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A rapid, low-cost, and microfluidic 
chip-based system for parallel 
identification of multiple pathogens 
related to clinical pneumonia
Guoliang Huang1, Qin Huang2, Lan Xie1, Guangxin Xiang2, Lei Wang2, Hui Xu2, Li Ma2,  
Xianbo Luo2, Juan Xin2, Xinying Zhou2, Xiangyu Jin1 & Lei Zhang2

An air-insulated microfluidic chip was designed for the automatic centrifugal distribution of samples 
to 24-test cells, enabling the parallel identification of multiple clinical pneumonia-related pathogens 
in 1.45-μL reactions without cross-contamination in 45 min. A portable nucleic acid analyzer that 
integrates mechanical, confocal optical, electronic, and software functions was also developed to 
collect fluorescence data in a Ø3 mm imaging field near the optical diffraction limit for highly sensitive 
fluorescence detection of nucleic acid amplification in real time. This microfluidic chip-based portable 
nucleic acid analyzer could detect low abundance nucleic acids present at as few as 10 copies. In a 
blinded experiment, specific identification of Mycoplasma pneumoniae, Staphylococcus aureus, and 
methicillin-resistant S. aureus was achieved with 229 clinical patient sputum samples. The total 
coincidence rate of our system and traditional RT-PCR with an ABI 7500 was 99.56%. Four samples 
accounting for the 0.44% inconformity were retested by gene sequencing, revealing that our system 
reported the correct results. This novel microfluidic chip-based detection system is cost-effective, rapid, 
sensitive, specific, and has a relatively high throughput for parallel identification, which is especially 
suitable for resource-limited facilities/areas and point-of-care testing.

Pneumonia is one of the most serious infectious diseases with high morbidity and mortality. In 2015, pneumo-
nia killed an estimated 922,000 children under 5 years old, accounting for 15% of all deaths of children in that 
cohort (www.who.int). Children below the age of 5 and seniors over the age of 65 are more susceptible to devel-
oping severe pneumonia due to their weaker immune systems1, 2. Early and appropriate antibiotic administration 
is crucial for the prognosis of pneumonia. However, the emergence of drug-resistant bacteria complicates the 
empirical treatment of pneumonia. For example, penicillin resistance has become widespread, and patients with 
methicillin-resistant Staphylococcus aureus (MRSA) pneumonia have a higher risk of treatment failure3.

Rapid and accurate identification of pathogens and their resistance to antibiotics is critical for timely diagnosis 
and antibiotics choice, but the traditional culture-based method to determine this information is inadequate in 
many respects. Although regarded as the gold standard, culturing usually takes 72–96 h, with a relatively high 
false negative rate, especially for pathogens that are difficult to culture, and requires a certain amount of sample 
to start the culturing process. Due to these disadvantages, nucleic acid-based testing is becoming increasingly 
popular because it is direct, sensitive, and rapid. The most powerful method of this kind is PCR, but even it has 
drawbacks. These include the requirement for a thermocycler, which enables rapid heating/cooling temperature 
cycles but makes the equipment expensive and not suitable for resource-limited facilities and areas4. Moreover, 
because pathogenic species capable of causing pneumonia are numerous, it would be more economical if all sus-
pected pathogens could be accurately identified in a single assay. This is also challenging for PCR because even 
multiplex PCR cannot simultaneously detect more than four to five targets.

Efforts to overcome the limitations of PCR have resulted in other methods, such as isothermal amplification 
techniques, that do not require thermal cycling but instead rely on enzymatic activities for DNA/RNA synthesis5. 
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Notomi et al. report a novel nucleic acid amplification method called loop-mediated isothermal amplification 
(LAMP), which is capable of amplifying DNA under isothermal conditions with remarkable specificity, efficiency, 
and speed6. The assay is simple and inexpensive because minimal laboratory infrastructure is required, and it has 
recently been used to diagnose various infectious diseases7, 8. Yoshino et al. report a LAMP assay using a set of 
primers targeting the syndecan 1 repetitive element of the Mycoplasma pneumoniae (Mpn) genome9. Gotoh et al. 
report a highly sensitive and specific LAMP assay for Mpn detection10.

Microfluidic chips are a promising platform for pathogen detection. These so-called “micro total analysis 
systems (μTAS)” or labs-on-a-chip (LOC) have gained in popularity due to their flexibility for automation, inte-
gration, miniaturization, and multiplexing. Pathogen detection based on microfluidic chips also has many other 
advantages. Because the reaction chambers are usually on the micro- or nano-scale, the devices can be miniatur-
ized and portable, and are therefore suitable for point-of-care testing. LOC technology allows for the integration 
of sample preparation, amplification, and signal detection, which reduces the time need to generate results. The 
high throughput and low consumption of sample and reagents make the technology flexible and relatively cost 
effective. Nucleic acid-based microfluidic pathogen detection has been achieved for the detection of bacteria, 
viruses, and fungi11–13. Indeed, commercial chip-based pathogen detection systems are now emerging14. However, 
most of these systems utilize PCR or real-time PCR for amplification.

In recent years, integrated microfluidic LAMP systems have been reported, and different detection methods 
have been developed15–18. In most studies, centrifugal pumping is used and accompanied by specially fabricated 
valves, such as capillary, hydrophobic, sacrificial19, and burst valves20. However, the centrifugal pressure must be 
equal to or greater than the surface tension pressure of the valves, or the fluid will begin to flow once again. A 
valve-less chip would make the device simpler to use and the fluid more stable. Moreover, it is important to vali-
date the performance of a system with real clinical samples instead of cultured strains.

In this study, we established a valve-less, air-insulated microfluidic chip for the identification of multiple 
pneumonia-related pathogens as shown in Fig. 1. A custom microfluidic chip capable of simultaneously detecting 
24 species of pneumonia-related pathogens (without cross-contamination) in 45 min and a matched device with 
an integrated detection system were developed. The device had high sensitivity (detecting as few as 10 copies of 
nucleic acid) and utilized low-cost 1.45-μL reactions, making it suitable for point-of-care testing. We validated the 
performance of the new system via a blind assessment of 229 clinical samples for three pathogens: Mpn, S. aureus 
(Sau), and a MRSA strain. The total coincidence rate of the test device and the control device (i.e., an ABI 7500) 
was 99.56%. Four samples exhibited different results between the two platforms. Sequencing of the four samples 
suggested that results from our platform were in better accordance with the sequencing results than those from 
the ABI 7500. Thus, we believe this novel device is even more suitable than the ABI7500 for pneumonia-related 
pathogen detection, especially for samples with extremely low concentrations.

Figure 1. Parallel identification of multiple pathogens using the microfluidic chip-based portable nucleic acid 
analyzer.
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Results
Microfluidic chip for parallel identification of multiple pathogens. The microfluidic chip for parallel 
identification of multiple pathogens was developed via the following steps:

 (1). Design of the novel air-insulated microfluidic chip. A novel valve-less, air-insulated microfluidic chip was 
designed for the parallel identification of multiple pathogens as illustrated in Fig. 2(A) and (B). The base-
ment and the cover were both 60 mm in diameter and 0.6 mm in thickness. There are 24 test cells and the 
same number of buffer cells on the basement. The test cells are 3 mm in diameter, with a depth of 0.2 mm 
and volume of 1.45 μL. The buffer cells are 1.5 mm in diameter and 0.2 mm deep. All test and buffer cells 
were connected to an approximate sine-type channel via 24 pipes (0.2 mm (width) × 0.1 mm (depth)). This 
approximate sine-type channel consisted of 24 U-type units; each U type unit was connected to a test cell 
and a buffer cell. The buffer cell was used to compensate for the volume error from the fabrication of the 
microfluidic chip and the sampling process by pipettes, and it ensured that all liquid in the 24 U-type units 
(as shown in Fig. 2(D)) could be centrifuged without leaving residue to completely fill the 24 test cells as in 
Fig. 2(E). This also created an air insulation zone among the 24 test cells to prevent cross contamination.

 (2). Fabrication of the microfluidic chip. The microfluidic chip was fabricated with PC materials via precision 
injection molding, resulting in a smooth surface with a roughness < 10 μm in all test cells, buffer cells, sine-type 
channels, and pipes, which is very important to reduce nonspecific adsorption of reagents to the surface of the 
chip. After one 70% ethanol rinse followed by two water washes, the microfluidic chip can be used. Six primers 
designed to identify one pathogen each were embedded together at the bottom of each test cell using low 
melting point Sepharose CL-4B, as shown in Fig. 2(C). After all primers for different pathogens were designed 
(Table 1), as well as the positive and negative controls, they were independently embedded in different test 
cells of the basement (Fig. 2(A)). The cover (Fig. 2(B)) was tightly adhered to the basement using double-sided 
adhesive film with a thickness of 5–6 μm under 100 Kg pressure, and thus, the microfluidic chip was ultimately 
obtained.

 (3). Injection of the prepared DNA sample and isothermal nucleic acid amplification reactants into the mi-
crofluidic chip. First, the prepared DNA sample and isothermal nucleic acid amplification reactants were 
evenly mixed in a 1-mL microcentrifuge tube. Then, the mixture was injected into the microfluidic chip 
from the inlet hole using a pipette as shown in Fig. 2(D). After the inlet hole was sealed with a 5 × 10 mm 
seal film, the microfluidic chip was centrifuged at 5000 rpm for 10 s, mixing the prepared DNA sample and 
the isothermal nucleic acid amplification reactants in the test cells as shown in Fig. 2(E).

 (4). Use of the microfluidic chip for parallel identification of multiple pathogens. The Sepharose CL-4B at 
the bottom of the test cells (Fig. 1) is dissolved when the device heats to 50 °C, allowing all primers to be 
released into the mixtures of the prepared DNA sample and the isothermal nucleic acid amplification 
reactants as in Fig. 2(F). Then, nucleic acid amplification occurs at 65 °C, and the amplified products of 
the specific nucleic acid sequence are continuously generated. At the same time, the fluorescent marker 
EvaGreen automatically binds to these amplified products, enabling real-time fluorescent signal detection 
by the portable analyzer for parallel identification of multiple pathogens as shown in Fig. 2(G).

Figure 2. Structure of the microfluidic chip and method for the parallel identification of multiple pathogens. 
(A) Basement of the microfluidic chip. (B) Cover of the microfluidic chip. (C) Six primers embedded together 
at the bottom of one test cell using low melting point Sepharose CL-4B. (D) The mixture of the prepared DNA 
sample and isothermal nucleic acid amplification reactants is injected into the microfluidic chip via the inlet hole 
using a pipette. (E) The mixtures after being centrifuged at 5000 rpm. (F) Six primers released at >50 °C. (G) The 
fluorescent marker EvaGreen bound to the amplified products as nucleic acid amplification occurred at 65 °C.
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Oligonucleotide primers for parallel identification of three pneumonia pathogens. We next 
attempted to determine whether the device could be used for molecular diagnostics to identify multiple path-
ogens in parallel. In a proof-of-concept experiment, three groups of oligonucleotide primers were designed for 
the isothermal amplification assay according to the sequences of the femA gene of Sau (Gen-Bank accession no. 
BA000033), mecA gene of MRSA (Gen-Bank accession no. CP000046), and SeqA gene of Mpn (Gen-Bank acces-
sion no. CP002077) using Primer Explorer version 4 (https://primerexplorer.jp/elamp4.0.0/index.html). Details 
concerning the primers are listed in Table 1. All of the primers were synthesized by Invitrogen (Shanghai, China). 
The F3 and B3 primer pair also worked as sequencing primers to confirm the presence of the target genes.

Portable nucleic acid analyzer for real-time fluorescence detection and molecular diagnostics 
on a microfluidic chip. A portable nucleic acid analyzer was developed to perform sequence-specific molec-
ular diagnostics on the microfluidic chip as shown in Fig. 3.

Figure 3(a) depicts the structure of the portable nucleic acid analyzer. The confocal optical detection unit 
of the portable nucleic acid analyzer consists of the excited optical path and the fluorescent collection path. In 
the excited optical path, the excited light from a 1 W blue LED is first collimated by an aspherical lens L3 with a 
focal length of 20 mm, secondarily filtered by the band pass filter F2 (470 nm central wavelength and 30 nm band 
width), and then transmitted to the dichroic mirror D1 (high transmission to 400–500 nm light and reflection 

Pathogenic Primers Sequence (5′-3′)

Staphylococcus aureus

Sau-F3 GTGCCTTTACAGATAGCATG

Sau-B3 GAAAAAGTGTACGAGTTCTTGA

Sau-FIP GTTTCATAACCTTCAGCAAGCTTTCCATACAGTCATTTCACGCA

Sau-BIP GAGGTCATTGCAGCTTGCTTACTTCGATCACTGGACCGCG

Sau-LF AACTCATAGTGGCCAACA

Sau-LB GTACCTGTTATGAAAGTGTTCA

MRSA

MRSA-F3 TTATGGCTCAGGTACTGCT

MRSA-B3 TTTTGTTATTTAACCCAATCATTGC

MRSA-FIP ATTCTTCGTTACTCATGCCATACATGTGAATTATTAGCACTTGTAAGCAC

MRSA-BIP AACCGAAGATAAAAAAGAACCTCTGAATATTTTTTGAGTTGAACCTGGTG

MRSA-LF AATGGATAGACGTCATATGAAGGT

MRSA-LB CTCAACAAGTTCCAGATTACAACTT

Mycoplasma Pneumonia

Mpn-F3 CTCACCGTAGTGGGACA

Mpn-B3 GCCCCGGGATTTTCACC

Mpn-FIP CGTCAGGGCGGGTGTAGCTCTTCACAAGTACCACCACGAC

Mpn-BIP TGCGCCACACCAATGCCATGGGAGGGAGGAAAAGCT

Mpn-LF ATTGCTGGCGCTTGAGC

Mpn-LB CGCGCTTAACCCCGTGA

Table 1. Sequences of the primer sets used in this study.

Figure 3. Portable nucleic acid analyzer for parallel identification of multiple pathogens. (a) Principle structure 
of the portable nucleic acid analyzer. (b) Diagram of a diffraction energy simulation.
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to 500–600 nm light). Finally, it is focused into the test cell of the microfluidic chip (MFC) by the objective L1 
with a focal length of 22 mm and excites the amplified products bound to the fluorescent marker EvaGreen in 
the test cell, yielding a real-time fluorescent signal. In the fluorescent collection path, the fluorescent signal from 
the test cell is first collected in real time by the objective L1, reflected by the dichroic mirror D1, and then filtered 
by the band pass filter F1 (530 nm central wavelength and 30 nm band width). Next, it is focused by the imaging 
lens L2 with the same focal length as L1 onto the pinhole PH to filter the farraginous light from the environment 
and the off-focus chip material. Finally, it is detected by the photomultiplier tube (PMT, Hammatsu, Japan). A 
rotary motor drives the microfluidic chip rotation and enables all test cells to be detected in a period of 30 s by the 
photomultiplier tube. The real-time fluorescent signal is then transferred by the processor SP and shown on the 
computer. The heater R1 is kept at a 0.25-mm gap to the microfluidic chip to enable fast, even, two-sided heat-
ing. The temperature controller (PID) is used to control the heater R1 with an accuracy of 0.1 °C and a heating 
rate of 1 °Cs−1 by means of the feedback from a temperature sensor (S1 and S2). A multiple-axis moving driver 
(MMD) is used to control the rotary motor at an angular accuracy of 0.01°. Figure 3(b) shows the Fast Fourier 
Transformation (FFT) diffraction encircled energy for the confocal optical detection of the portable nucleic acid 
analyzer, which indicates that the fluorescence collection in a Ø3-mm imaging field is near the optical diffraction 
limit and has an adequate sensitivity to detect the amplified products of the trace nucleic acid in the test cell of 
the microfluidic chip.

A photo of the portable nucleic acid analyzer and the main process to identify multiple pathogens in parallel 
using the analyzer is shown in Fig. 1. Trace nucleic acids from pathogenic bacteria were first extracted from the 
sputum of inpatients and outpatients and then mixed with the isothermal nucleic acid amplification reagents in a 
1-mL microcentrifuge tube. Next, the mixture was injected into the microfluidic chip and centrifuged at 5000 rpm 
for 10 s. Then, the microfluidic chip was placed into the portable nucleic acid analyzer for incubation at 65 °C 
for 45 min. The fluorescence signals of the amplified products were detected, and the nucleic acid amplification 
curves were displayed in real time.

EvaGreen was used to follow the nucleic acid amplification in real time. In general, free EvaGreen does not 
fluorescence, but when it binds to double-stranded DNA (e.g., nucleic acid amplification products), it can be 
excited by blue light and emit a fluorescent signal. Free EvaGreen was mixed into the isothermal amplification 
assays. Therefore, when the nucleic acid amplification is performed in the presence of DNA from a pathogen, 
amplification products are continually made, and EvaGreen binds to them. The portable nucleic acid analyzer can 
detect the increase in the fluorescence signal in real time, and exponentially increasing nucleic acid amplification 
curves are obtained. If no DNA from a pathogen is present, then no nucleic acid amplification occurs, and the 
free EvaGreen does not emit a fluorescent signal. Thus, the portable nucleic acid analyzer detects no change in 
fluorescence, and the nucleic acid amplification curves are flat. The results of identifying multiple pathogens in 
parallel are ultimately reported in the end.

Limit of detection, reproducibility, and linearity of the portable nucleic acid analyzer-based 
microfluidic chip. The limit of detection (LOD) of the portable nucleic acid analyzer-based microfluidic 
chip was assessed using serial dilution of purified Sau genomic DNA (gDNA). Six gDNA template samples with 
different concentrations (1.0 × 106, 1.0 × 105, 1.0 × 104, 1.0 × 103, 1.0 × 102, and 1.0 × 101 copies/µL) were used, 
and the amplification curves are displayed in Fig. 4. Twenty-four duplicate reactions were performed for every 
DNA template concentration to evaluate reproducibility. The time to positive value (Tp), which was defined as 
the time at the second derivative inflexions of the exponential DNA amplification curves, was set to indicate 
the initiation of the entire system. As shown in Fig. 4, the LOD for isothermal amplification was 10 copies of 
gDNA for Sau for the portable nucleic acid analyzer-based microfluidic chip. The coefficient of variation (CV), 
defined as the ratio of the standard deviation (SD) to the mean average (CV = SD/AVERAGE × 100%), was used 
to describe the relative dispersion of the Tp values. A CV value between 0 and 5% indicated good reproducibil-
ity, and between 5 and 10% indicated acceptable reproducibility. The CVs of 24 repeated measurements were 
5.76%, 2.93%, 1.28%, 1.62%, 2.76%, and 3.6% for DNA concentrations of 1.0 × 101, 1.0 × 102, 1.0 × 103, 1.0 × 104, 
1.0 × 105, and 1.0 × 106 copies/µL, respectively, demonstrating the good reproducibility of the portable nucleic 
acid analyzer. Additionally, the relationship between the Tp value and the amount of bacterial gDNA per reaction 
was determined, and good linearity was observed (Fig. 4). The square of the regression coefficient (R2) was 0.9906 
for the portable nucleic acid analyzer. This indicates that the portable nucleic acid analyzer-based microfluidic 
chip was reliable for the quantification of bacteria by using traditional standard curves, and it was comparable to 
the ABI 7500. The LODs of MRSA and Mpn were next analyzed using the portable nucleic acid analyzer-based 
microfluidic chip (Fig. 4(C)). The CVs of five repeated measurements at the DNA concentration of 10 copies were 
5.2% and 4.95% for MRSA and Mpn, respectively.

Analytical specificity. The specificity of our system was assessed using prepared gDNA samples from 13 
LRT pathogens, including the three target bacteria described above and 10 other interference bacteria: Escherichia 
coli (Eco), Pseudomonas aeruginosa (Pae), Streptococcus pneumoniae (Spn), Klebsiella pneumoniae (Kpn), 
Acinetobacter baumannii (Aba), Stenotrophomonas maltophilia (Sma), Haemophilus influenzae (Hin), Legionella 
pneumophila (Lpn), Chamydiae pneumonia (Cpn), and Mycobacterium tuberculosis (Mtb). All tests were repeated 
three times. The expected positive signals were recognized by typical sigmoidal amplification curves (Fig. 5), and 
only the target bacteria displayed positive results. These data revealed that no cross-reactions were introduced 
by the other 10 species, indicating a high specificity. The negative control (no primers dispensed into the reac-
tion well) displayed no fluorescence throughout the amplification, indicating the low signal background and the 
absence of contamination.
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Validation of the portable nucleic acid analyzer-based microfluidic chip assay with a blind test 
of 229 clinic samples. The LRT discharge samples from 229 patients were tested using the microfluidic 
chip-based portable nucleic acid analyzer and an ABI 7500 instrument along with 25-μL qPCR kits for Sau, MRSA, 
and Mpn detection at the same time; the complete results are summarized in Supplemental Info 1. Among the 
229 patients, there were 127 children (age <14 years old), 31 young and middle-aged people (age between 15 and 
60), and 71 elderly people (age >60 years old). The male:female ratio was 149:80. We found that 225 samples were 
correctly identified, including 95 positive and 130 negative results. To determine the sensitivity and specificity, we 
used a four-fold table for calculation, as shown in Table 2, with a detailed description of the calculation process. 
The agreement between the on-chip LAMP and qPCR assays was assessed using the Kappa (κ) coefficient test.

The clinical sensitivity and specificity for the three pathogens is summarized in Table 3. They were all >99%, 
except for the sensitivity of Mpn detection, which was 94.3%. The κ was 0.975, 0.975, and 0.941 for Sau, MRSA, 
and Mpn, respectively. The p-values were <10−3, and the x2 tests of paired comparison of the enumeration data 
were 1.000 for all three clinical targets, indicating near-perfect agreement between the two platforms. The total 
coincidence rates with the ABI 7500 were >98%, indicating high consistency between the two platforms.

Discrepancy sample analysis. Compared to the results obtained with the ABI 7500, four clinical samples 
yielded different test results with our portable nucleic acid analyzer. We reanalyzed the four samples using the two 
devices, and the results were the same as before (Supplemental Info 1), indicating that the results were stable on 
both platforms. To further verify the results of these four samples, we sent them for DNA sequencing, which is 
regarded as the gold standard. The sequencing results were in better accordance with that of the portable nucleic 
acid analyzer than the ABI 7500 as shown in Table 4. We found that these four samples had a very low bacterial 

Figure 4. LOD and linearity analysis of the portable nucleic acid analyzer-based microfluidic chip. (A) LOD 
analysis for Sau. (B) Linearity analysis for Sau. (C) LOD analysis for Mpn and MRSA.

http://1
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concentration (~1.0 × 101 copies/µL). This indicates that the portable nucleic acid analyzer is superior to the ABI 
7500 for analyzing trace samples and is especially powerful for dilute clinical samples.

The advanced portable nucleic acid analyzer based on the microfluidic chip was approved as a new medical 
device (No.20153400580) by the China Food and Drug Administration (CFDA) on April 20, 2015 and supervised 

Figure 5. Specificity of the parallel detection assay on the microfluidic chip. (A) Detection results of Sau nucleic 
acid. (B) Detection results of MRSA nucleic acid. (C) Detection results of Mpn nucleic acid. (D) Detection results 
of DNA-free H2O. (E) Detection results of the three target pathogens from a 13-pathogen mixture of gDNA.

Portable nucleic 
acid analyzer

ABI 7500

Positive Negative

Sau MRSA Mpn Sau MRSA Mpn

Positive 28 34 33 1 1 1

Negative 0 0 2 200 194 193

Table 2. Four-fold table to calculate the test results of Sau, MRSA, and Mpn.

Target
Positive coincidence 
rate (%)

Negative 
coincidence rate (%)

Total coincidence 
rate (%) p(χ2)

Kappa 
value p(Kappa)

Sau 100.0 99.50 99.6 1.000 0.975 0.000

MRSA 100.0 99.49 99.6 1.000 0.975 0.000

Mpn 94.3 99.48 98.7 1.000 0.941 0.000

Table 3. Coincidence rates of the two methods to test for the three bacteria.
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as the technology standard of class-III medical setup for its production (CapitalBio Co., Beijing, China) and clinic 
application.

Discussion
Although molecular diagnostics is a rapidly developing field21, the clinical application of molecular testing is 
relatively limited. PCR-based pathogen detection is only routinely used in fully equipped first-level hospitals 
in China, despite the fact that it is sensitive, accurate, and rapid compared to culture-based detection. The high 
cost of equipment hampers its application in resource-limited facilities, such as community clinics and clinics in 
villages and towns, especially in developing countries. Further, PCR is also not suitable for point-of-care testing 
because the equipment is usually bulky. Our newly developed system is cost effective, with no need for a tem-
perature controlling component, and consumes a minimal amount of sample and reagents (1.45-µL reaction 
volume), which is in contrast to general PCR-based 25-μL reactions in microcentrifuge tubes. The device is small 
and portable, integrating several functional modules inside. Therefore, it has great potential for application in 
hospitals and clinics at all levels.

Species are capable of causing pneumonia, including Gram-positive bacteria such as Spn, Sau, and Group 
A hemolytic streptococci, as well as Gram-negative bacteria such as Kpn, Hin, and Eco. A typical pneumonia 
involves pathogens such as Lpn, Mpn, and Cpn22. The throughput of the detection assay is important, and parallel 
detection of multiple suspected species saves money and time. With a specially designed microfluidic chip, we can 
simultaneously detect 24 species, which is adequate for common pneumonia pathogen identification. The species 
to be tested can also be customized by adjusting the primers coated in each well.

MRSA isolates are a serious public health problem that complicate the clinical management of pneumonia23. 
Routine antimicrobial susceptibility testing methods such as disk diffusion, broth microdilution, and agar-based 
screen tests are very important for clinical decisions. However, the delay between sample acquisition and results 
report, usually 48–96 h, makes MRSA cross-transmission a potential threat. In this respect, rapid tests for the 
detection of MRSA (generally based on nucleic acids tests) are a great supplement to conventional methods, espe-
cially for screening24. Due to their very low turnaround time, nucleic acid amplification tests are extremely suita-
ble to identify patients who are candidates for contact precaution and to decrease nosocomial transmission25. In 
the current work, we only detected the MRSA mecA gene with our system, which is the most common gene that 
mediates methicillin resistance26. However, any other gene related to antibiotic resistance can be easily integrated 
into the platform due to the relatively high throughput of our system.

There are several key points involved in this analyzer. One is a confocal optical detector (Authorized patent 
ZL200710122151.4, public announcement at www.sipo.gov.cn) developed as the principle structure in Fig. 3(a) 
(photo of the real setup in Fig. 1). It is capable of highly sensitive fluorescence collection near the optical diffrac-
tion limit and reduces the background signal from the material of the microfluidic chip and surroundings. The 
key features are rotating scanning to decrease photo-bleaching by the excitation light, fast even heating from a 
resistive film by a thin (0.25 mm thickness) moving air layer of to limit residual denatured DNA during the pro-
cess of heating to 65 °C, and the moving average filter algorithm (Authorized patent ZL201110113608.1, public 
announcement at www.sipo.gov.cn) in the software to improve the stability of the real-time fluorescence signal of 
nucleic acid amplification. All of these are very important for accurate measurements with low sample consump-
tion in 1.45-μL test cells at a high sensitivity (LOD of 10 genomic copies).

With no need for a thermo-cycling process, the LAMP reaction takes <45 min. Pre-treatment of the sample 
is also simpler compared to that required for conventional PCR because our system has a higher tolerance for 
impurities in clinical samples. A heating time of 15 min is usually adequate for pre-treatment. Therefore, the 
overall time from sample pre-treatment to final results is <1.5 h. This is very effective when dealing with critical 
infectious conditions.

During a blind assessment of 229 clinical samples, we found a coincidence rate of 99.56% with results based on 
an ABI 7500, and only four samples yielded different results between the two platforms. However, sequencing of 
the four samples suggested that results from our platform were in better accordance with the sequencing results. 
When we reanalyzed the four samples, we found that they all had extremely low DNA concentrations, near the 
detection limitation of 1.0 × 101 copies/µL. This indicates that our portable nucleic acid analyzer is even more suit-
able than the ABI 7500, especially for trace samples. Taking the results from sequencing as an adjusted reference, 
the overall sensitivity and specificity of our platform were both better. These applications will further validate 
the robust performance of our portable nucleic acid analyzer and hopefully lead to its wide acceptance in clinics.

Methods
All methods were performed in accordance with relevant guidelines and regulations. Standard 
bacterial strains and DNA template preparation. Sau strain ATCC 6538 was obtained from the National Institutes 
for Food and Drug Control (Beijing, China). The two target genes, mecA and seqA, were constructed in plasmids at 

Sample No. ABI 7500
Reanalysis by 
ABI 7500

Portable 
analyzer

Reanalysis by the 
portable analyzer Sequencing

R-022 Mpn Mpn MRSA MRSA MRSA

R-032 MRSA MRSA Sau, MRSA Sau, MRSA Sau, MRSA

R-101 Negative Negative Mpn Mpn Negative

E-095 Sau, Mpn Sau, Mpn Sau Sau Sau

Table 4. Discrepancy sample reanalysis results.

http://www.sipo.gov.cn
http://www.sipo.gov.cn
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Sangon (Shanghai, China). The DNA templates were extracted and purified using a QIAamp DNA Mini Kit (Qiagen 
Inc., CA, USA) and quantified with a ND-1000 Spectrophotometer (NanoDrop Technologies, Inc., DE, USA).

Sample collection and nucleic acid extraction. A total of 229 lower respiratory tract (LRT) discharge samples 
were prospectively collected from inpatients and outpatients at the People’s Hospital of Peking University and 
Beijing Children’s Hospital. The patients were diagnosed with pneumonia, lung infection, acute bronchitis, or 
acute exacerbation chronic obstructive pulmonary disease. Demographic information was recorded, including 
clinical diagnosis, age, sex, and sample number. Informed consent was obtained from each participant, and the 
study was approved by the ethics committee of Tsinghua University. A volume >600 μL of each specimen was 
stored at −80 °C for further testing. The frozen LRT discharge samples were heated for 15 min before nucleic acid 
extraction according to biosafety laboratory requirements. gDNA was extracted from samples using a Universal 
Kit for Bacterial DNA extraction (CapitalBio Co., Beijing, China) according to the manufacturer’s protocol. The 
prepared DNA samples were immediately stored at −20 °C until use.

Isothermal amplification assays. Each 10-μL isothermal nucleic acid amplification assay for pathogen molecular 
diagnostics consisted of 0.2 μM each of F3 and B3, 1.6 μM each of FIP and BIP, 0.4 μM each of LF and LB, 8 U of 
Bst DNA Polymerase (Large Fragment), 0.1 mM dUTP, 0.4 mM dNTPs (New England Biolabs Ltd., Beverly, USA), 
0.5 mg/ml BSA (Fluka Sigma-Aldrich Inc., Missouri, USA), 0.6× EvaGreen (Biotium Inc., California, USA), 
0.8 M betaine (Fluka Sigma-Aldrich Inc., Missouri, USA), 6 mM MgSO4 (Beijing Chemical Reagents Company, 
Beijing, China), 0.1 U/mL Uracil-DNA Glycosylase (Fermentas Inc., Burlington, Canada), 10 mM (NH4)2SO4, 
20 mM Tris-HCl (pH 8.8 at 25 °C), 10 mM KCl, 0.1% Triton X-100, and 2 μL template DNA. The reaction mixture 
was incubated at 37 °C for 5 min, then heated to 65 °C and kept at a constant temperature of 65 °C for 40–45 min 
before ultimately heating to 80 °C for 5 min to terminate the reaction.

RT-PCR assays. The prepared DNA samples were then tested by two real-time PCR assays as control meth-
ods: the Sau and mecA genes using Sau and MRSA nucleic acid test kits (PCR fluorescence method) (Triplex 
International Biosciences Co., Ltd, Fujian, China); and Mpn using a Mycoplasma Pneumonia nucleic acid test kit 
(PCR fluorescence method) (ACON Biotech Co., Ltd. Hangzhou, China). The assay procedure, from real-time 
PCR setup to data acquisition, was completed on the same day using the instructions provided by the kits’ man-
ufacturers. The median fluorescence intensity was generated and automatically analyzed by the ABI 7500 Data 
Analysis Software GPP version 2.0.4 to establish the presence or absence of targets in each sample.

Definition and statistical analyses. The data were analyzed using SPSS version 13.0 (SPSS, Chicago, IL, USA). 
Differences between the proportions of positive results were compared using NcNemar’s χ2 test. The agreement 
between the on-chip LAMP (as the test platform) and in-tube RT-PCR assays (as the control platform) was 
assessed using the κ coefficient test. We used a four-fold table to calculate the test results, as shown in Table 5, and 
the statistical results were analyzed as below:

 (1) The clinical sensitivity of a target using the test platform = A/(A + C) × 100%;
 (2) The clinical specificity of a target using the test platform = D/(B + D) × 100%;
 (3) The total coincidence rate of a target by comparing the test platform with the control platform = (A + D)/

(A + B + C + D) × 100%;
 (4) The χ2 test of paired comparison of the enumeration data was used to evaluate the agreement of a target 

between the test platform and the control platform;
 (5) The κ coefficient test was used to assess the agreement of a target between the test platform and the control 

platform, p < 0.05 was considered to be significant; and
 (6) The total concordance rate of the test platform and the control platform = E/F × 100%, where E is the 

number of samples that had the same result by using the test platform and the control platform, and F is 
the total number of clinical samples.

Availability of materials. The datasets supporting the conclusions of this article are included within the 
article. The datasets of sequences for the femA gene of Sau, mecA gene of MRSA, and seqA gene of Mpn support-
ing the conclusions of this article can be obtained from their GenBank accessions (https://en.wikipedia.org/wiki/
GenBank).

Ethics approval and consent to participate. Informed and signed consent was obtained and archived 
for the research performed and publication of the results. The patients consented to clinical molecular diagnostics 
at People’s Hospital of Peking University and Beijing Children’s Hospital. This study was approved by the ethics 
committee of Tsinghua University.

Positive (control platform) Negative (control platform) Total

Positive (test platform) A B A + B

Negative (test platform) C D C + D

Total A + C B + D A + B + C + D

Table 5. Four-fold table to calculate the test results.

https://en.wikipedia.org/wiki/GenBank
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