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Gambling-like behavior in 
pigeons: ‘jackpot’ signals promote 
maladaptive risky choice
Aaron P. Smith  , Joshua S. Beckmann & Thomas R. Zentall

Individuals often face choices that have uncertain outcomes and have important consequences. As a 
model of this environment, laboratory experiments often offer a choice between an uncertain, large 
reward that varies in its probability of delivery against a certain but smaller reward as a measure of an 
individual’s risk aversion. An important factor generally lacking from these procedures are gambling 
related cues that may moderate risk preferences. The present experiment offered pigeons choices 
between unreliable and certain rewards but, for the Signaled group on winning choices, presented a 
‘jackpot’ signal prior to reward delivery. The Unsignaled group received an ambiguous stimulus not 
informative of choice outcomes. For the Signaled group, presenting win signals effectively blocked 
value discounting for the large, uncertain outcome as the probability of a loss increased, whereas the 
Unsignaled group showed regular preference changes similar to previous research lacking gambling 
related cues. These maladaptive choices were further shown to be unaffected by more salient loss 
signals and resistant to response cost increases. The results suggest an important role of an individual’s 
sensitivity to outcome-correlated cues in influencing risky choices that may moderate gambling 
behaviors in humans, particularly in casino and other gambling-specific environments.

Individuals are often faced with choices involving uncertain outcomes that can have critical consequences such 
as predation in the wild or large financial losses. In the laboratory, risky environments are often modeled by 
offering a choice between an uncertain large reward (UL) against a certain but smaller reward (CS), where the 
odds against receiving the UL reward are systematically increased to determine how the value of the UL changes. 
Under this probability discounting (PD) procedure, the rate at which individuals discount the value of the UL 
with increased odds against its receipt1 indexes their risk tolerance as a measure of their propensity to take future 
risks2. Indeed, individual differences in risk tolerance are an important factor in risky decision making as these 
measures have shown clinical relevance through associations with gambling3–5, smoking6, 7, and internet gaming8 
behaviors, as well as obesity9. Additionally, as the DSM-V has categorized gambling as an addictive disorder10, 
and a high prevalence of negative outcomes (monetary or otherwise) are associated with it11–13, determining the 
underlying processes involved in risky decision making may aid in understanding these maladaptive behaviors.

In a PD procedure, optimal decision makers should maximize their expected reward as described by norma-
tive theories such as expected value14–16 and optimal foraging theory17. Evidence suggests, however, that optimal 
choice does not always occur (e.g., refs 14 and 15). In PD experiments, choice often appears hyperbolic and is well 
described by Equation 1:

Θ
=

+
UL A

h(1 ) (1)

in which the value of the UL initially begins at A but is devalued as a function of the odds against [p/(1 − p)] 
receiving it (Θ) multiplied by h, a free parameter that reflects the degree of UL value discounting.

The rate at which individuals will discount the probability of an outcome has been shown to be influenced 
by factors such as the magnitude of the reward18, 19, the manner in which the probabilities are presented20, and 
asymmetries between decisions of gains and losses21, 22. Another potential but less explored factor is the influence 
of gambling related cues23. Two animal models of risky choice have shown cues to be efficacious moderators of 
risky decisions. For example, using a rodent version of the Iowa Gambling Task, Barrus and Winstanley24 found 
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that the addition of audio-visual cues simultaneously presented with winning outcomes biased choice towards a 
UL-like alternative that provided less reinforcement overall relative to a condition without cues.

Another procedure25 used with pigeons and starlings found that signaling the outcome before actual receipt 
of the reward greatly promoted gambling-like choices26–28 that provided as little as 10% percent of the reward of 
the non-gambling alternative29–31. In this suboptimal choice procedure, choice of a gambling-like alternative is 
followed either by a signal indicating that a win or loss will follow, while the alternative choice generally results 
in an ambiguous, uninformative cue that provides greater overall reward26. It has been hypothesized that under 
these conditions pigeons over-weight the infrequent signal for wins28, 29, and show more optimal preferences if 
these signals are ambiguous32, 33; conversely, pigeons also appear to under-weight the signal for losses30, 31, 34, 35, 
and show little change in choice when the salience of the loss is manipulated30, 35. Similar effects involving sig-
naled outcomes may also be relevant to human risk taking, as Molet et al.36 found using an analogous procedure. 
Specifically, individuals who engaged in commercial gambling behaviors chose the suboptimal gambling-like 
alternative significantly more than those who did not.

Although various mechanisms have been proposed for why the signals for wins promote suboptimal decision 
making to such an extent27–29, 31, the effect is robust and has yet to be employed for a variety of risky choice pro-
cedures such as PD. The suboptimal choice and PD procedures are similar, but there are two notable differences. 
First, strong suboptimal preferences have generally been found when the gambling-like alternative is compared to 
an alternative with an ambiguous signal not predictive of the outcome27, 28. In PD, the UL is often compared to the 
CS, or the certain small alternative that has no uncertainty as to its outcome. When similar conditions that lack 
uncertainty are used with suboptimal choice procedures, indifference or relatively weaker preferences are often 
found with 10 s signal durations26, 27, 37–39. Second, PD procedures usually employ magnitude discriminations of 
either differential amounts of money for humans19 or food rewards for animals40, 41. Many current theories as 
to why suboptimal choice occurs, however, are based upon procedures that primarily assess one dimension29, 42  
of how the signals could be operating: its predictive utility for the presence or absence of the forthcoming 
reward26–28, 31. Furthermore, while procedures have parametrically assessed preferences for a predictive ‘jackpot’ 
signal against an ambiguous signal across a range of probabilities28, 29, 31 and differential magnitudes at single 
choice probabilities43, the interaction of the two has not been studied.

Therefore, the purpose of the present experiments was to extend the suboptimal choice research by testing 
how differential magnitudes of reinforcement interact with probabilistic outcomes within the framework of PD. 
To assess the effects of the signaled outcomes, the probability of receiving the UL reward (4 pellets) was gradually 
decreased over blocks of trials from 100% to 6.25% against a CS choice of a certain 1 pellet (see Fig. 1). For the 
Unsignaled group, choice of the UL always resulted in a stimulus that was not correlated with the outcome; this 
group served as an analogous control condition for procedures in which no differential cues are used40, 41. For the 
Signaled group, however, choice of the UL only resulted in a stimulus when the outcome was a win, or a ‘jackpot’ 
signal. If differential magnitudes of reinforcement, rather than predictive utility of the UL and CS signals, can 
produce a suboptimal choice effect, then the pigeons in the Signaled group should discount the UL less (smaller 
h values) than the Unsignaled group; however, if the suboptimal choice effect requires that the UL win signal has 
greater predictive utility for reward than the CS, the Signaled and Unsignaled groups should discount at similar 
rates.

Results
Figure 2 shows the proportion of UL choices as a function of the odds against obtaining the UL reward aver-
aged over the last five sessions of training while Supplementary Fig. S1 shows individual fits for all conditions. 
The Unsignaled group showed decreased choice of the UL as the reward rate began to favor the CS alternative 
(see Fig. 1c), indicative of sensitivity to the changes in primary reinforcement. As an index of these changes, the 
Unsignaled group crossed 0.5 proportion UL choices at a level suggesting one certain pellet was approximately 
equal in value to a 20% chance at four pellets. An indifference point of 20% is very similar to the point of equiva-
lent expected values at 25% reinforcement (see Fig. 1c), suggesting the Unsignaled group nearly optimaly tracked 
changes in the rate of primary reinforcement. The Signaled group, however, showed no apparent change in choice, 
even when the reinforcement rates heavily favored the CS. Indeed, a non-linear mixed effects (nlme) analysis 
using a shared A parameter (A = 0.99, see Methods below) confirmed significant differences in discounting rates 
between the Signaled (h < 0.01, SEM = 0.01) and Unsignaled (h = 0.24, SEM = 0.07) groups, F(1, 38) = 12.98, 
p = 0.001, and further indicated that the h parameter for the Signaled group was not significantly different from 
zero, p > 0.999. These results effectively show that discounting of the UL outcome, while similar in appearance to 
previous studies with the Unsignaled group (e.g., refs 40 and 41), was completely blocked in the Signaled group.

Reversal. A potential limitation of the reduced discounting is the use of a visual/spatial discrimination and 
presenting probabilities of reinforcement in a single decreasing order. Spatial discriminations of choices can con-
found spatial preferences (a pre-experimental preference for the left or right alternative) with a choice alterna-
tive preference28, 37, 38. Additionally, with similar procedures, the order of probabilities has been shown to alter 
preferences44. To address these issues, we used the same procedures as above but reversed the contingencies such 
that the UL alternative was now presented in the opposite location and the previous Signaled group became the 
Unsignaled group (see supplemental materials). If the large differences in preferences were indeed a product of 
the signal for wins and not a procedural artifact, the pigeons previously in the Unsignaled condition should now 
show attenuated discounting.

Figure 3 shows the proportion of UL choice as a function of the odds against obtaining its reward averaged 
over the last five sessions of training while Supplementary Fig. S1 shows individual fits. The Signaled group, which 
previously discounted the UL, now showed minimal changes in UL preference as the odds against its delivery 
decreased (see Fig. 1c), while the Unsignaled group that previously did not discount the UL showed a large 
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Figure 1. (a) Schematic of the general method for the Signaled group. (b) Schematic of the general method for 
the Unsignaled group. (c) Table indicating the probabilities of reinforcement used in determining UL reward 
delivery as well as the expected values for the UL and CS. Note: bold numbers indicate the optimal choice.

Figure 2. Mean (±SEM) proportion choice of the UL alternative averaged over the last five sessions of baseline 
training (n = 10). Slope parameter estimates (h) from Equation 1 were 0.24 for the Unsignaled group and <0.01 
for the Signaled group.
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preference reversal. Additionally, the Unsignaled group’s indifference point (where UL preference crosses 0.5) 
was at 25% probability of reinforcement; this indicates that one certain pellet was approximately equal in value 
to a 25% chance of 4 pellets, the exact point at which the expected values become equivalent across the alterna-
tives (see Fig. 1c). These trends were also confirmed by the nlme analysis with a shared A parameter (A = 1, see 
Methods below), in which the Unsignaled group (h = 0.29, SEM = 0.05) had a significantly steeper slope than 
the Signaled group (h = 0.01, SEM = 0.01), F(1, 38) = 37.28, p < 0.001. Furthermore, the slope parameter for the 
Signaled group was also not significantly different from zero, p = 0.201, again indicating a lack of discounting of 
the UL alternative’s value for the signaled group.

Is it Suboptimal? Animals are thought to have been pressured by their environments to behave optimally in 
order to survive17 and as such, they should prefer choice alternatives that produce higher probabilities of primary 
reinforcement45. This was the case in the Unsignaled conditions, where pigeons showed preference changes and 
indifference points that generally followed the scheduled reinforcement rates and tracked their relative expected 
value (see Fig. 1c). To confirm that scheduled reinforcement associated with the UL was actually less than opti-
mal, in Table 1 we examined the obtained rewards for all birds in both conditions over the last five sessions on 
choice trials and found that obtained reinforcement was reduced. Pigeons’ preference for the UL outcome in the 
signaled conditions produced just over half (M = 51.2, SEM = 1.79) the reward earned in the Unsignaled condi-
tions (M = 91.5, SEM = 6.12), clearly exemplifying suboptimal choice for the signaled conditions. Furthermore, 
Fig. 4 illustrates a positive correlation between discounting rates and obtained food rewards for all birds under 
both conditions, r2 = 0.95, p < 0.001, suggesting that discounting within the range observed here advantageously 
led to increased reward.

Explicit Signaling of Losses. In the previous phases of this experiment there was a signal for winning 
outcomes but no signal for losses. Although there is a growing body of evidence to suggest that losses minimally 
influence preferences by pigeons30, 34, 35, translational procedures with rats have suggested that, if there is inhibi-
tion to loss signals, suboptimal choice does not occur46, and humans may show differential discounting of wins 
and losses21, 22. Although the lack of the ‘jackpot’ signal appearing on loss trials likely serves as a signal for a loss, 
we introduced a more salient signal for loss outcomes in the Signaled group to determine if salient losses would 
influence discount rates (see supplemental materials).

Figure 5 shows the proportion of UL choices including the novel signaled losses (dashed lines) as well as 
the proportion of UL choices from the reversal (solid lines) for comparison. Despite losses now being cued, 
the Signaled group did not show any apparent change in UL preference, while the Unsignaled group showed a 
slight decrease in discounting. Nlme analysis using a shared A parameter (A = 1, see Methods below) revealed 

Figure 3. Mean (±SEM) proportion choice of the UL alternative averaged over the last five sessions of training 
following the reversal (n = 10). Slope parameter estimates (h) from Equation 1 were 0.29 for the Unsignaled 
group and 0.01 for the Signaled group.

Subject 703 715 1016 1053 1870 2 707 1886 19845 22748 avg

Condition
Signaled 52 64 52 54 47 50 44 52 54 43 51.11

Unsignaled 70 124 57 103 98 116 97 79 84 87 91.5

Table 1. Cumulative obtained food over the last five sessions of training in the signaled and unsignaled 
conditions on free choice trials as a function of subject.
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no significant changes after introducing a loss on h parameters for either the Signaled (h = 0.01, SEM = 0.01) or 
Unsignaled (h = 0.18, SEM = 0.04) group, ps ≥ 0.136, indicating the signal for losses had no effect on discounting. 
The Signaled group continued, however, to discount at a significantly reduced rate relative to the Unsignaled 
group, F(1, 86) = 54.51, p < 0.001, and discounting was not significantly different from zero, p = 0.136.

Increasing the Cost to Gamble. As signaling losses did not reduce the Signaled group’s preference for the 
UL, we next asked if there were conditions under which the UL can be devalued for the Signaled group. Previous 
research has shown that altering the delay to reinforcement such that the UL has a longer delay relative to the 
CS28, decreasing the duration of the win signal prior to reinforcement27, 28, and decreasing the salience of the win 
signal31 can all decrease the effectiveness of signaled win outcomes. An alternative method is to increase the ‘cost’ 
or effort required to choose the UL.

To assess the effect of changing the cost on choice, we systematically increased the number of pecks required 
to choose the UL from 1 to 2, 4, 8, and 16 across session blocks while the cost of the CS remained at one peck (see 
supplementary materials). If an alternative has greater relative value, as the signaled UL appears to in the present 
experiment, its preference should decrease at a relatively slower rate, often described as being less elastic47, 48. We 

Figure 4. Spearman correlation of the cumulatively ranked obtained rewards for all birds in the signaled and 
unsignaled conditions as a function of ranked discounting estimates (parameter h; n = 20).

Figure 5. Mean (±SEM) proportion choice of the UL alternative averaged over the last five sessions of training 
from the reversal (circles and solid lines) and addition of the S- (diamonds and dashed lines) phases (n = 10).
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therefore predicted that the Signaled group would show less elastic preference for the UL with increasing cost, 
relative to the Unsignaled group.

UL choice proportions at response costs of 1 and 16 as a function of the odds against receiving its reward are 
shown in the top row of Fig. 6; additional cost comparisons can be found in Supplementary Fig. S2. As the UL 
cost increased, both groups’ choice allocations showed increased discounting of the UL and a lowered intercept 
by the final cost of 16 responses, indicating that the increase in cost decreased the value of the UL alternative. The 
parameter estimates for A and h as a function of UL cost are also shown in the bottom row of Fig. 6 and illustrate 
these changes. Nlme analysis that included cost as an additional fixed factor and allowed the A parameter to vary 
for both groups also confirmed these effects as indicated by a significant Group × Cost interaction on discounting 
(h parameter), F(1, 233) = 14.24, p = 0.002, and main effects of group, F(1, 233) = 6.16, p = 0.0138, and cost, F(1, 
233) = 31.01, p < 0.001, on the intercept (A parameter).

As predicted, the Unsignaled group showed a faster increase in discounting rates with increased cost. Both 
groups also showed decreased intercepts, indicating that when the cost was high enough, four pellets at 100% 
probability lost value relative to one pellet at a cost of one response. To better illustrate the changes in preference, 
the data were restructured as the average percent UL choice across the last five sessions of each UL peck require-
ment and fit with Equation 2 47, 48:



 +



 = + α− −⁎UL

UL CS
Q k explog log( )

(2)
Q x

0
(( ) 1)0

In Equation 2, Q0 indicates the percent choice of the UL at the lowest cost (one response required), α indicates the 
rate at which UL preferences decreased (elasticity), and k is a scaling parameter. Illustrated in Fig. 7, the Signaled 
group initially chose the UL (averaging over odds against in blocks) to a greater extent (Q0 = 2.00, SEM = 0.03) 

Figure 6. Top: mean (±SEM) proportion choice UL for the Signaled and Unsignaled groups at response 
costs of 1 (a) and 16 (b); additional costs can be seen in Supplementary Fig. S2. Bottom: mean (±SEM) A 
estimates (c) and h estimates (d) for the proportion choice UL (using Equation 1) as a function of UL response 
requirement (n = 10).

http://S2
http://S2


www.nature.com/scientificreports/

7Scientific REPORTS | 7: 6625 | DOI:10.1038/s41598-017-06641-x

than the Unsignaled group (Q0 = 1.82, SEM = 0.05) at the lowest cost of 1, F(1, 37) = 32.09, p < 0.001, consistent 
with the effects discussed above. Importantly, as the cost of UL choices increased, the Signaled group also showed 
less elasticity (α = 0.0056, SEM = 0.0024) than the Unsignaled group (α = 0.0148, SEM = 0.0035), by continuing 
to choose the UL despite the increase in cost, F(1, 233) = 6.87, p = 0.013. Collectively, the above analysis suggests 
that when wins were signaled, demand for the UL choice was greater than when that same choice was unsignaled.

Discussion
Although components of the present results have been reported in previous experiments, the current work 
advances our understanding of suboptimal choice by collectively encompassing past and predicted results within 
one model. Similar to previous work27–31, 43, signaling uncertain choice outcomes prior to reward delivery greatly 
increased risk preferences. Previous research showing strong suboptimal preferences has generally occurred, 
however, when the predictive value of the signal following the UL is greater than the CS26, 37. In the present experi-
ments, the predictive value between the UL and CS signals were equal, which can lead to indifference or relatively 
weaker preferences37, 39. With the addition of a magnitude difference, strong suboptimal choice was found even 
when the UL and CS signals were equally predictive.

Within the framework of PD, the interaction of an increased reward magnitude and predictive value of the 
UL ‘jackpot’ signal blocked discounting of the UL’s value which, we believe, is the first demonstration of such 
an effect in the literature. While pigeons and starlings have been previously shown to be insensitive to signaled 
probabilities of reinforcement28, 29, 31, 38 and suboptimal choice has been found with magnitude differences43, their 
combination had not been tested and led to the blocking of PD. The choice behavior of the Unsignaled group with 
uninformative signals is also in stark contrast to the Signaled group. The Unsignaled group served as a control for 
how risky choice tasks are often modeled without signals41, 49 and more optimally discounted the UL leading to 
nearly twice as much reward as the Signaled group. Reversing the conditions26, 27 and providing a more salient loss 
signal30, 34, 35 further revealed that the difference between the two groups was not due to procedural artifacts and 
is consistent with previous research. Finally, a novel finding was that when the cost of UL choices was increased, 
demand for the UL was found to be more inelastic for the Signaled group.

Why signaling win outcomes reduced loss aversion to such an extent, however, is still unclear. For example, we 
have interpreted the group effects as the ‘jackpot’ signal reducing the effect of discounting (as do current theories 
of suboptimal choice), but it may also be that presenting a probabilistic cue that does not produce food (as in the 
Unsignaled group) produces increased discounting. In either case, while the discounting Equation 1 is useful in 
characterizing differences between signaled and unsignaled conditions, it does not offer clear explanations for 
why the differences occur. Several variables influencing the effectiveness of the win cues have been previously 
identified26, 27, 31, such as its predictive utility for reward, the duration of its appearance prior to reward, and its 
overall conditioned reinforcement value, leading to different hypotheses. One hypothesis stems from the value of 
information provided by the win signal30, 31. That is, the appearance of a signal for reward reduces the time spent 
in uncertainty of the reward. In the present experiment, however, the signaled condition had equally informative 
cues between the UL and CS alternatives. The fact that suboptimal preferences still emerged may therefore chal-
lenge this interpretation.

Alternative hypotheses stem from the value of win signals as conditioned reinforcers27–29. The stimulus value 
hypothesis29, based on the contextual choice model42, posits that the multidimensional conditioned reinforce-
ment strength37 of the win signal (magnitude, predictive utility, cost, etc.) drives suboptimal choice (see sup-
plementary materials and Fig. S3). As the CS and UL had equally informative cues for reward in the signaled 

Figure 7. Mean (±SEM) percent choice of the UL alternative as a function of its response requirement fit with 
Equation 2 (n = 10).
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conditions, only the dimensions of relative probabilities and magnitudes of reinforcement were different. Given 
that the pigeons were insensitive to the probabilities of reinforcement; the stimulus value hypothesis suggests that 
group differences in the present experiment were due to an increased sensitivity to the reward magnitude of the 
UL relative to the CS. As the actual UL magnitude of reward between the signaled and unsignaled conditions on 
win trials was 4 pellets, however, it is instead inferred that the ‘jackpot’ cues in the signaled condition effectively 
acted by increasing the magnitude of the UL reward.

The hyperbolic decay model has also been applied to risky choice28, 50. Hyperbolic decay suggests that the value 
of a choice alternative is determined by its delay to reinforcement. For probabilistic choices, however, an alterna-
tive’s value only decays when a signal predicting reinforcement is present. The value of a signal is initially set to 1, 
decays the longer it is present without reinforcement, and sums across trials of non-reinforcement. For example, 
in the unsignaled conditions, the CS signal is always followed by reinforcement 10 s after it appears and equates to 
10 s of devaluation. The UL signal, however, is only sometimes followed by food; this means the UL can appear for 
10, 20, or 30 s (etc.) across multiple trials prior to reinforcement. Greater UL devaluation is therefore consistent 
with the UL discounting seen in the unsignaled conditions and predicts increased CS preference as the probability 
of UL reinforcement declines. For the signaled conditions, the CS signal is also always followed by reinforcement, 
but the UL signal only appears when reinforcement will follow. Thus, even across diminishing UL reinforcement 
probabilities, both the CS and UL signals are equally subjected to 10 s of devaluation and individuals should be 
indifferent between them. While individuals in the signaled condition were indeed unaffected by diminishing UL 
reinforcement probabilities, they showed a strong preference for the UL rather than being indifferent between the 
UL and CS. In order to account for the present findings, a small addition of a magnitude term would need to be 
added50. Upon doing so, the initial value for the UL and CS changes to 4 and 1, respectively. Thus, the hyperbolic 
decay model is consistent with the present findings and predicts the current group differences are due to the com-
bined effects of a signal occurring only when reinforcement follows and the magnitude of the UL being greater 
than the CS. Additionally, it may be possible for the hyperbolic decay model to account for the cost manipulation 
conducted here by accounting for the increased time it takes to complete the response requirement50.

Finally, the contrast26 and signal for good news (SiGN)27 hypotheses suggest that it is the change from a state of 
uncertainty (when making a probabilistic choice) to a state of certainty (when the signaled win outcome appears) 
that produces the suboptimal choice effect. As the outcome of the CS in the present experiments can be predicted 
at the time of choice (a certain one pellet), this alternative produces no contrast and, in the case for the SiGN 
hypothesis, would not serve as a conditioned reinforcer. The UL, however, cannot be predicted at the time of 
choice and, upon the appearance of the ‘jackpot’ signal, generates contrast or an increase in reinforcement value 
that leads to suboptimal preference. In their present form, the contrast and SiGN hypotheses both would predict 
suboptimal preferences in the present experiment. The SiGN hypothesis also states that, because the UL win sig-
nal appears temporally closer to reinforcement than the CS choice stimulus, the appearance of the UL win signal 
reduces the delay to reinforcement. With this added component, the SiGN hypothesis has been able to account 
for changes in suboptimal preferences based on changing delays to reinforcement51 and the cost manipulation 
conducted here (as it increases the UL’s delay to reinforcement) that the contrast explanation currently can-
not. Neither hypothesis, however, makes any assertion as to the role of differential magnitudes of reinforcement, 
although it follows to reason that signals predicting greater magnitudes of reinforcement could be conceptualized 
to produce greater contrast and/or reinforcement value than signals predicting smaller magnitudes. Still, the pres-
ent results require that these models better formulate their predictions of how other dimensions of reinforcement 
may interact.

Although the present experiments cannot clearly distinguish between these different models, the results pre-
sented here better support hypotheses stemming from the reinforcing value of the ‘jackpot’ signal rather than its 
information. The general finding that ‘jackpot’ cues have following a risky choice is a robust phenomenon in ani-
mal models24, 26, 31, 52–54, implicating an important role of cues on an individual’s risky decision making. Laboratory 
measures of risk taking such in humans, however, do not often assess the role that cues may have on risk.

If laboratory measures such as PD are to inform other risky decisions such as gambling in humans2, these 
measures should also take into account the individual’s sensitivity to ‘jackpot’ signals. While evidence exists that 
human gamblers show increased physical arousal or gambling intentions55, 56 and regional fMRI brain activation 
to gambling-related scenarios or stimuli57, 58, fewer experiments have examined the role of outcome-correlated 
cues modulating gambling behavior23, although one study, using a reinforcement learning model, indicated that 
cues can effect choices when reinforcement rates were equivalent59.

Human gamblers have also shown reduced fMRI reward pathway activation to risky choice outcomes relative 
to healthy controls60, 61. This has led to the suggestion that, similar to substance abusers, gamblers seek highly 
rewarding events to compensate for a hypoactive reward system. Additionally, there is evidence that, relative to 
controls, gamblers show increased brain activity during anticipation of an expected win following risky choices62 
and both humans and animals have shown increased neuronal activity during uncertainty prior to receiving a 
reward63. These findings suggest that the period after choice but prior to the outcome are an important factor in 
biasing risk preferences. Indeed, a procedure analogous to the signaled outcomes used here showed that indi-
viduals who are self-described gamblers increased choice of gambling-like alternatives36. These results suggest 
that outcome-correlated cues may indeed modulate human risk sensitivities relevant to certain behavior (e.g. 
gambling), but this needs to be verified in future research. Additionally, the effect of outcome-correlated cues may 
be different depending on whether they precede or occur simultaneously with the outcome, and future research 
should take this point into consideration.

The present experiments show that signaling a win prior to receipt of its outcome effectively increases risk 
taking and can block PD in pigeons. Furthermore, signaling losses do not attenuate the effect, and the value added 
by these signaled wins is resistant to increases in cost. Collectively, the results suggest that, when making risky 
decisions, stimuli correlated with win outcomes can increase risk to the point of suboptimality. Indeed, numerous 
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examples of signaling stimuli prior to gambling outcomes occur in casinos, such as the images on the reels of a 
slot machine, the ball on a roulette wheel, and matching numbers on lottery and Powerball tickets. That pigeons 
in the Signaled group were also willing to pay an increased cost for the chance to obtain the ‘jackpot’ reward 
may also be an indicator of why some individuals can expend increasing resources gambling. Future gambling 
research and laboratory measures of an individual’s risk sensitivity should therefore assess the effect of such cues 
by controlling for their presence (and absence) to further determine their influence on decision-making.

General Methods
Ten White Carneau pigeons approximately 8–12 years old originally purchased from the Palmetto Pigeon Plant 
(Sumter, SC) with previous experience in suboptimal choice tasks and no systematic differences in experience 
were used in the experiment. Subjects were housed in individual cages measuring 28 × 38 × 30.5 cm and main-
tained at 80–85% their free feeding weight on a 12:12 light-dark cycle (lights off at 7 pm) with free access to grit 
and water. All research was approved by the University of Kentucky Institutional Animal Care and Use committee 
(Protocol 01029L2006) and was conducted according to the 2010 NIH Guide for the Care and Use of Laboratory 
Animals (8th edition).

The experiment was conducted in a Med Associates (St. Albans, VT) modular operant chamber (ENV-008) 
measuring 30.5 × 25.5 × 33 cm inside a noise attenuating box. The pigeons responded to three circular keys 
approximately 21.5 cm above the floor, 2.5 cm across, and 5 cm apart. A 12-stimulus inline projector (Industrial 
Electronics Engineering, Van Nuys, CA) behind each key projected one of four stimuli (red, green, or three white 
horizontal or vertical lines on a dark background) onto the left and right response keys and a white light onto 
the center key. Reinforcement was delivered to a magazine tray at the base of the response panel in the form of a 
45-mg pellet from a dispenser (ENV-45 Med Associates, Fairfax, VT) behind the response keys. The chamber was 
illuminated by a 28 V, 0.1 A house light centered over the chamber. White noise was generated from outside the 
chamber and a computer in an adjacent room controlled the experiment using Med-PC IV.

Subjects were first trained using an autoshaping procedure in which one of four stimuli were illuminated 
randomly onto either the left or right response keys; the white light was only presented on the center response 
key. Following either 30 s or a peck to the stimulus, whichever came first, the house light illuminated and a single 
pellet delivered into the magazine. The house light remained illuminated for 5 s and then offset for 5 s resulting 
in a 10-s intertrial interval (ITI). This procedure for reinforcement and the ITI remained consistent throughout 
the experiment.

Following pretraining, subjects were trained on a visual/spatial one versus four pellet magnitude discrimina-
tion. All trials began with a white orienting stimulus on the center key. A response to the center key turned off 
the orienting stimulus and began either a forced or free choice trial. On free choice trials, concurrently available 
initial link stimuli of three horizontal or vertical white lines on a black background on each side key appeared. 
Choice of the uncertain large (UL) alternative led to a terminal link stimulus (red or green) for 10 s after which 
four pellets were delivered to the magazine. Choice of the certain small (CS) alternative led to a different terminal 
link stimulus (red or green) for 10 s after which a single pellet was delivered to the magazine. Forced choice trials 
were identical to free choice trials except that only one alternative appeared on either the left or right key. Sessions 
consisted of 65 trials, 25 free and 40 forced, divided into five 13-trial blocks. The first eight trials of each block 
were forced and the last five were free choice. All initial and terminal link stimuli (including their spatial location) 
were counterbalanced across subjects. Magnitude training continued until all subjects chose the UL alternative at 
least 95% of the time for two consecutive sessions

Subjects were then randomly assigned to the Signaled and Unsignaled groups and trained on a PD procedure 
structured similar to magnitude training. Each block began with eight forced trials followed by five free choice 
trials. The first block of trials of each session was the same as magnitude training. In subsequent blocks, the 
probability of receiving the UL reward when chosen decreased from 100% to 50%, 25%, 12.5%, and 6.25%. For 
the Signaled group, choice of the UL in these subsequent blocks led either to the predictive terminal link stimu-
lus (or ‘jackpot’ signal) for 10 s followed by four pellets or a blackout period for 10 s. For the Unsignaled group, 
choice of the UL was always followed by the nonpredictive terminal link stimulus for 10 s that was followed by the 
four-pellet reward according to the probabilities of reinforcement associated with that block. Training continued 
until a line fit to the slope estimates (parameter h) was not statistically different from zero in both groups for five 
sessions, totaling 30 sessions.

Data Analysis. Data were analyzed using nonlinear mixed effects (nlme) modeling using Equation 1 from 
the nlme package in R64. Estimates for both A and h parameters were generated treating group as a nominal factor 
and subject as a random factor. Two models were run that either allowed the A intercept parameter to vary for 
each group or as a global parameter shared by both groups. Model selection was chosen based on differences 
in the Akaike information criteria reaching at least 4 units lower65, (data not shown). As h estimates appeared 
non-linear in form, correlations including this measure used the ranked Spearman correlation.

Data Availability. All data presented in the main document can be found as an online supplementary file.
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