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Analytical investigation of 
nonreciprocal response in 1D 
nonlinear photonic crystals
Ronger Lu1,2, Jiachu Jiang1,2, Ruizhi Zhao1,2, Xia Feng1,2, Xuhao Hong1,3, Chao Zhang1,2, 
Yiqiang Qin1,2 & Yongyuan Zhu1,3

The nonreciprocal response of the SHG process in 1D periodical nonlinear photonic crystals with a 
defect embedded has been theoretically studied by solving the nonlinear coupled equations. The 
nonreciprocal response has been deduced analytically with the solution of non-reciprocity parameters 
obtained. The result shows that as the non-reciprocity approaches 100%, the crystal length and the 
input power needed increase at a logarithmic rate. Any target nonreciprocal response can be reached in 
this structure by adjusting the structure parameters.

Recent years have witnessed a growing tendency to study nonreciprocal structures and devices in many differ-
ent areas1–3. Inspired by the development of photoelectric diode4, 5, researchers have successively invented the 
acoustic diode6, 7 and the thermal diode8, 9. According to Lorentz reciprocity theorem10, the light propagation 
process is usually reversible. Therefore, it is difficult to achieve non-reciprocity in optical field. However, sev-
eral effective ways have been figured out to overcome this problem in recent years. For example, a metal-silicon 
waveguide system was proposed in 2011, which enabled light to propagate unidirectionally on silicon chips by 
adjusting light potential energy11. In nonlinear optics, an all-optical diode made of a defect embedded in lithium 
niobate channel waveguide was numerically demonstrated with a spatially nonreciprocal response12, 13. External 
electric field can be employed to further improve the isolating performance for this structure14–16, and multiple 
quasi-phase-matching (QPM) technique was also introduced to realize all-optical isolating action17.

In these researches, numerical computation is the main approach used to study the nonreciprocal process, 
which may not directly explain why it shows a nonreciprocal response as well as how to get a bigger response. In 
this paper, we have studied the above 1D defective structure theoretically and obtained a series of analytical solu-
tions not only for the second-harmonic output but also for the nonreciprocal response. Further derivations have 
been implemented and some new results have been revealed from the solutions. The role of the non-reciprocity 
parameter P as well as its corresponding realization conditions has been discussed in detail.

SHG output solutions and simulations for forward and backward processes
It is well known that the field distributions of the SHG process in homogenous nonlinear crystals can be solved 
exactly with the help of Jacobi elliptic functions18. In this paper we show that the nonreciprocal SHG process in 
1D defective nonlinear photonics crystal (NPC) structures can be solved in a similar manner. The schematic of 
the defective NPC structure we studied is shown in Fig. 1, where the up and down arrows represent the domain 
poling directions. Supposing the whole length of the NPC is L, a defect with a width of δL is embedded at the 
position x = L1. Theoretically, the whole structure can be treated as three sections, where the first and third sec-
tions have the same period (denoted as Λ) but different initial conditions and the second section is the embed-
ded defect inducing phase shift between the fundamental wave (FW) and second-harmonic wave (SHW). The 
nonreciprocal responses of the structure can be revealed by studying the forward and backward SHG processes 
separately, which can be treated analytically with the nonlinear coupled equations.

Firstly, we focus on the forward SHG process. The nonlinear coupled equations for this process are usually 
expressed as19:
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where A1, A2 refer to the field distributions of FW and SHW, respectively. K is the nonlinear coupling coefficient 
and f(x) represents the structure function of the NPC. Δk = k2 − 2k1 describes the phase mismatching in the SHG 
process, where k1 and k2 are respectively the wave vectors of FW and SHW.

For the first section of the NPC (0 ~ L1), when the QPM condition is satisfied20–22, Eq. (1) can be simplified as:
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where K1 = K · gm, and gm is the Fourier coefficient of the reciprocal vector used in the QPM process. Eq. (2) can be 
solved easily with the initial conditions of A1(0) = A0, A2(0) = 0, and the following solutions for A1 and A2 at the 
position x = L1 can be obtained17:
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For the second section (L1 ~ L1 + δL), a phase shift (denoted as Δϕ) is induced between the FW and SHW, 
which can be written as Δϕ = (2δL/Λ − 1)π.

For the third section (L1 + δL ~ L), the simplified coupled equations under the QPM condition are similar 
with Eq. (2) except additional terms exp(iΔϕ) and exp(−iΔϕ) resulting from the second section, which can be 
expressed as:
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In this situation, the initial conditions can be determined by Eq. (3), where not only the FW but also the SHW 
has a non-zero initial value.

If we concentrate on the variation of amplitudes and phases respectively, Eq. (4) can be further reduced to the 
following ones:
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Figure 1.  A schematic of the forward and backward SHG processes in a 1D nonlinear photonic crystal with a 
defect embedded.
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where y1, y2 represent the amplitudes of the FW and SHW respectively while ϕ1, ϕ2 represent the corresponding 
phases and θ = 2ϕ1 − ϕ2 − Δϕ.

From the above equations and QPM conditions, two first integrals can be drawn. They are
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where Γ is a constant and its value can be obtained by substituting Eq. (3) to the above equation:
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On the basis of Eqs (6) and (5a) can be further solved as:
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where ζ = − + Γ Aarccos( 1 27 / )/32
0
6  and A ≤ B ≤ C. Here A, B, C are all real numbers since ≤ Γ ≤A0 27 / 22

0
6  is 

always satisfied and thus obviously ζ ∈ [0, π/3]. Eq. (8) can be further solved as:
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1  is the Legendre’s incomplete elliptic integral of the first kind, 

and a, b are two real constants which are defined by = −a B A  and = −b C A . sn(z,γ) represents Jacobi 
elliptic function with modulus γ = a/b. In Eq. (10), we should choose a “+” sign if y2 is to increase with increasing 
x and a “−” sign if y2 is to decrease with increasing x.

Secondly, for the backward transmission, the results are similar to the forward ones, thus the amplitude for 
SHW can be expressed as:

γ φ γ= ′ ′ ± ′ ′ ′ + ′y a b K L F A(0) sn [ ( , ), ] (11)2
2 2 2

1 1

where γ φ′ ′ = ′ ′ − − ′ ′( )( )F F a b y L L A a( , ) / , arcsin ( ) /2
2

1 . Parameters a′, b′, A′ can be obtained by repeating 

the above deduction processes with the defect position L − L1 instead of L1.
Numerical calculations have been conducted together with the above analytical solutions to demonstrate 

the nonreciprocal response of the defective NPC structure. Assuming that the defect position is L1 = 0.2L and 
δL = 5Λ/6, that is the phase shift Δϕ equals to 2π/3, the normalized amplitudes of FW and SHW in the NPC 
are shown in Fig. 2. Figure 2(a) and (b) show the forward and backward transmission processes calculated on 
the basis of the original coupled equations Eq. (1). Figure 2(c) and (d) are corresponding processes obtained by 
numerical calculation of the simplified equations Eqs (2) and (4). Whereas Fig. 2(e) and (f) show the correspond-
ing results of the analytical solutions Eqs (10) and (11). We can see that they match well with each other.

Analytical and numerical derivations of the non-reciprocity parameter
According to [12–15], the non-reciprocity parameter P in this SHG process can be defined as:
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Here, superscripts “+” and “−” represent the forward and backward processes, respectively. In the situation 
that L − L1 ≫ L1, Eq. (12) can be simplified as:

η
η

=
−
+

+

+P 1
1 (13)

where η =+ +y A( ) 2 /2
2

2
0
2 describes the SHG conversion efficiency of the forward process.



www.nature.com/scientificreports/

4SCIeNtIfIC REPOrts | 7: 6579 | DOI:10.1038/s41598-017-06771-2

Substituting Eq. (10) into Eq. (13), it is found that when the forward SHG output reaches its minimum, the 
non-reciprocity achieves the maximum, and vice versa. According to the properties of Jacobi elliptic function, 
when the forward output achieves the minimum or maximum, the following expressions for the total length of 
the crystal L can be obtained respectively:
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where T(γ) = F(γ, π/2) describes the period of the first kind of complete elliptic integral and n represents positive 
integers. When n is an even number, the forward SHG output reaches the minimum value A  and otherwise 
achieves the maximum value B . The corresponding extremes of P can be solved as

Figure 2.  Normalized amplitudes of FW and SHW for the forward and backward processes in the defective 
NPC. (a–f) are the corresponding forward and backward propagations calculated on the basis of the original 
coupled equations, the simplified coupled equations and the analytical solutions, respectively.
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It can be analytically solved from Eq. (15) that Pmax equals to Pmin when the condition Γ =A27 / 22
0
6  is satisfied. 

That means with specific values of A0K1L1 and Δϕ, no matter what the length of the total crystal, the value of P 
keeps the same.

Surface plot of the extremes of is calculated and shown in Fig. 3. It can be seen that high nonrecipro-
cal responses can be obtained when Δϕ is close to 0 or π, which corresponds to the situation that Γ is small. 
Furthermore, if Γ → 0, ideal non-reciprocity can be obtained. The expression of Pmax can be approximately sim-
plified as follows:
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In this situation, γ can be expressed as γ = − Γ A1 3 2 / 0
3. Substituting Eq. (16) into Eq. (14), it can be con-

cluded that the total NPC length needed increases logarithmically with Pmax since the corresponding period T(γ) 
can be approximately expressed as
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Figure 4 shows the dependence of Pmax and Δϕ, where Δϕ varies in the range of 0 and π, and A0K1L1 is set to 
be 0.3π. Figure 4(b) is the partial magnification of Fig. 4(a). It can be seen that the non-reciprocity parameter P 
is periodically distributed for a given Δϕ, which is resulted from the periodicity of the Jacobi elliptic function. 
Besides, when Δϕ → 0 or Δϕ → π, the corresponding period will increase logarithmically, which matches well 
with the analytical discussions.

Simulation results show that the contrast ratio of the all-optical diode can maintain close to 1. Thus, a near 
complete nonreciprocal all-optical diode based on a NPC can be realized. As is shown in the Fig. 4(b), the same 
color describes the same nonreciprocal response. It can be seen that for any target non-reciprocity, a NPC struc-
ture with a defect embedded can be designed with specific values of Δϕ and A0K1L1, which are realized by adjust-
ing the defect width, the crystal length and the FW input. As Δϕ moves away from zero, the same nonreciprocal 
response is kept as long as the total length of the crystal decreases. It means that the target non-reciprocity could 
be achieved with a shorter crystal length and a lower FW input by adjusting the defect width. For practical appli-
cations in a defective NPC structured on the lithium niobate (LN), the nonlinear coefficient d33 = 27 pm/V. If 
a 70% nonreciprocal contrast is required, that is Pmax = 0.7, A0K1L ≈ 6.191 and Δϕ ≈ 0.532 can be carried out 
according to Eqs (7) and (14), sketched by point ‘A’ in Fig. 4(b). The data show that if we set the FW (1064 nm) 
intensity to be 60 MW/cm2, the needed total length is 1.3 cm and the required defect width is 3.8 μm with the 
QPM period being 6.6 μm. Similarly, if an 80% nonreciprocal contrast is required, the corresponding parameters 
can be obtained by the same method, shown by point ‘B’ in the figure. Discussions above have explained a univer-
sal design of nonlinear crystals. In comparison with previously reported NPC diodes, our results reveal that the 
design of diodes can be more flexible and easier to control.

Conclusion
In all, we have theoretically studied the non-reciprocity properties of SHG process realized by a defective 1D NPC. 
Exact solutions for the SHG output in both forward and backward transmission processes have been derived with 
elliptic function forms. According to the property of the elliptic function, it can be concluded that for specific 

Figure 3.  Surface plot of the extremes of the non-reciprocity parameter with different structure parameters.
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values of Δϕ and A0K1L1, the non-reciprocity parameter has a maximum value as well as a minimum value. It is 
found that the complete non-reciprocity cannot be realized in this structure but can be approached infinitely. In 
this case, the crystal length needed increases with the nonreciprocal parameter at a logarithmic rate. Any target 
non-reciprocity can be obtained by adjusting the defect width, the crystal length and the FW input. These results 
may lead to a variety of relevant applications, including all-optical diode, optical isolator, amplifiers and so on.

Methods
It is obvious that there is no non-reciprocity when the defect is at the middle position, which means L1 = L/2. 
Asymmetric structures should be adopted for significant responses. Hereafter we present a detailed analysis under 
the condition that L − L1 ≫ L1. In this situation, it is found that the SHG output in backward transmission process 
will tend to A2 /20  as long as the intensity of the input FW is sufficiently high. Thus Eq. (12) can be simplified as:
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be written as = η
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. As a result, complete reciprocity and non-reciprocity are corresponding to P = 0 and 
P = 1, respectively.

Figures for the discussion of the non-reciprocity parameter are all calculated by MATLAB on the basis of 
the analytical solutions. Figure 3 is obtained with Eq. (15) under the approximate condition that L − L1 ≫ L1 
while Fig. 4 is obtained by accurately substituting the Eqs (10) and (11) into Eq. (12). The digital trends for the 
corresponding points match well between the two figures, which demonstrated that the approximation above is 
reasonable.
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