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Primary fibroblasts from CSPα 
mutation carriers recapitulate 
hallmarks of the adult onset 
neuronal ceroid lipofuscinosis
Bruno A. Benitez   1 & Mark S. Sands1,2,3

Mutations in the co- chaperone protein, CSPα, cause an autosomal dominant, adult-neuronal ceroid 
lipofuscinosis (AD-ANCL). The current understanding of CSPα function exclusively at the synapse 
fails to explain the autophagy-lysosome pathway (ALP) dysfunction in cells from AD-ANCL patients. 
Here, we demonstrate unexpectedly that primary dermal fibroblasts from pre-symptomatic mutation 
carriers recapitulate in vitro features found in the brains of AD-ANCL patients including auto-fluorescent 
storage material (AFSM) accumulation, CSPα aggregates, increased levels of lysosomal proteins 
and lysosome enzyme activities. AFSM accumulation correlates with CSPα aggregation and both 
are susceptible to pharmacological modulation of ALP function. In addition, we demonstrate that 
endogenous CSPα is present in the lysosome-enriched fractions and co-localizes with lysosome 
markers in soma, neurites and synaptic boutons. Overexpression of CSPα wild-type (WT) decreases 
lysotracker signal, secreted lysosomal enzymes and SNAP23-mediated lysosome exocytosis. CSPα 
WT, mutant and aggregated CSPα are degraded mainly by the ALP but this disease-causing mutation 
exhibits a faster rate of degradation. Co-expression of both WT and mutant CSPα cause a block in the 
fusion of autophagosomes/lysosomes. Our data suggest that aggregation‐dependent perturbation of 
ALP function is a relevant pathogenic mechanism for AD-ANCL and supports the use of AFSM or CSPα 
aggregation as biomarkers for drug screening purposes.

The Neuronal Ceroid Lipofuscinoses (NCLs, also referred as Batten’s disease) are the most common (~1 in 12,500 
births) inherited childhood neurodegenerative diseases1. Clinical symptoms and neuropathological changes 
appear over a wide range of age from birth to early adulthood. The intracellular accumulation of autofluorescent 
storage material (AFSM) regardless of the disease-causing protein or its subcellular localization is the hallmark 
of NCL.

Autosomal dominant, adult-onset neuronal ceroid lipofuscinosis (AD-ANCL) (MIM #162350) is a rapidly 
progressive neurodegenerative disease characterized by early onset dementia, seizures, motor impairment and is 
invariably fatal2, 3. AD-ANCL is caused by a single-nucleotide variation (c.344 T > G) or an in-frame single codon 
deletion (c.346_348 delCTC) in one allele of the DNAJC5/NCL4B gene4–6. The DNAJC5 gene encodes cysteine 
string protein alpha (CSPα). Currently, the effect of mutations in CSPα on lysosome function and accumulation 
of AFSM remains to be clarified. Most known CSPα functions are due to its co-chaperone or chaperone activity. 
However, AD-ANCL-causing mutations (p.L115R or p.L116del) are located in the cysteine string domain5, 6 and 
both retain chaperone activity7. For the last 20 years, studies primarily in neurons from CSPα-deficient mice have 
suggested that CSPα chaperone function is exclusively located at the synapse8–10. However, CSPα has been found 
in lysosome-enriched fractions11–14 and involved in the pathogenesis of Lysosomal storage diseases (LSDs)14, 15. 
Furthermore, a recent proteomic analysis of brain tissue from terminal AD-ANCL patients revealed significant 
changes in lysosomal proteins rather than synaptic proteins16. In addition, a brain from a pre-symptomatic CSPα 
mutation carrier revealed that accumulation of AFSM and lysosome dysfunction precedes synaptic degenera-
tion17. These results question the current dogma about the exclusive synaptic function of CSPα.
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The cellular system mediating CSPα degradation is currently unknown. A recent report suggests that CSPα 
is degraded mainly by the ubiquitin-proteasome system (UPS)15. However, the UPS degrades mainly short-lived 
proteins and CSPα is a long-lived protein18. In addition, there is no canonical ubiquitylation site in CSPα19 and 
proteasome inhibitors have had no effect on CSPα levels in different cell types20, 21. Brain tissue from terminal 
AD-ANCL cases exhibit a significant reduction in the levels of CSPα5, 22, 23. It is not clear if, or how mutant CSPα 
reduces the levels of wild-type CSPα in AD-ANCL patients23, 24.

Mutant CSPα is more hydrophilic than wild-type and acquires an intrinsic propensity to self-assemble into 
aggregates17. Mutant and wild type CSPα interact to form high molecular weight aggregates7, 22, 25. However, the 
link between aggregates, AFSM and lysosomes is still unclear.

Here, we demonstrate that primary dermal fibroblasts from asymptomatic mutation carriers recapitulate fea-
tures of AD-ANCL in vitro including AFSM accumulation, CSPα-p.L115R/CSPα-WT aggregates and the struc-
tural and functional lysosomal dysfunction found in the brains of AD-ANCL patients. We show that the levels 
of CSPα-p.L115R/CSPα-WT aggregates correlate with accumulation of AFSM and both are susceptible to phar-
macological intervention in vitro. In summary, these data suggest a novel role of CSPα in lysosome physiology, 
a mechanistic link between AFSM and CSPα-p.L115R/CSPα-WT aggregates and a potential new treatment for 
AD-ANCL through the modulation of the ALP.

Results
Lysosome dysfunction in AD-ANCL in vivo and in vitro.  Post-mortem analysis of the brains of 
AD-ANCL patients reveals marked enlargement of the cortical pyramidal neurons containing typical AFSM 
compared to a control sample (Fig. 1A). In addition, two different brain regions from three terminal AD-ANCL 
patients revealed significant secondary elevations (p ≤ 0.01) in the activity of the lysosomal enzymes palmi-
toyl-protein thioesterase 1 (PPT-1), β-glucuronidase (β-gluc,), and β-hexosaminidase (β-Hexa) (Fig. 1B). 
The levels of membrane-associated lysosomal proteins LAMP-1, LAMP-2 and V-ATPase B1/2 (Fig. 1C), and 

Figure 1.  Lysosome dysfunction in AD-ANCL in vivo and in vitro. (A) Representative images of AFSM in 
cortical pyramidal neurons from an AD-ANCL patient (right panel) and control (left panel). (B) Graph shows 
the lysosomal enzyme activities of PPT-1, β-gluc and β-Hexa measured in the parietal lobe and occipital lobe 
from three AD-ANCL patients compared to the same brain regions from three controls. Enzymatic activity 
was normalized to the total protein and pooled by genotype. (Mean ± SEM of quantification by triplicate 
in each individual). **p ≤ 0.01; ***p ≤ 0.001. (C) Representative Western blots showing the expression of 
LAMP-1, LAMP-2 and V-ATPase B1/2 in occipital lobe from three controls and three AD-ANCL patients. 
Transmembrane proteins are normalized to Flotillin. The histogram shows the quantification of LAMP-1, 
LAMP-2 and V-ATPase B1/2 detected by immunoblot relative to control levels. (D) Representative Western 
blots illustrate the expression of LAMP-1, V-ATPase B1/2, Rab7 and SNAP23 in fibroblasts from controls and 
asymptomatic CSPα mutation carriers. Transmembrane proteins are normalized to Flotillin. The histogram 
shows the quantification of LAMP-1, V-ATPase B1/2, Rab7 and SNAP23 detected by immunoblot relative to 
control levels. (E) Graph shows the lysosomal enzyme activities of PPT-1, β-gluc and β-Hexa in the culture 
medium (right panel) or in the cell homogenates (left panel) of two CSPα mutation carriers relative to cells from 
two age-matched control individuals. Enzymatic activity was normalized to the total intracellular protein and 
pooled by genotype. (Mean ± SEM of quantification by triplicate in each individual). **p ≤ 0.01; ***p ≤ 0.001.
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intraluminal proteins including Saposin D and PPT-1 are increased in AD-ANCL patients in the occipital lobe 
(Supplementary Fig. 1A). There is an increase in both transmembrane and soluble lysosomal proteins across dif-
ferent brain regions (frontal, parietal, temporal and cerebellum) among the AD-ANCL patients (Data not shown). 
Unexpectedly, cultured fibroblasts from CSPα mutation carriers display significantly increased levels of V-ATPase 
B1/2, LAMP-1 (Fig. 1D), and intraluminal Saposin D proteins (Supplementary Fig. 1B). In addition, there is an 
increase in SNAP23 levels and reduced levels of Rab7 in fibroblasts from CSPα mutation carriers (Fig. 1D). There 
is also intracellular elevations (p ≤ 0.01) in β-Hexa, PPT-1 and β-gluc activities (Fig. 1E). Interestingly, the levels 
of lysosomal enzymes were elevated in the medium to a greater extent than in the cells themselves (Fig. 1E).

There is a correlation between AFSM accumulation and CSPα.pL115R aggregation.  Fibroblasts 
from human CSPα-p.L115R carriers exhibit a two-fold increase in AFSM (median fluorescence intensity [mfi]) 
compared to cells from age-matched controls (Fig. 2A). There is also a six-fold (0.67% vs. 3.89%) increase in 
the number of cells with AFSM in fibroblasts from asymptomatic CSPα mutation carriers (Fig. 2A). There are 
progressive elevations in AFSM, from 1.7 to 2.1-fold (n = 8, p = 0.002) as the cells age in vitro (Fig. 2B). The differ-
ences in AFSM accumulation are attributed mainly to the days in culture (67.8% of the total variation, p = 0.0001) 
but, are also due to the genotype (26.6% of the total variation, p = 0.0001). The rate of AFSM accumulation 
(calculated as the slope of the percentage of cells with autofluorescence higher than average) is 1.5-fold faster in 

Figure 2.  Time course of AFSM and CSPα.pL115R aggregate accumulation in vitro. (A) Representative images 
of AFSM in primary dermal fibroblasts from an asymptomatic CSPα mutation carrier (top, right panel) and 
control (top, left panel). The histogram shows the quantitative analysis of AFSM by flow cytometry. (B) The 
rate of AFSM accumulation (calculated as the slope of the percentage of cells with autofluorescence). The data 
points were fitted using linear regression analysis. (C) Representative Western blot showing the expression 
of CSPα monomers (M-CSPα) and its aggregates (Aggregates) in human fibroblasts from CSPα mutation 
carriers and controls. The histogram shows the quantification of CSPα monomers (M-CSPα) and CSPα 
aggregates (Aggregates) detected by immunoblot relative to control levels. Proteins are normalized to β-actin. 
(D) Representative Western blot showing the levels of CSPα monomers (M-CSPα) and CSPα aggregates 
(Aggregates) after 8 days in culture normalized to β-actin. The histogram shows the quantification of CSPα 
monomers (M-CSPα) and CSPα aggregates (Aggregates) detected by immunoblot relative to protein levels on 
day zero. Proteins are normalized to β-actin.
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CSPα-p.L115R carriers than in controls (Fig. 2B). There is a reduction in the level of CSPα monomers and an 
accumulation of CSPα aggregates compared to age-matched controls (Fig. 2C). Fibroblasts from asymptomatic 
CSPα mutation carriers exhibit a time-dependent increase in the levels of mutant CSPα aggregates (Fig. 2D).

CSPα and its aggregates are located to the lysosome.  CSPα exhibits weak plasma membrane local-
ization, diffuse cytoplasmic distribution and strong perinuclear immunoreactivity in both normal human der-
mal fibroblasts (Fig. 3A) and primary fibroblasts from a wild type mouse transduced with an empty lentiviral 
vector (Fig. 3C). Dual immunostaining revealed that a fraction of endogenous CSPα co-localizes with the lys-
osome (Fig. 3A,C) but does not co-localize with ER or Golgi markers (Supplementary Fig. 1C,D). In a differ-
entiated neuron-like cell (N2A), CSPα exhibits a punctate pattern through the neurites and an enrichment in 
synaptic boutons, which is compatible with its localization in vesicles. In both N2A cells and primary cortical 
neurons, a fraction of endogenous CSPα co-localizes with LAMP2 in the soma, neurites and synaptic boutons 
(Fig. 3E,G and Supplemental Fig. 1E,G). Subcellular fractionation showed that a significant proportion of CSPα 
co-sediments with another lysosome marker (LAMP1) in three different cell types (Fig. 3B,D,F). Mutant CSPα-p.
L115R aggregates are also found in the lysosome-enriched fractions of primary fibroblasts from CSPα mutation 
carriers and from CSPα-deficient fibroblasts stably expressing CSPα-p.L115R or expressing both CSPα-WT plus 
CSPα-p.L115R (Fig. 3H).

Lysosome dysfunction caused by CSPα mutation p.L115R is recapitulated in vitro.  Primary 
fibroblasts from a wild-type mouse stably expressing CSPα-p.L115R from a lentiviral vector resulted in accumu-
lation of CSPα aggregates (Fig. 4A), higher levels of lysosome-associated proteins (V-ATPase B1/2 and LAMP-1) 
(Fig. 4A) and greater transcript levels of LAMP-1 and LAMP-2 (Fig. 4B) than found in cells transduced with the 
empty vector. Significantly higher levels (~26%, p = 0.01) of LysoTracker signal (Fig. 4C), significant elevations 
of intracellular and secreted lysosomal enzymes (Fig. 4D,E) and significant increases in the amount of lysosome 
markers translocated to the plasma membrane (Fig. 4F) were found in cells expressing CSPα-p.L115R compared 
to the empty vector.

In contrast, overexpression of CSPα-WT results in no changes in the levels of lysosomal proteins (Fig. 4A) 
but higher levels of transcripts of LAMP-1 and LAMP-2 (Fig. 4B). In addition, there were significant reductions 
(~20%, p = 0.03) of LysoTracker signal (Fig. 4C), intracellular and secreted lysosomal enzymes (Fig. 4D,E) and 
the amount of lysosome markers translocated to the plasma membrane (Fig. 4F) compared to cells expressing the 
empty vector.

Both CSPα-WT and CSPα-p.L115R are required for lysosome dysfunction.  To date, lysosomal 
dysfunction has not been reported in CSPα-deficient mice24. To isolate the effects of CSPα-p.L115R, fibroblasts 
from the CSPα-deficient mouse were transduced with an empty lentiviral vector or lentiviral vectors expressing 
CSPα-WT, CSPα-p.L115R or both CSPα-WT and p.L115R. Higher levels of CSPα aggregates, lysosome associ-
ated proteins (V-ATPase B1/2 and LAMP-1) (Fig. 5A) and transcript levels of LAMP-1 and LAMP-2 were found 
in cells co-expressing CSPα-p.L115R and CSPα-WT (Fig. 5B). Co-expression of CSPα-p.L115R and CSPα-WT 
was the only condition that resulted in significant elevations (~56%, p = 0.001) of LysoTracker signal (Fig. 5C) 
and both intracellular and secreted lysosomal enzymes (Fig. 5D,E).

Expression of CSPα-p.L115R alone resulted in the accumulation of CSPα aggregates but lower levels of 
CSPα monomers compared to cells expressing CSPα-WT alone (Fig. 5A). There were no significant differences 
in proteins (Fig. 5A) or transcript levels of lysosomal markers (Fig. 5B), levels of LysoTracker signal (Fig. 5C) or 
intracellular and secreted lysosomal enzymes between fibroblasts expressing CSPα-p.L115R or the empty vector 
(Fig. 5D,E).

Overexpression of CSPα-WT did not change the levels of proteins (Fig. 5A) or transcripts of lysosomal mark-
ers (Fig. 5B) but resulted in a significantly reduced (~34%, p = 0.01) LysoTracker signal (Fig. 5C) and intracellular 
and secreted lysosomal enzymes (Fig. 5D,E) compared to cells expressing either CSPα-p.L115R or empty vector.

Wild-type and mutant CSPα.pL115R and its aggregates are degraded by the macroautophagy/
lysosomal pathway.  In order to understand the degradative pathway of wild-type CSPα, N2A cells were 
treated with the protein synthesis inhibitor (Cycloheximide, CHX) plus proteasome (Lactacystin) or lysosome 
(NH4/E64d/Leupeptin) inhibitors and collected at 6, 12 and 24 hours. There is a significant reduction in the levels 
of endogenous CSPα in cells treated with CHX alone or CHX plus Lactacystin (Fig. 6A). In contrast, lysosome 
inhibitors significantly prevented the degradation of endogenous CSPα compared with either CHX alone or 
CHX plus lactacystin (Fig. 6A). The effect of lysosome inhibitors was greater in the membrane-bound (Fig. 6B) 
compared to the soluble fraction of endogenous CSPα (Fig. 6C). Similarly, CSPα-deficient cells stably expressing 
CSPα-p.L115R treated with lysosome or macroautophagy inhibitors (Bafilomycin A1) prevented the degradation 
of CSPα-p.L115R monomers and induced a further accumulation of mutant CSPα-p.L115R aggregates (Fig. 6D). 
The levels of p62 and LC3-II proteins confirm the activation or inhibition of the macroautophagy/lysosomal 
pathway (Fig. 6D).

To confirm that the macroautophagy/lysosomal pathway is the primary pathway of degradation of CSPα, 
CSPα-deficient fibroblasts stably expressing CSPα-WT treated with serum withdrawal (SW) for 24 hours exhib-
ited a significant reduction (44%, p < 0.01) in CSPα-WT levels (Fig. 6E). In contrast, the levels of CSPα-p.L115R 
were barely detectable (10%, p < 0.01) after 24 hours under SW (Fig. 6E). These results suggest that the degrada-
tion rate of CSPα-p.L115R is faster than CSPα-WT (Fig. 6E).

Both CSPα-p.L115R monomers and aggregates were reduced under SW (Fig. 6F). However, the presence of 
lysosome inhibitors prevented the reduction of both CSPα-p.L115R monomers and aggregates (Fig. 6F) due to 
the SW.

http://1C,D
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Figure 3.  CSPα and its aggregates localize to the lysosome. (A) Representative high magnification merged 
(overlap, yellow) pictures of normal human primary fibroblasts stained for endogenous CSPα (CSPα, red) 
and LAMP-2 (LAMP-2, green). Graph shows the co-localization index (Pearson correlation) between the 
green (LAMP-2) and the red (CSPα) channels within the boxed area. The graph also shows the Pearson 
correlation between (CSPα, red) and Calnexin (green) and Giantin-1 (green) (See Supplemental Fig. 1C,D). (B) 
Representative Western blot of LAMP-1 and CSPα from the total cell homogenates (T) and lysosome enriched (L) 
fractions of normal human fibroblasts. (C) Representative high magnification merged (overlap, yellow) pictures 
of murine primary fibroblasts stained for endogenous CSPα (CSPα, red) and LAMP-2 (LAMP-2, green). Graph 
shows the co-localization index (Pearson correlation) between the green (LAMP-2) and the red (CSPα) channels 
within the boxed area. The graph also shows the Pearson correlation between (CSPα, red) and Calnexin (green) 
and Giantin-1 (green) (See Supplemental Fig. 1C,D). (D) Representative Western blot of LAMP-1 and CSPα 
of the total cell homogenates (T) and lysosome enriched (L) fractions of murine fibroblasts. (E) Representative 
high magnification merged (overlap, yellow) pictures of N2A cells stained for endogenous CSPα (CSPα, red) 
and LAMP-2 (LAMP-2, green). Graph shows the co-localization index (Pearson correlation) between the green 
(LAMP-2) and the red (CSPα) channels both in the soma and neurites (See Supplemental Fig. 1E) within the 
boxed area. (F) Representative Western blot of LAMP-1 and CSPα of the total cell homogenates (T) and lysosome 
enriched (L) fractions of N2A cells. (G) Representative high magnification merged (overlap, yellow) pictures of 
primary cortical neurons stained for endogenous CSPα (CSPα, red) and LAMP-2 (LAMP-2, green). Graph shows 
the co-localization index (Pearson correlation) between the green (LAMP-2) and the red (CSPα) channels both 
in the soma and neurites (See Supplemental Fig. 1F) within the boxed area. (H) Representative Western blot of 
LAMP-1 and CSPα monomers (M-CSPα) and CSPα aggregates (Aggregates) from the total cell homogenates (T) 
and the lysosome-enriched fraction (L) of primary fibroblasts from two age-matched controls, two asymptomatic 
CSPα mutation carriers and from CSPα-deficient fibroblasts stably expressing CSPα-p.L115R (CSPα−/− 
p.L115R) or both CSPα-WT plus CSPα-p.L115R (CSPα−/− p.L115R + WT).
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Serum withdrawal induced a significant reduction in both monomeric and aggregated forms of CSPα in 
the cytosolic and membrane-bound fractions in CSPα-deficient cells stably expressing CSPα-p.L115R or both 
CSPα-WT plus CSPα-p.L115R (Supplementary Fig. 3B).

Decreased AFSM and CSPα aggregates in response to pharmacological treatment.  Human 
fibroblasts typically exhibit high levels of LC3-II levels under basal conditions26. There were no significant differ-
ences in LC3-I or LC3-II levels under basal conditions in fibroblasts from AD-ANCL patients compared to con-
trols (Fig. 7A). However, there was a reduction in p62 levels in asymptomatic CSPα mutation carriers compared 
to controls (Fig. 7A).

N2A cells stably expressing CSPα-p.L115R accumulate CSPα-p.L115R aggregates, have increased levels 
of LAMP1, SNAP23 and LC3-II proteins and lower p62 protein levels compared to untransduced N2A cells 
(Fig. 7B).

Cells from CSPα mutation carriers treated with lysosome and macroautophagy inhibitors have significant 
increases in AFSM accumulation (Fig. 7C). Both lysosome and macroautophagy inhibitors also led to an increase 

Figure 4.  Lysosome dysfunction depends on the CSPα.pL115R mutation. (A) Representative Western blots 
illustrate the expression of LAMP-1, V-ATPase B1/2, CSPα monomers (M-CSPα) and CSPα aggregates 
(Aggregates) in fibroblasts from a wild-type mouse stably expressing nothing (Empty), CSPα-WT (WT) 
or CSPα-p.L115R (p.L115R). The histogram shows the quantification of LAMP-1, V-ATPase B1/2, CSPα 
monomers (M-CSPα) and CSPα aggregates (Aggregates) detected by immunoblot relative to protein levels 
in cells expressing the Empty vector. Proteins are normalized to β-actin. (B) The histogram shows the 
quantification of the transcript levels of LAMP-1 and LAMP-2 in fibroblasts from a wild-type mouse stably 
expressing CSPα-WT (WT) or CSPα-p.L115R (p.L115R) normalized to levels found in cells expressing 
nothing (Empty). Values represent the mean ± S.E. of three independent experiments *p = 0.02; **p = 0.01. 
(C) Lysotracker signal in primary fibroblasts from a wild-type mouse stably expressing nothing (Empty), 
CSPα-WT (WT) or CSPα-p.L115R (p.L115R). Values represent the mean ± S.E. of three independent 
experiments *p = 0.03; **p = 0.01. (D) Graph shows the activities of the lysosomal enzymes, β-gluc, β-Hexa 
and PPT-1 measured in cell homogenates of a wild-type mouse stably expressing nothing (Empty), CSPα-WT 
(WT) or CSPα-p.L115R (p.L115R). Enzymatic activity was normalized to the total intracellular protein. Values 
represent the mean ± S.E. of three independent experiments compared to the levels of cells transduced with 
empty vector ***, p ≤ 0.001 . (E) Graph shows the lysosomal enzyme activities of β-gluc, β-Hexa and PPT-1 
measured in the culture medium. Enzymatic activity was normalized to the total intracellular protein. Values 
represent the mean ± S.E. of three independent experiments compared to the levels of cells transduced with 
empty vector ***, p ≤ 0.001. (F) Non-permeabilized surface LAMP-1 levels analyzed by flow cytometry using 
LAMP1-1DB4 (anti-intraluminal) in primary fibroblasts from a wild-type mouse stably expressing nothing 
(Empty), CSPα-WT (WT) or CSPα-p.L115R (p.L115R). Values represent the mean ± S.E. of three independent 
experiments compared to the levels of cells transduced with empty vector *, p = 0.02; **, p = 0.0047.
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in mutant CSPα aggregates and increased levels of both LC3-II and p62, confirming that the autophagy flux is 
intact in fibroblasts from AD-ANCL patients (Fig. 7D).

In contrast, fibroblasts from asymptomatic CSPα mutation carriers treated with serum withdrawal (SW) or 
Torin 1 (macroautophagy activator) for 24 hours resulted in a significant reduction in AFSM (Fig. 7E) and mutant 
CSPα-p.L115R aggregates (Fig. 7F). The presence of macroautophagy inhibitors prevented the reduction of both 
AFSM (Fig. 7E) and CSPα aggregates (Fig. 7F) due to the SW. The reduction in p62 levels confirms the activation 
of the macroautophagy pathway.

NtBuHA synergizes with SW to reduce both CSPα-p.L115R/CSPα-WT aggregates and AFSM.  
It was recently shown that CSPα aggregation depends on its palmitoylation status25 and that brain tissue from 
terminal AD-ANCL patients exhibit aberrant PPT-1 activity16. PPT-1 is a lysosomal hydrolase that removes 
thioester-linked fatty acyl groups such as palmitate from cysteine residues in proteins including CSPα in vitro16. 
Recently, a non-toxic derivative of hydroxylamine which mimics PPT-1 action, N-(tert-Butyl) hydroxylamine 
(NtBuHA), reduced the AFSM in lymphocytes and fibroblasts from patients with infantile NCL27. Here, NtBuHA 
failed to change the palmitoylation status of CSPα monomers, as evidenced by a lack of a shift in mobility of 
M-CSPα on a Western blot (Fig. 8B,C). However, the reduction of AFSM, CSPα monomers and CSPα aggregates 
in primary fibroblasts from asymptomatic CSPα mutation carriers induced by serum withdrawal was augmented 
by NtBuHA in a dose-dependent manner (Fig. 8A,B). This finding is replicated in CSPα-deficient cells stably 
expressing CSPα-p.L115R plus CSPα-WT treated with NtBuHA under serum withdrawal (Fig. 8C).

Figure 5.  CSPα mutation p.L115R alone failed to cause lysosome dysfunction. (A) Representative Western 
blots illustrate the expression of LAMP-1, V-ATPase B1/2, CSPα monomers (M-CSPα) and CSPα aggregates 
(Aggregates) in fibroblasts from a CSPα-deficient mouse stably expressing nothing (Empty), CSPα-WT (WT), 
CSPα-p.L115R (p.L115R) or both CSPα-WT plus CSPα-p.L115R (WT+p.L115R). The histogram shows the 
quantification of LAMP-1, V-ATPase B1/2, CSPα monomers (M-CSPα) and CSPα aggregates (Aggregates) 
detected by immunoblot relative to protein levels in cells expressing the Empty vector. Proteins are normalized 
to β-actin. (B) The histogram shows the quantification of the transcript levels of LAMP-1 and LAMP-2 in 
fibroblasts from a CSPα-deficient mouse stably expressing CSPα-WT (WT), CSPα-p.L115R (p.L115R) or both 
CSPα-WT plus CSPα-p.L115R (WT+p.L115R) normalized to levels found in cells expressing the Empty vector. 
Values represent the mean ± S.E. of three independent experiments compared to the levels of cells transduced 
with empty vector **, p ≤ 0.01. (C) Lysotracker signal in primary fibroblasts from a CSPα-deficient mouse 
stably expressing nothing (Empty), CSPα-WT (WT), CSPα-p.L115R (p.L115R) or both CSPα-WT plus 
hCSPα-p.L115R (WT+p.L115R). Values represent the mean ± S.E. of three independent experiments 
compared to the levels of cells transduced with empty vector **, p = 0.01; ***, p = 0.001. (D) Graph shows 
the activity of the lysosomal enzymes, β-gluc, β-Hexa and PPT-1 measured in cell homogenates. Enzymatic 
activity was normalized to the total intracellular protein. Values represent the mean ± S.E. of three independent 
experiments compared to the levels of cells transduced with empty vector *, p < 0.05; **, p < 0.01. (E) Graph 
shows the activity of the lysosomal enzymes, β-gluc, β-Hexa and PPT-1 measured in the culture medium. 
Enzymatic activity was normalized to the total intracellular protein. Values represent the mean ± S.E. of three 
independent experiments compared to the levels of cells transduced with empty vector *, p < 0.05; **, p < 0.01.
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Discussion
We demonstrate that primary dermal fibroblasts recapitulate features of AD-ANCL in vitro including AFSM 
accumulation and CSPα-p.L115R/CSPα-WT aggregates found in the brains of AD-ANCL patients. In addi-
tion, both CSPα-p.L115R/CSPα-WT aggregates and AFSM are susceptible to pharmacological intervention  
in vitro. The macroautophagy activators (serum withdrawal and ATP-competitive mTOR kinase inhibitor, Torin 1)  

Figure 6.  Autophagy-Lysosomal degradation of CSPα and CSPα.pL115R aggregates. (A) Representative 
Western blot displaying the levels of endogenous CSPα monomers (M-CSPα) in N2A cells treated with 
CHX, CHX plus Lactacystin or CHX plus NH4 + E64d + Leupeptin for 6, 12 and 24 hours. The graph shows 
the quantification of CSPα monomers detected by immunoblot. Values represent the mean ± S.E. of three 
independent experiments compared to the levels of cells treated with CHX alone *, p = 0.05; **, p = 0.01. (B) 
Representative Western blot of CSPα monomers (CSPα) in the membrane-enriched fraction (Membrane) in 
N2A cells treated with CHX, CHX plus Lactacystin or CHX plus NH4 + E64d + Leupeptin for 24 hours. The 
histogram shows the quantification of CSPα monomers detected by immunoblot relative to protein levels in 
untreated N2A cells. Proteins are normalized to Flotillin. (C) Representative Western blot of CSPα monomers 
(CSPα) in the cytosolic/soluble (Soluble) fraction in N2A cells treated with CHX, CHX plus Lactacystin or 
CHX plus NH4 + E64d + Leupeptin for 24 hours. The histogram shows the quantification of CSPα monomers 
detected by immunoblot relative to protein levels in untreated N2A cells. Proteins are normalized to HSC70. 
(D) Representative Western blot displaying the levels of CSPα monomers (M-CSPα) and CSPα aggregates 
(Aggregates) in fibroblasts from a CSPα-deficient mouse stably expressing CSPα-p.L115R treated with 
CHX, CHX plus Lactacystin, CHX plus NH4 + E64d + Leupeptin or CHX plus Bafilomycin A1 for 24 hours. 
The histogram shows the quantification of p62, LC3-II, CSPα monomers (M-CSPα) and CSPα aggregates 
(Aggregates) detected by immunoblot relative to protein levels in untreated cells. Proteins are normalized 
to β-actin. (E) Representative Western blot showing the levels of CSPα monomers (M-CSPα) in primary 
fibroblasts from a CSPα-deficient mouse stably expressing hCSPα-WT or hCSPα-p.L115R under serum 
withdrawal (SW) for 3, 6, 12 and 24 hours. The graph shows the quantification of CSPα monomers detected 
by immunoblot relative to protein levels in untreated cells at time = 0 h. Proteins are normalized to β-actin. 
(F) Representative Western blot showing the levels of CSPα monomers (M-CSPα) and CSPα aggregates 
(Aggregates) in fibroblasts from a CSPα-deficient mouse stably expressing CSPα-p.L115R (CSPα−/− p.L115R) 
under Serum withdrawal (SW) or SW + E64d + Leupeptin (SW + E64d/Leup) for 2, 4 and 6 hours. The graph 
shows the quantification of CSPα aggregates detected by immunoblot relative to protein levels in untreated cells 
at time = 0 h. Proteins are normalized to β-actin.
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reduced both CSPα-p.L115R/CSPα-WT aggregates and AFSM. This reduction is synergized by the addition 
of N-tert-Butyl Hydroxylamine. These results open a new avenue for possible treatment of this fatal disease. 
However, it is not clear, why there is no change in the palmitoylation status CSPα monomers in cells treated with 
NtBuHA. CSPα aggregation is induced and maintained by palmitoylation25. Here, we used the NtBuHA con-
centrations reported by Sarkar C et al. that are able to cleave thioester linkages in [14C]palmitoyl~CoA without 

Figure 7.  AFSM and CSPα aggregate accumulation are modulated by the autophagy-lysosome pathway. 
(A) Baseline Western blot of p62 and LC3-I/II in primary fibroblasts from an age-matched control and an 
asymptomatic CSPα mutation carrier. The histogram shows the quantification of p62 and LC3-II detected 
by immunoblot relative to protein levels in control cells. There are no changes in HSC70 levels. Proteins are 
normalized to β-actin. (B) Representative Western blot of Lamp1, CSPα monomers (M-CSPα) and CSPα 
aggregates (Aggregates), HSC70, p62, LC3-I/II and SNAP23 in untransduced (UT) and stably expressing 
CSPα-p.L115R (p.L115R) N2A cells. The histogram shows the quantification of p62, HSC70, LAMP1, SNAP23, 
LC3-I/II, Aggregates and CSPα monomers detected by immunoblot relative to protein levels in untrandusced 
(UT) N2A cells. Proteins are normalized to β-actin. (C) Quantitative analysis by flow cytometry of AFSM in 
primary fibroblasts from an asymptomatic CSPα mutation carrier maintained at 2% FBS for 6 days in culture 
and treated with NH4 + E64d + Leupeptin (NH4 + E64 + Leup) or Bafilomycin A1 relative to untreated cells. 
Values represent the mean ± S.E. of three independent experiments compared to the levels of untreated cells **, 
p < 0.01. (D) Representative Western blot of CSPα monomers (M-CSPα), CSPα aggregates (Aggregates), 
p62 and LC3-I/II in primary fibroblasts from an asymptomatic CSPα mutation carrier treated with 
NH4 + E64d + Leupeptin (NH4 + E64 + Leup) or Bafilomycin A1 (Baf A1) relative to untreated cells. Upper 
bands represent a longer exposure of the aggregates (Aggregates*). The histogram shows the quantification 
of CSPα monomers (M-CSPα), CSPα aggregates (Aggregates), p62 and LC3-I/II detected by immunoblot 
relative to protein levels in untreated cells. Proteins are normalized to β-actin. (E) Quantitative analysis by flow 
cytometry of AFSM in primary fibroblasts from an asymptomatic CSPα mutation carrier maintained at 10% 
FBS for 6 days in culture and treated with 0% serum (SW), Torin-1 or SW plus Baf A1 for 24 hours compared 
to the levels of untreated cells *, p < 0.05; **, p < 0.01. (F) Representative Western blot of CSPα monomers 
(M-CSPα-), CSPα aggregates (Aggregates), p62 and LC3-I/II in primary fibroblasts from asymptomatic CSPα 
mutation carrier treated with 0% FBS, Torin-1 or SW plus Baf A1 for 24 hours. Upper bands represent a longer 
exposure of the aggregates (Aggregates*). The histogram shows the quantification of CSPα monomers, CSPα 
aggregates (Aggregates), p62 and LC3-I/II detected by immunoblot relative to protein levels in untreated cells *, 
p < 0.05; **, p < 0.01. Proteins are normalized to β-actin.
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affecting the cell survival28. These NtBuHA concentrations reduced the ASFM and CSPα aggregates in a synergis-
tic manner with macroautophagy activation in primary fibroblasts from CSPα mutation carriers. However, CSPα 
is one of the most highly palmitoylated proteins; its cysteine string domain contains 12–15 cysteine residues, 
each one of which acts as a palmitoylation site24. Thus is possible that the concentration and the time of expo-
sure to NtBuHA used in this study do not affect the palmitoylated form of CSPα monomers but preferentially 
CSPα aggregates. Interestingly, Nosková L et al. reported that CSPα monomers were detectable in their specific 
AD-ANCL patient brain samples only in the presence of a depalmitoylating agent (Hydroxylamine)5. Two inde-
pendent groups suggested that chemical depalmitoylation solubilized the CSPα aggregates, which resulted in an 
increase in the pool of CSPα monomers5, 25. The preferential effect of NtBuHA on CSPα aggregates makes it more 
attractive from a therapeutic perspective as we show it affects the pathogenic aggregates without affecting the 
neuroprotective monomer form of CSPα.

The levels of AFSM are inversely correlated with behavioral changes and response to therapies and directly 
correlated with severity of clinical and neuropathological presentation of the disease in at least two murine NCL 
models29–31. Recently, AFSM in cultured lymphocytes and fibroblasts from INCL patients was successfully used 
in a cell-based screening that resulted in the identification of a small molecule drug that is currently being used in 
clinical trials for INCL patients27. AFSM represents a rare opportunity for therapeutic development as it exhibits 
several targetable aspects such as specificity for NCLs, is an easily quantifiable phenotype, involves several steps 
in its formation and degradation and is a biomarker that correlates with clinical disease29. These characteristics 
provide multiple potential sites for pharmacological intervention. Resolution of AFSM detected in cultured cells 
from NCL patients can be a reliable indicator of treatment efficacy for some LSDs32. Thus, we propose the use 
of AFSM as a quantitative fluorometric trait in cellular models for testing therapy intervention for AD-ANCL.

CSPα’s long half-life18, absence of canonical ubiquitylation sites19, localization at the autophagosome and its 
responsiveness to treatment with Rapamycin33 suggest that it might be degraded by the autophagy-lysosomal 
pathway. In addition, published reports on the degradation of CSPα by the UPS are contradictory15, 20, 21. There 

Figure 8.  NtBuHA enhances the reduction of CSPα aggregates and AFSM induced by serum withdrawal. 
(A) Quantitative analysis by flow cytometry of AFSM in primary fibroblasts from an asymptomatic CSPα 
mutation carrier treated with increasing doses of N-(tert-Butyl)hydroxylamine (NtBuHA) for 24 hours in the 
absence of serum compared to the levels of untreated cells **, p < 0.01. (B) Representative Western blot of 
CSPα monomers (M-CSPα) and CSPα aggregates (Aggregates) in cultured fibroblasts from an asymptomatic 
CSPα mutation carrier treated with increasing doses of NtBuHA for 24 hours in absence of serum. Upper bands 
represent a longer exposure of the aggregates (Aggregates*). The histogram shows the quantification of CSPα 
monomers (M-CSPα) and CSPα aggregates (Aggregates) detected by immunoblot relative to protein levels 
in untreated cells. Proteins are normalized to β-actin. (C) Representative Western blot of CSPα monomers 
(M-CSPα) and CSPα aggregates (Aggregates) in homogenates from CSPα-deficient mouse fibroblasts stably 
expressing both CSPα-WT plus CSPα-p.L115R (CSPα−/− p.L115R + WT) treated with increasing doses of 
NtBuHA for 24 hours in the absence of serum. The histogram shows the quantification of CSPα monomers 
(M-CSPα) and CSPα aggregates (Aggregates) detected by immunoblot relative to protein levels in untreated 
cells. Proteins are normalized to β-actin.
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are only two papers addressing the UPS degradation of CSPα in wild-type primary neurons15 or neuron-like cell 
lines20 with opposite results. In addition, Sambri et al. reported that proteasome inhibition prevented the degra-
dation of CSPα (mostly depalmitoylated in this model) to a greater extent than lysosome inhibitors in primary 
neurons from a murine model of LSD (MPS-IIIA)15. Here, we demonstrate that endogenous CSPα co-localizes 
with lysosomal proteins and is found in lysosome-enriched fractions from three different cell types, including a 
neuron-like cell line and primary cortical neurons. These findings are consistent with previous reports by inde-
pendent groups using various sub-cellular fractionation techniques11–14. In addition, we provide evidence that 
the ALP is primarily responsible for the degradation of endogenous CSPα-WT, mutant CSPα-p.L115R and its 
aggregates in both fibroblasts and a neuron-like cell line. All together, these results suggest that the contribution 
of the UPS and ALP to the degradation of endogenous CSPα-WT may depend on the specificity of the UPS and 
ALP inhibitor used, cell type, CSPα palmitoylation status and cell state (diseased vs normal condition).

We also show that the turnover rate of CSPα-p.L115R by the ALP is faster than CSPα-WT. These findings, 
along with the intrinsic propensity of CSPα-p.L115R to self-assemble into insoluble aggregates account for the 
reduced CSPα monomer levels found in fibroblasts and brain homogenates of AD-ANCL patients6, 7, 22, 25. This 
further supports the loss-of-CSPα function in AD-ANCL due to a haploinsufficiency as one of the components 
of the disease mechanism. In the absence of co-chaperone CSPα, the resulting misfolded partners are degraded 
by the proteasome34. Brain homogenates from terminal AD-ANCL patients exhibit significant reductions in 
SNARE-complex - forming presynaptic proteins (e.g SNAP-25)17. Interestingly, there is a compensatory increase 
in proteasome activity in the brains of AD-ANCL patients (Supplementary Fig. 3C). Therefore, a high rate of deg-
radation of CSPα’s partners may contribute to the cellular pathophysiology of AD-ANCL and explain the massive 
neuronal and synaptic loss found in terminal AD-ANCL patients17, 22. Alternatively, with reduced CSPα levels, 
misfolded CSPα clients might contribute to the formation and accumulation of AFSM.

CSPα may play a role in lysosome-membrane fusion events. This hypothesis is supported by previous stud-
ies showing that CSPα is critical for maintaining levels of SNARE proteins35 and by our data showing that both 
mutant CSPα and overexpression of wild-type CSPα affect the levels of lysosome enzymes in the media and the 
amount of lysosomal markers in the plasma membrane. Synaptosomal associated protein of 23 kDa (SNAP-23) is 
a ubiquitously expressed SNARE protein that belongs to the SNAP-25 family36. SNAP-23 is present in the plasma 
membrane of many types of cells and mediates exocytosis of secretory vesicles and lysosome-membrane fusion 
events36. A recent report suggested that CSPα is a key mediator in the exocytosis of tau, α-synuclein and TDP-
43 through a SNAP23-mediated exocytosis37. Our data show that primary fibroblasts from asymptomatic CSPα 
mutation carriers and N2A cells stably expressing CSPα-p.L115R exhibit higher SNAP-23 levels than controls and 
consequently, an elevation in the amount of secreted lysosomal enzymes. Therefore, our results support a role of 
CSPα in lysosome exocytosis.

Maintenance of the lysosomal compartment depends on continuous fusion of late endocytic structures accom-
panied by fission events38. The small GTP binding protein Rab7 plays an important role in the maturation of auto-
phagosomes and lysosome biogenesis39. Primary fibroblasts from asymptomatic CSPα mutation carriers exhibit 
a reduction in Rab7 levels compared to controls. This suggests that CSPα-p.L115R induces an increase in the rate 
of autophagosome-lysosome fusion. In addition, p62 levels are reduced in CSPα mutation carriers compared to 
controls, which suggests an increase in autophagy. However, there are no significant changes in steady-state level 
LC3-I or LC3-II protein. In the presence of lysosome or macroautophagy inhibitors there is an increase in the 
levels of p62 and LC3-II proteins suggesting that autophagic flux is intact in fibroblasts from asymptomatic CSPα 
mutation carriers. However, the persistent elevation of LC3-II under macroautophagy activation after 24 hours 
suggests a block in the fusion of autophagosomes and lysosomes40 or dysfunctional lysosomes. This is supported 
by a reduction in p62 and an increase in steady-state LC3-II, LAMP1 and SNAP23 levels found in N2A cells stably 
expressing CSPα-p.L115R. These results are also consistent with an elevation in transcription factor EB (TFEB), 
which regulates lysosomal biogenesis and function, reported in brains of AD-ANCL patients16 and the significant 
changes in the transcript levels of lysosomal proteins reported here in response to CSPα-p.L115R mutant.

AD-ANCL is caused by mutations in a synaptic protein and how this results in the massive neurodegeneration 
found in terminal AD-ANCL patients remains to be clarified23, 24. In addition to being a synaptic protein, we show 
here that CSPα is also a lysosomal protein. Our data show that CSPα-p.L115R is not sufficient to cause AFSM 
accumulation or lysosomal dysfunction. In contrast, both wild-type and CSPα-p.L115R are required to result 
in an AD-ANCL phenotype (AFSM accumulation and lysosomal dysfunction) in vitro. These data suggest that 
CSPα plays a role in lysosome function. In a brain from an asymptomatic CSPα mutation carrier there is accu-
mulation of AFSM with minimal to no changes in the levels of CSPα17. Thus, we hypothesize that AD-ANCL is a 
protein aggregation disease where the pathogenic mechanism is correlated with the presence of CSPα-p.L115R/
CSPα-WT aggregates and its subsequent effects on the ALP function. These findings support a gain-of-function 
mechanism for CSPα mutations leading to AD-ANCL. However in light of the reduced CSPα levels found in 
terminal AD-ANLC patients, we hypothesize that the most likely disease mechanism involves a combination 
of the loss of CSPα’s neuroprotective function and gain-of neurotoxic function resulting from CSPα-p.L115R/
CSPα-WT aggregates.

Methods
Cell Culture.  Primary subdermal fibroblasts from AD-ANCL patients and controls were collected accord-
ing to a Washington University in St Louis Human Subject Committee approved protocol and grown in RPMI-
1640 medium. Primary subdermal fibroblasts from CSPα -deficient mice (B6;129S6-Dnajc5tm1Sud/J, Jackson 
Laboratory, Maine, USA) were isolated from new born animals and grown in DMEM. All animal procedures were 
approved by the Institutional Animal Studies Committee at Washington University School of Medicine and were 
in accordance with the guidelines of the National Institutes of Health.

http://3C
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All cell lines were supplemented with 10% heat inactivated FBS, 10 mM HEPES buffer, MEM non-essential 
amino acid solution, 1mM sodium pyruvate, 1% penicillin/streptomycin under 5% pCO2 at 37 °C. Neuro-2A 
(N2A) cells (gift from Dr Celeste Karch at WUSTL) were maintained in 50% Dulbecco’s Modified Eagle’s Medium 
(DMEM) and 50% Opti-MEM supplemented with 5% FBS, 1% L-Glutamine and 1% penicillin/streptomycin.

Lentivirus Preparation and transductions.  A human DNAJC5 cDNA clone was obtained from Origene 
(SC305246–20) in a pCMV6-XL6 vector. The mutation (c.344T > G) was engineered using a site-directed 
mutagenesis kit (QuikChange II (Agilent Technology, Santa Clara, CA, USA). Wild-type and mutant cDNAs 
were subcloned into a pLenti-III-PGK Vector (Applied Biological Materials Inc, Richmond, Canada). The result-
ant lenti vectors along with plasmids coding for VSV-G, Gag-Pol, and Rev were transfected into HEK-293T 
packaging cells as previously described41, 42. Viral supernatant was collected according to previously published 
protocols41. Cells were cultured with unconcentrated viral supernatants for 24 hours and cells were selected 
with 5 μg/ml of puromycin (Sigma-Aldrich, St. Louis, MO) for four weeks. The titer levels of transgene expres-
sion were measured by quantitative real-time PCR using human DNACJ5 gene specific primers: hDNAJC5_F, 
5′-AGTCATTGTACCACGTCCTTG-3′; hDNAJC5_R, 5′-TCTCCTTAAACTTGTCCGCG-3′.

Lysosomal enzyme activity.  One hundred µg of tissue from each brain region from three terminal 
AD-ANCL patients and three neurodegenerative pathology-free controls17 was homogenized in buffer containing 
10 mM Tris (pH 7.5), 150 mM NaCl, 1 mM dithiothreitol, and 0.2% Triton X-100 and centrifuged at 14,000 rpms 
for 1 min at 4 °C. Following centrifugation, the supernatant was removed and used for PPT-1, β-gluc, and β-Hexa 
enzyme assays as previously described43, 44. Cell lysates and medium from was collected after 6 days in culture.

Proteasome activity assay.  The proteolytic activity of the proteasome (catalytic core of the 26S protea-
some) was evaluated in brain homogenates (occipital lobe) from three terminal AD-ANCL patients and three 
neurodegenerative pathology-free controls using the 20S proteasome activity kit (APT 280; Millipore), following 
the manufacturer’s instructions. Briefly, 5 μg of whole brain protein extract were incubated in duplicates in the 
provided buffer with 50 μM fluorophore-linked peptide substrate (LLVY-7-amino-4-methylcoumarin [AMC]) for 
30 min at 60 °C. Proteasome activity was measured by quantification of relative fluorescent units from the release 
of AMC using a 380/460 nm filter set in a fluorometer (Synergy™ H4 Hybrid Multi-Mode Microplate Reader; 
Biotek). A solution of the 20S proteasome subunit (1:100 dilution) and the proteasome inhibitor lactacystin were 
used as controls for the assay. An AMC standard curve was performed with each experiment.

Immunofluorescence.  Cultured cells were fixed in ice-cold freshly-prepared 4% paraformaldehyde in 
PBS, permeabilized in 0.25% Triton-X 100 (Sigma–Aldrich, MO, USA) for 10 min, and blocked by incubation 
in 10% goat serum45. Cells were incubated in primary antibody CSPα (AB1576; Millipore) 1:500, Calnexin 
(MAB3126, Millipore) 1:500, Giantin (ALX-804–600; Enzo life science) 1:1000, LAMP-1 (sc-19992, Santa Cruz 
Biotechnology) 1:500 or LAMP-2 (H4B4, Hybridoma Bank) 1:500, for 16 h at 4 °C, followed by secondary anti-
bodies conjugated to Alexa-488 (1:1000) or Alexa-568 (1:1000) (Molecular Probes, Eugene, Oregon) for 2 h at 
room temperature. DAPI (4′,6-Diamidino-2-Phenylindole, Dihydrochloride) (Molecular Probes®, Eugene, 
Oregon) was used as counterstaining for the nuclei. Controls were stained omitting the primary or second-
ary antibody. Imaging was performed on a confocal microscope (LSM 700; Carl Zeiss, Jena, Germany) using a 
Plan-Apochromat 63×/1.4 oil differential interference contrast objective (Carl Zeiss) at room temperature with 
Zen 2009 software. Images were acquired using ZEN 2009 software (Zeiss) exported as TIFF images and bright-
ness and contrast were adjusted using Image J. All images are single confocal slices with a maximum projection of 
a confocal Z-stack (performed using ZEN 2009 software). For quantitative analysis of the colocalization of CSPα 
and LAMP2, Pearson’s colocalization coefficient (R) was calculated with ZEN 2009 software (Carl Zeiss) for pixels 
with intensities above background in a cell from two-color images of multiple cells.

Treatment of Cells with Cycloheximide (CHX) plus Lysosome inhibitors.  Cells were grown in 
6-well plates to 50–80% confluence and maintained in 10% heat inactivated FBS. Twenty-four hours after plat-
ing, cells were incubated with 2 or 5 µg/mL CHX (fresh CHX was added every 12 hours) plus 20 mM NH4Cl 
plus 100 µM Leupeptin plus 10 µg/mL E64D or 10 µM Lactacystin46 or 100 nM Bafilomycin A1 (Dissolved in 
DMSO, Sigma, St. Louis). Cycloheximide, NH4Cl, E64D and Leupeptin were dissolved in water. Lactacystin 
(BML-PI104) was purchased from Enzo Life Technology, NY.

Treatment of Cells with Lysosome and proteasome inhibitors.  Cells were grown in 6-well plates to 
80% confluence and maintained in 2% heat inactivated FBS. Six days after plating, cells were treated with 20 mM 
NH4Cl plus 100 µM Leupeptin plus 10 µg/mL E64D or 100 nM Bafilomycin A1. Six days after plating, cells at 
10% FBS were treated with SW; 250 nM Torin 1 or carrier (water or DMSO) as a control. NH4Cl (A5666), E64D 
(E3132), Bafilomycin 1A (B1793) and Leupeptin (L2884) were purchased from Sigma, St. Louis, MO. Torin 1 
(4247) was purchased from Tocris Bioscience, UK.

Treatment of Cells with N-(tert-Butyl) hydroxylamine.  Cells were grown in 6-well plates to 80% con-
fluence and maintained in 2% heat inactivated FBS. Six days after plating cells were incubated with 0.1–5 mM 
N-(tert-Butyl) hydroxylamine (479675, Sigma-Aldrich)27 for one hour followed by 23 hours of serum starvation (SW).

Lysosomal fraction isolation.  Purification of lysosomal fractions from cultured cells was performed using 
the Lysosome Enrichment Kit for Tissue and Cultured Cells (Thermo Fisher Scientific, Waltham, MA) follow-
ing the manufacturer instructions. Briefly, 50 mg of pelleted cells were homogenized in Lysosome Enrichment 
Reagent A using a dounce homogenizer (30 strokes), followed by the addition of the same volume of Lysosome 
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Enrichment Reagent B. The nuclei, cell debris, and mitochondria were removed by a 10-min centrifugation at 
1,000 × g at 4 °C. A “crude lysosomal fraction (CLF)” containing the lysosomes, mitochondria, peroxisomes, 
endoplasmic reticulum and microsomes was obtained by centrifugation of supernatants at 20,000 × g for 20 min 
at 4 °C. Lysosomes were purified from the CLF by the ultracentrifugation (150,000 × g for 4 h in a Beckman SW 60 
Ti Rotor, Swinging Bucket) in a discontinuous density gradient (17–30%) of iodixanol (OptiPrep). Immediately 
after centrifugation each fraction was probed for mitochondria, peroxisomes, and Golgi and ER proteins as well 
as for the presence of the lysosomal membrane proteins LAMP-2, LAMP-1 and Hexosaminidase by Western blot 
(Supplementary Fig. 2A).

Surface LAMP1 Assay.  Surface LAMP1 assay was performed as previously described47. Briefly, cells 
were trypsinized, collected in FACS buffer and incubated with anti-rat LAMP1–1DB4 (sc-19992, Santa Cruz 
Biotechnology) at 4 °C for 30 min. Cells were washed in PBS. Anti-LAMP1-1D4B–treated cells were further incu-
bated with Alexa-488 conjugated anti–rat secondary antibodies (Molecular Probes, Invitrogen) for 30 min at 
room temperature and fixed in 1% paraformaldehyde (PFA). Finally, cells were analyzed on Gallios flow cytome-
ter (Beckman Coulter). Data were analyzed using FlowJo (Tree Star).

Immunoblotting.  Cells and brain tissue were lysed in radioimmune precipitation assay (RIPA) buffer 
(50 mM Tris-HCl, pH 7.4, 150 mM NaCl 1% Nonidet P-40, 0.25% sodium deoxycholate) plus 1X phenylmeth-
anesulfonylfluoride (PMSF) and 1X Protease Inhibitor Cocktail (P2714, Sigma, St. Louis, MO) for 10 min on 
ice and then spun at 14,000 rpm for 10 min at 4 °C. Protein was subjected to electrophoresis and transferred 
to PDVF membrane (BIO-RAD, Hercules, CA). The primary antibodies were diluted as follows: CSPα 
(ADI-VAP-SV003-E; Enzo life science) 1:20000, HSC70/HSP73 (ADI-SPA-816; Enzo life science) 1:1000, 
LAMP-1 (H4A3, Hybridoma Bank) 1:50000, LAMP-2 (H4B4, Hybridoma Bank) 1:50000, Saposin D (Kindly 
provided by Prof. Sandhoff, University of Bonn, Bonn, Germany) 1:500, LAMP-1 (1D4B, sc-19992, Santa Cruz 
Biotechnology) 1:2000, CLN1 (sc-130726, Santa Cruz Biotechnology) 1:100, V-ATPase B1/2 (sc-55544, Santa 
Cruz Biotechnology) 1:1000, Synaptosomal-associated protein 23 (TS-19, S2194, Sigma-Aldrich) 1:5000, p62 
(Anti-SQSTM1, 2C11, Abnova) 1:1000, LC3 (NB100-2331, Novus Biologicals) 1:5000, Flotillin (C-7, sc-133153, 
Santa Cruz Biotechnology) 1:5000, β-Actin (A1978, Sigma-Aldrich) 1:5000. The membranes were then incu-
bated with the secondary antibodies, horseradish peroxidase-conjugated anti-mouse or anti-rabbit IgG (KPL, 
Gaithersburg, MD) diluted 1:2000 in 4% nonfat dry milk PBS-T for 1 h at room temperature. Signals were vis-
ualized using Lumigen ECL Ultra (TMA-6) (Lumigen, Southfield, MI). Densitometric semi-quantification was 
performed using ImageJ software (National Institutes of Health).

Flow cytometry.  Cells were harvested, washed once in PBS, re-suspended at ∼1 × 106 cells/ml in FACS 
buffer (PBS, 1 mM EDTA, 2% FBS). AFSM data from 2 × 104 cells per condition were recorded and analyzed by 
flow cytometry. All flow cytometry data were collected on a Gallios flow cytometer (laser 488 nm, Channels FL1, 
FL2 and FL10) (Beckman Coulter). Collected data were analyzed using FlowJo (Tree Star, Ashland, OR).

Cytosolic and membrane-bound fraction isolation.  Cells from three 150 mm petri dishes at 100% con-
fluence were trypsinized, pelleted, re-suspended in HES homogenization buffer (0.32 M sucrose, 20 mM HEPES, 
1 mM EDTA, pH 7.4, plus protease inhibitors) and homogenized with a Dounce homogenizer. Cytosolic (fraction 
S2) and membrane-bound (fraction P2) proteins were extracted as previously described17, 48.

Analysis of Clinical Samples.  The Institutional Review Board at the Washington University in Saint Louis 
School of Medicine approved the study. Prior to their participation, written informed consent was reviewed and 
obtained from family members. The Human Research Protection Office approval number (201104178). The neu-
ropathological findings of AD-ANCL patients were previously published2, 6. DNAJC5 mutation identification and 
screening was published by Benitez et al.6, 17.

Statistical analyses.  All data are shown as means ± SEM. Two-way ANOVA with Bonferroni post-test was 
used to determine the difference between genotypes and treatments and the possible interactions of each. For 
comparison of two groups, Student’s unpaired two-tailed t test was used. Data were analyzed using GraphPad 
Prism, version 5.00 (San Diego, CA).

References
	 1.	 Rider, J. a. & Rider, D. L. Batten disease: past, present, and future. Am. J. Med. Genet. Suppl. 5, 21–6 (1988).
	 2.	 Josephson, S. A., Schmidt, R. E., Millsap, P., McManus, D. Q. & Morris, J. C. Autosomal dominant Kufs’ disease: a cause of early onset 

dementia. J Neurol Sci 188, 51–60 (2001).
	 3.	 Cotman, S. L., Karaa, A., Staropoli, J. F. & Sims, K. B. Neuronal ceroid lipofuscinosis: Impact of recent genetic advances and 

expansion of the clinicopathologic spectrum topical collection on genetics. Curr. Neurol. Neurosci. Rep. 13 (2013).
	 4.	 Velinov, M. et al. Mutations in the gene DNAJC5 cause autosomal dominant Kufs disease in a proportion of cases: study of the Parry 

family and 8 other families. PLoS One 7, e29729 (2012).
	 5.	 Noskova, L. et al. Mutations in DNAJC5, encoding cysteine-string protein alpha, cause autosomal-dominant adult-onset neuronal 

ceroid lipofuscinosis. Am J Hum Genet 89, 241–252 (2011).
	 6.	 Benitez, B. A. et al. Exome-sequencing confirms DNAJC5 mutations as cause of adult neuronal ceroid-lipofuscinosis. PLoS One 6, 

e26741 (2011).
	 7.	 Zhang, Y. Q. & Chandra, S. S. Oligomerization of Cysteine String Protein alpha mutants causing adult neuronal ceroid lipofuscinosis. 

Biochim Biophys Acta 1842, 2136–2146 (2014).
	 8.	 Zhang, Y. Q. et al. Identification of CSPalpha clients reveals a role in dynamin 1 regulation. Neuron 74, 136–150 (2012).
	 9.	 Sharma, M. et al. CSPalpha knockout causes neurodegeneration by impairing SNAP-25 function. EMBO J 31, 829–841 (2012).
	10.	 Chamberlain, L. H. & Burgoyne, R. D. Cysteine-string protein: the chaperone at the synapse. J Neurochem 74, 1781–1789 (2000).

http://2A


www.nature.com/scientificreports/

1 4SCieNtifiC Reports | 7: 6332 | DOI:10.1038/s41598-017-06710-1

	11.	 Chapel, A. et al. An extended proteome map of the lysosomal membrane reveals novel potential transporters. Mol Cell Proteomics 
12, 1572–1588 (2013).

	12.	 Nylandsted, J. et al. ErbB2-associated changes in the lysosomal proteome. Proteomics 11, 2830–2838 (2011).
	13.	 Schröder, B. et al. Integral and associated lysosomal membrane proteins. Traffic 8, 1676–1686 (2007).
	14.	 Tharkeshwar, A. K. et al. A novel approach to analyze lysosomal dysfunctions through subcellular proteomics and lipidomics: the 

case of NPC1 deficiency. Sci. Rep. 7, 41408 (2017).
	15.	 Sambri, I. et al. Lysosomal dysfunction disrupts presynaptic maintenance and restoration of presynaptic function prevents 

neurodegeneration in lysosomal storage diseases. EMBO Mol. Med. 11, 99–103 (2016).
	16.	 Henderson, M. X. et al. Neuronal ceroid lipofuscinosis with DNAJC5/CSPα mutation has PPT1 pathology and exhibit aberrant 

protein palmitoylation. Acta Neuropathol. 131, 621–637 (2016).
	17.	 Benitez, B. A. et al. Clinically early-stage CSPα mutation carrier exhibits remarkable terminal stage neuronal pathology with 

minimal evidence of synaptic loss. Acta Neuropathol. Commun. 3, 73 (2015).
	18.	 Schwanhausser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011).
	19.	 Kim, W. et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol. Cell 44, 325–340 (2011).
	20.	 Xu, F. et al. Quercetin targets cysteine string protein (CSP??) and impairs synaptic transmission. PLoS One 5 (2010).
	21.	 Matondo, M. et al. Determination of differentially regulated proteins upon proteasome inhibition in AML cell lines by the 

combination of large-scale and targeted quantitative proteomics. Proteomics 201600089 (2016).
	22.	 Donnelier, J. et al. Increased Expression of the Large Conductance, Calcium-Activated K + (BK) Channel in Adult-Onset Neuronal 

Ceroid Lipofuscinosis. PLoS One 10, e0125205 (2015).
	23.	 Donnelier, J. & Braun, J. E. CSPalpha-chaperoning presynaptic proteins. Front Cell Neurosci 8, 116 (2014).
	24.	 Burgoyne, R. D. & Morgan, A. Cysteine string protein (CSP) and its role in preventing neurodegeneration. Semin Cell Dev Biol, 

doi:10.1016/j.semcdb.2015.03.008 (2015).
	25.	 Greaves, J. et al. Palmitoylation-induced aggregation of cysteine-string protein mutants that cause neuronal ceroid lipofuscinosis. J 

Biol Chem 287, 37330–37339 (2012).
	26.	 Demirovic, D., Nizard, C. & Rattan, S. I. S. Basal level of autophagy is increased in aging human skin fibroblasts in vitro, but not in 

old skin. PLoS One 10, 1–9 (2015).
	27.	 Sarkar, C. et al. Neuroprotection and lifespan extension in Ppt1(−/−) mice by NtBuHA: therapeutic implications for INCL. Nat. 

Neurosci. 16, 1608–1617 (2013).
	28.	 Sarkar, C. et al. Neuroprotection and lifespan extension in Ppt1(−/−) mice by NtBuHA: therapeutic implications for INCL. Nat 

Neurosci 16, 1608–1617 (2013).
	29.	 Macauley, S. L. et al. Synergistic effects of central nervous system-directed gene therapy and bone marrow transplantation in the 

murine model of infantile neuronal ceroid lipofuscinosis. Ann Neurol 71, 797–804 (2012).
	30.	 Chang, M. et al. Intraventricular enzyme replacement improves disease phenotypes in a mouse model of late infantile neuronal 

ceroid lipofuscinosis. Mol. Ther. 16, 649–56 (2008).
	31.	 Passini, M. a. et al. Intracranial delivery of CLN2 reduces brain pathology in a mouse model of classical late infantile neuronal ceroid 

lipofuscinosis. J. Neurosci. 26, 1334–42 (2006).
	32.	 Schultz, M. L., Tecedor, L., Chang, M. & Davidson, B. L. Clarifying lysosomal storage diseases. Trends Neurosci. 34, 401–10 (2011).
	33.	 Dengjel, J. et al. Identification of Autophagosome-associated Proteins and Regulators by Quantitative Proteomic Analysis and 

Genetic Screens. Mol. Cell. Proteomics 11, M111.014035–M111.014035 (2012).
	34.	 Sharma, M., Burre, J. & Sudhof, T. C. Proteasome inhibition alleviates SNARE-dependent neurodegeneration. Sci Transl Med 4, 

147ra113 (2012).
	35.	 Sharma, M., Burre, J. & Sudhof, T. C. CSPalpha promotes SNARE-complex assembly by chaperoning SNAP-25 during synaptic 

activity. Nat Cell Biol 13, 30–39 (2011).
	36.	 Jahn, R. & Scheller, R. H. SNAREs–engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 7, 631–43 (2006).
	37.	 Fontaine, S. N. et al. DnaJ/Hsc70 chaperone complexes control the extracellular release of neurodegenerative‐associated proteins. 

EMBO J. 35, 1537–1549 (2016).
	38.	 Storrie, B. & Desjardins, M. The biogenesis of lysosomes: Is it a kiss and run, continuous fusion and fission process? Bioessays 18, 

895–903 (1996).
	39.	 Bucci, C., Thomsen, P., Nicoziani, P., McCarthy, J. & van Deurs, B. Rab7: a key to lysosome biogenesis. Mol. Biol. Cell 11, 467–80 

(2000).
	40.	 Klionsky, D. et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8, 445–544 (2016).
	41.	 Hofling, A. A., Devine, S., Vogler, C. & Sands, M. S. Human CD34 + hematopoietic progenitor cell-directed lentiviral-mediated gene 

therapy in a xenotransplantation model of lysosomal storage disease. Mol Ther 9, 856–865 (2004).
	42.	 Dull, T. et al. A third-generation lentivirus vector with a conditional packaging system. J Virol 72, 8463–8471 (1998).
	43.	 Griffey, M. et al. Adeno-associated virus 2-mediated gene therapy decreases autofluorescent storage material and increases brain 

mass in a murine model of infantile neuronal ceroid lipofuscinosis. Neurobiol Dis 16, 360–369 (2004).
	44.	 Sands, M. S. et al. Treatment of murine mucopolysaccharidosis type VII by syngeneic bone marrow transplantation in neonates. Lab 

Invest 68, 676–686 (1993).
	45.	 Benitez, B. A. et al. Functional reduction of SK3-mediated currents precedes AMPA-receptor-mediated excitotoxicity in 

dopaminergic neurons. Neuropharmacology 60, 1176–1186 (2011).
	46.	 Fuertes, G., Martin De Llano, J. J., Villarroya, A., Rivett, A. J. & Knecht, E. Changes in the proteolytic activities of proteasomes and 

lysosomes in human fibroblasts produced by serum withdrawal, amino-acid deprivation and confluent conditions. Biochem J 375, 
75–86 (2003).

	47.	 Medina, D. L. et al. Transcriptional activation of lysosomal exocytosis promotes cellular clearance. Dev. Cell 21, 421–430 (2011).
	48.	 Greaves, J., Salaun, C., Fukata, Y., Fukata, M. & Chamberlain, L. H. Palmitoylation and membrane interactions of the neuroprotective 

chaperone cysteine-string protein. J Biol Chem 283, 25014–25026 (2008).

Acknowledgements
This work was funded in part by grants from the National Institutes of Health (NS043205 and NS084861 to 
MSS) and financial support from the Frye Family Foundation to MSS and BAB. This work was also supported by 
2014 pilot funding from the Hope Center for Neurological Disorders and the Danforth Foundation Challenge at 
Washington University to BAB. The authors especially want to thank the patients and their families, whose help 
and participation made this work possible. The authors thank Joanne Norton, MSN, RN and Carlos Cruchaga, 
Ph.D. (Washington University School of Medicine) for their expert assistance. We thank Dr. Shonali Midha who 
provided editing and insightful discussion of the manuscript.

http://dx.doi.org/10.1016/j.semcdb.2015.03.008


www.nature.com/scientificreports/

1 5SCieNtifiC Reports | 7: 6332 | DOI:10.1038/s41598-017-06710-1

Author Contributions
B.A.B. conceived and designed the study. B.A.B. acquired the data. B.A.B. and M.S.S. performed the statistical 
analysis and interpreted the data. B.A.B. wrote the draft of the manuscript and M.S.S. provided critical comments 
on the draft of the manuscript. All authors read and approved the final version of the manuscript.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-06710-1
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://dx.doi.org/10.1038/s41598-017-06710-1
http://creativecommons.org/licenses/by/4.0/

	Primary fibroblasts from CSPα mutation carriers recapitulate hallmarks of the adult onset neuronal ceroid lipofuscinosis

	Results

	Lysosome dysfunction in AD-ANCL in vivo and in vitro. 
	There is a correlation between AFSM accumulation and CSPα.pL115R aggregation. 
	CSPα and its aggregates are located to the lysosome. 
	Lysosome dysfunction caused by CSPα mutation p.L115R is recapitulated in vitro. 
	Both CSPα-WT and CSPα-p.L115R are required for lysosome dysfunction. 
	Wild-type and mutant CSPα.pL115R and its aggregates are degraded by the macroautophagy/lysosomal pathway. 
	Decreased AFSM and CSPα aggregates in response to pharmacological treatment. 
	NtBuHA synergizes with SW to reduce both CSPα-p.L115R/CSPα-WT aggregates and AFSM. 

	Discussion

	Methods

	Cell Culture. 
	Lentivirus Preparation and transductions. 
	Lysosomal enzyme activity. 
	Proteasome activity assay. 
	Immunofluorescence. 
	Treatment of Cells with Cycloheximide (CHX) plus Lysosome inhibitors. 
	Treatment of Cells with Lysosome and proteasome inhibitors. 
	Treatment of Cells with N-(tert-Butyl) hydroxylamine. 
	Lysosomal fraction isolation. 
	Surface LAMP1 Assay. 
	Immunoblotting. 
	Flow cytometry. 
	Cytosolic and membrane-bound fraction isolation. 
	Analysis of Clinical Samples. 
	Statistical analyses. 

	Acknowledgements

	Figure 1 Lysosome dysfunction in AD-ANCL in vivo and in vitro.
	Figure 2 Time course of AFSM and CSPα.
	Figure 3 CSPα and its aggregates localize to the lysosome.
	Figure 4 Lysosome dysfunction depends on the CSPα.
	Figure 5 CSPα mutation p.
	Figure 6 Autophagy-Lysosomal degradation of CSPα and CSPα.
	Figure 7 AFSM and CSPα aggregate accumulation are modulated by the autophagy-lysosome pathway.
	Figure 8 NtBuHA enhances the reduction of CSPα aggregates and AFSM induced by serum withdrawal.


