ϕ| 〉 = | 〉 + | 〉 + | 〉 + | 〉 .αβδη

α β δ η+
HHV HVH VHH VVV( ) (21)a b c a b c12

(1) 2
2( )1 1 1 2 2 2 2 2 2 2

This is the maximally GHZ entangled state. The success and failure probabilities of ϕ a b c12
2

1 1 1
 are

αβδη
α β δ η

α β δ η
α β δ η

=
+

=
+
+

p p2( )
( )

,
( )

,
(22)s f12,

2
2

2 2 2 2 2 12,
2

4 4 4 4

2 2 2 2 2

where the subscripts s and f represent the success and failure probabilities respectively.
For quantum states

ϕ

ϕ

| 〉 = | 〉 + | 〉 + | 〉 + | 〉

| 〉 = | 〉 + | 〉 + | 〉 + | 〉

αδ

α δ β η

βη

α δ β η

αη

α η β δ

βδ

α η β δ

+ +

+ +

HHV VHH HVH VVV

HHV VVV HVH VHH

( ) ( ),

( ) ( ),
(23)

a b c

a b c

12
3

2( ) 2( )

12
4

2( ) 2( )

1 1 1 2 2 2 2 2 2 2 2

1 1 1 2 2 2 2 2 2 2 2

the success and failure probabilities of ϕ a b c12
3

1 1 1
 and ϕ a b c12

4
1 1 1

 are respectively

αβδη
α δ β η

α δ β η
α δ β η

αβδη
α η β δ

α η β δ
α η β δ

=
+

=
+
+

=
+

=
+
+

.

p p

p p

2( )
( )

,
( )

,

2( )
( )

,
( ) (24)

s f

s f

12,
3

2

2 2 2 2 2 12,
3

4 4 4 4

2 2 2 2 2

12,
4

2

2 2 2 2 2 12,
4

4 4 4 4

2 2 2 2 2

The total success probability of the first round is

αβδη
α β δ η

αβδη
α δ β η

αβδη
α η β δ

= + +

=
+

+
+

+
+

.

P p p p p p p

4( ) 4( ) 4( )
(25)

s s s1 11
2

12,
2

11
3

12,
3

11
4

12,
4

2

2 2 2 2

2

2 2 2 2

2

2 2 2 2

Discussion
Blindness and correctness analysis of the proposed BQC protocol. In the following, we will show 
that the proposed BQC protocol is secure by analyzing the blindness and correctness.

First, we show the blindness of the proposed BQC protocol.

 (1) Bob performs one of four Pauli operations randomly chosen by Alice on his photons and the initial states 
| 〉 = | 〉 + | 〉 + | 〉 + | 〉′ ′GHZ ( 001 010 100 111 )A B C

1
2t j t2 1

 are correspondingly changed into one of 
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′ ′GHZ{ A B C1 t j t2 1
, ′ ′GHZ A B C2 t j t2 1

, ′ ′GHZ A B C3 t j t2 1
, ′ ′GHZ }A B C4 t j t2 1

. Whether Bob colludes with Charlie or not, 
they guess the correct Bell state with the probability of 1

4
. When this BQC protocol is repeated n 

times, the probability of obtaining correct quantum states is =
→∞

( )lim 0
n

n1
4

.

 (2) Alice randomly chooses the phase θi ∈ …π π π π( ){ }0, , , , ,
4

2
4

3
4

7
4

 and disturbs the order of photons Aj, Bj, Cj. 
Bob and Charlie know nothing about the states | ± 〉θi

 because of the no-signaling principle. After 
repeating n times, the probability of guessing correct θi is =

→∞
( )lim 0

n

n1
8

. In the process of entanglement 
concentration, Bob and Charlie cannot eavesdropping any useful information by exchanging their results 
because of difference of orders of three photons.

 (3) The structures of blind brickwork states and blind topological states are private for servers. Therefore, Bob 
and Charlie can’t obtain anything about Alice’s private information whether they communicate with each 
other or not. The blindness of BFK single-server protocol and blind topological single-server protocol are 
showed in refs 1 and 2 in detail respectively.

Second, the correctness of quantum computation in BFK single-server protocol and blind topological 
single-server protocol are presented in refs 1 and 2 in detail.

So this BQC protocol is blind and correct.

Analysis of the success probabilities in iteration. In the above discussion, we have already elaborated 
the first round of the entanglement concentration with cross-Kerr nonlinearity in detail. QND provides a strong 
tool for us to perform a quantum nondemolition measurement that does not destroy entanglement of photons, 
which ensures that each step can be operated independently. Here, we analyse the second round and the k-th 
round of entanglement concentration.

For the three cases ϕ a b c21
2

1 1 1
, ϕ a b c21

3
1 1 1

 and ϕ a b c21
4

1 1 1
, only the first step is needed to concentrate the ideal max-

imally entangled states ′ ′GHZ A B Ct j t2 1
. However, we need to implement two steps for the state ϕ a b c21

1
1 1 1

. We con-
sider the three states ϕ a b c21

2
1 1 1

, ϕ a b c21
3

1 1 1
 and ϕ a b c21

4
1 1 1

 first.
In the second round, for the quantum states

ϕ| 〉 = | 〉 + | 〉 + | 〉 + | 〉α β

α β δ η

δ η

α β δ η+ +
HHV HVH VHH VVV( ) ( ),

(26)a b c21
2

2( ) 2( )1 1 1

2 2

4 4 4 4

2 2

2 4 4 4

its analysis is the same as the Eq. (20). The success and failure probabilities are

αβδη
α β δ η

α β δ η
α β δ η

=
+

=
+
+

.p p2( )
( )

,
( ) (27)s f21,

2
4

4 4 4 4 2 21,
2

8 8 8 8

4 4 4 4 2

In the k-th (k > 1) round, the success and failure probabilities are

αβδη

α β δ η

α β δ η

α β δ η
=

+
=

+

+
.

+ + + +

p p2( )

( )
,

( ) (28)
k s k f1,
2

2

2 2 2 2 2 1,
2

2 2 2 2

2 2 2 2 2

k

k k k k

k k k k

k k k k

1 1 1 1

For the quantum states

ϕ

ϕ

| 〉 = | 〉 + | 〉 + | 〉 + | 〉

| 〉 = | 〉 + | 〉 + | 〉 + | 〉

α δ

α δ β η

β η

α δ β η

α η

α η β δ

β δ

α η β δ

+ +

+ +

HHV VHH HVH VVV

HHV VVV HVH VHH

( ) ( ),

( ) ( ),

a b c

a b c

21
3

2( ) 2( )

21
4

2( ) 2( )

1 1 1

2 2

4 4 4 4

2 2

4 4 4 4

1 1 1

2 2

4 4 4 4

2 2

4 4 4 4

the analyses of entanglement concentration are the same as the Eq. (23), the success and failure probabilities in 
the second round and the k-th round are

αβδη
α δ β η

αβδη

α δ β η

α δ β η
α δ β η

α δ β η

α δ β η

αβδη
α η β δ

αβδη

α η β δ

α η β δ
α η β δ

α η β δ

α η β δ

=
+

=
+

=
+
+

=
+

+

=
+

=
+

=
+
+

=
+

+
.

+ + + +

+ + + +

p p

p p

p p

p p

2( )
( )

, 2( )

( )
,

( )
,

( )
,

2( )
( )

, 2( )

( )
,

( )
,

( ) (29)

s k s

f k f

s k s

f k f

21,
3

4

4 4 4 4 2 1,
3

2

2 2 2 2 2

21,
3

8 8 8 8

4 4 4 4 2 1,
3

2 2 2 2

2 2 2 2 2

21,
4

4

4 4 4 4 2 1,
4

2

2 2 2 2 2

21,
4

8 8 8 8

4 4 4 4 2 1,
4

2 2 2 2

2 2 2 2 2

k

k k k k

k k k k

k k k k

k

k k k k

k k k k

k k k k

1 1 1 1

1 1 1 1

For the quantum states
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ϕ α β δ η| 〉 = + + +HHV HVH VHH VVV , (30)kj a b c kj kj kj kj
1

1 1 1

(where j = 1, 2) we give the relevant normalized coefficients and the probabilities of relevant quantum states. The 
iterative process is the same as the Eq. (3).

In the first step of the k-th round, for the quantum states

ϕ α β δ η= + + +HHV HVH VHH VVV , (31)k a b c k k k k1
1

1 1 1 11 1 1

where k > 1 and the coefficients are

α α

α β δ η

β β

α β δ η

δ δ

α β δ η

η η

α β δ η

=
+ + +

=
+ + +

=
+ + +

=
+ + +

.

−

− − − −

−

− − − −

−

− − − −

−

− − − −

,

,

,

(32)

k

k

k

k

1

2

2 2 2 2

1

2

2 2 2 2

1

2

2 2 2 2

1

2

2 2 2 2

k

k k k k

k

k k k k

k

k k k k

k

k k k k

2 2

2 1 2 1 2 1 2 1

2 2

2 1 2 1 2 1 2 1

2 2

2 1 2 1 2 1 2 1

2 2

2 1 2 1 2 1 2 1

In the second step of the k-th round, for the quantum states

ϕ α β δ η= + + +HHV HVH VHH VVV , (33)k a b c k k k k2
1

2 2 2 21 1 1

where the coefficients are

α α

α β δ η

β β

α β δ η

δ δ

α β δ η

η η

α β δ η

=
+ + +

=
+ + +

=
+ + +

=
+ + +

.

−

−

−

−

,

,

,

(34)

k

k
k

k

k

2

2

2 2 2 2

2

2

2 2 2 2

2

2

2 2 2 2

2

2

2 2 2 2

k

k k k k

k

k k k

k

k k k k

k

k k k k

2 1

2 2 2 2

2 1

2 2 2

2 1

2 2 2 2

2 1

2 2 2 2

The probabilities of obtaining four quantum states in the first step or the second step of the k-th round are

α β δ η

α β δ η

α δ β η

α η β δ

= + + +

= +

= +

= +

p

p

p

p

,

2( ),

2( ),

2( ), (35)

kj kj kj kj kj

kj kj kj kj kj

kj kj kj kj kj

kj kj kj kj kj

1 4 4 4 4

2 2 2 2 2

3 2 2 2 2

4 2 2 2 2

where j = 1, 2. The success probability of the kth round is

=

+

+ +

+

+

+

+ + + + .

−

−

−

−

−

−

− −
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The total probability is = ∑ =P Ptotal k
n

k1 , which depends on the number of iterations and parameters of the initial 
states. The relationship of the total success probability, parameters and the number of iterations is shown in 
Fig. 4. It can be seen that the total success probability has kept increasing with the parameters β and δ in the 
range of 





0, 3
2

. When n = 4, the success probability has already reached 0.9196. When n = 9, the success prob-

ability has already reached 0.9975. Therefore, the entanglement concentration is successful in theory.
In this paper, we only consider the ideal CNOT gate19–23. In experiment, there exist many nonideal factors 

such as the double effect of parameter conversion, the imperfect matching of the crystal lattice and phases, and 
so on. The probabilities of intrinsic error of experimental methods are unavoidable, such as QND measurements 
and CNOT operations. Thus optimizing the experimental system is a very meaningful research direction. In the 
BQC protocol, we only give the concrete quantum channel noise model but not universal. So, we will further 
study entanglement purification of GHZ states.

Methods
The optical devices are used to complete the entanglement concentration, where the parity check devices are 
based on cross-Kerr nonlinearity that can construct QND38, 39, 41 to improve the successful probability. The 
cross-Kerr nonlinearity medium is described by the Hamiltonian,

χ= † †H a a a a (37)s s p p

where †as  and †ap are the creation operators, as and ap are the annihilation operators, a Fock state |n〉 and a coherent 
state |αc〉 interact. The whole system evolves into

α α α= + θU t n c c e( ) 0 1 (38)c c c
i

0 1

where = θ− + +
U t e( ) i a a a as s p p, θ = χt is the phase shift and t is the interaction time (c = 1, 2, 3). θ is proportional to the 

number of photons in the signal state |αc〉. X-quadrature measurement can recognize the phase shift of signal 
states |αc〉. The cross-Kerr nonlinearity can measure the number of photons but do not destroy the photons.

For the parity check device in Fig. 3, we give an example. Two polarization photons are initially prepared with the 
forms of τ µ µ= +H Vk 0 11

 and τ λ λ= +H Vk 0 12
 that interact with a coherent beam |αc〉 (c = 1, 2, 3),where 

real numbers μ0, μ1, λ0 and λ1 satisfy the normalization condition |μ0|2 + |μ1|2 = 1, |λ0|2 + |λ1|2 = 1, respectively. Then 
the composite quantum system τ τ αϒ = ⊗ ⊗k k c1 1 2

 evolves to

Figure 4. The success probability P of getting maximally entangled GHZ state relies on the initial coefficients β 

and δ. Here, we let α = 1
2
, β ∈ {0, }3

2
, δ β∈ −{0, }3

4
2 , η β δ= − −3

4
2 2 . n (n = 1, 2, 3, 4) 

represents the number of iterations.
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µ λ α µ λ α µ λ µ λ α|ϒ 〉 = | 〉| 〉 + | 〉| 〉 + | 〉 + | 〉 | 〉θ θ−HV e VH e HH VV( ) (39)c
i

c
i

c2 0 1
2

1 0
2

0 0 1 1

From the Eq. (39), we can pick up a phase shift 0 related with |HH〉 and |VV〉, and phase shift 2θ related with |HV〉 
and |VH〉. One can distinguish |HH〉 and |VV〉 from |HV〉 and |VH〉 by different phase shifts, however, the states 
α θ±e i

1
2  can not be distinguished by the setup.
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