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Deciphering mechanisms of 
acquired T790M mutation after 
EGFR inhibitors for NSCLC by 
computational simulations
Bin Zou1, Victor H. F. Lee  2, Lijiang Chen1,3, Lichun Ma1, Debby D. Wang4 & Hong Yan1

Metastatic non-small-cell lung cancer (NSCLC) with activating EGFR mutations responds very well to 
first and second generation tyrosine-kinase inhibitors (TKI) including gefitinib, erlotinib and afatinib. 
Unfortunately, drug resistance will eventually develop and about half of the cases are secondary to the 
emergence of acquired T790M somatic mutation. In this work, we prospectively recruited 68 patients 
with metastatic EGFR-mutated NSCLC who have developed progressive disease after first-line TKI with 
or without subsequent TKI and/or other systemic therapy. Liquid biopsy after progression to their last 
line of systemic therapy were taken for detection of acquired T790M mutation. By performing attribute 
ranking we found that several attributes, including the initial EGFR mutational type, had a high 
correlation with the presence of acquired T790M mutation. We also conducted computational studies 
and discovered that the EGFR mutation delE746_A750 had a lower stability around the residue T790 
than delS752_I759 and L858R, which was consistent with our clinical observation that patients with 
delE746_A750 were more likely to acquire T790M mutation than those with delS752_I759 or L858R. Our 
results provided new insight to future direction of research on investigating the mechanisms of acquired 
T790M mutation, which is essential to the development of novel mutation-specific TKIs.

Lung cancer is the leading cause of cancer death worldwide1, 2. Non-small-cell lung cancer (NSCLC) constitutes 
about 85% of all lung cancers with adenocarcinoma as the most common histological type. Mutation of the 
epidermal growth factor receptor (EGFR) is the most common driver mutation of NSCLC and its incidence can 
reach 60% in East Asian population3–5. These “driver” mutations increase the kinase activity of EGFR, leading to 
EGFR overexpression and uncontrolled lung cell division and eventually lung cancer. Exon 19 deletions and exon 
21 L858R point mutation account for more than 80% of driver mutations6, 7.

Tyrosine-kinase inhibitors (TKI) against EGFR-mutated NSCLC have been devised and investigated exten-
sively for the past 2 decades. First-generation TKI including gefitinib and erlotinib, are reversible inhibitors 
binding to the EGFR kinase domain, which block the subsequent signal transduction leading to inhibition of 
tumor proliferation. International phase III randomized-controlled trials (RCT) have confirmed their superiority 
with improved progression-free survival (PFS) over systemic chemotherapy as first-line treatment for metastatic 
EGFR-mutated NSCLC8–15. Afatinib, as a second-generation TKI which binds irreversibly to ErbB family recep-
tors, has also been shown to confer PFS advantage over systemic chemotherapy, and more recently, gefitinib as 
first-line treatment16–18. Tumors with activating EGFR mutations, especially exon 19 deletion, are particularly 
responsive to this second-generation TKI leading to a longer overall survival (OS) compared to systemic chemo-
therapy19. Based on these outcomes with improved PFS, better objective responses and more manageable toxicity 
profiles over systemic chemotherapy, these three TKIs have been approved by Food and Drug Administration 
of the United States as first-line treatment for metastatic EGFR-mutated NSCLC. Despite initial promising and 
dramatic response to these TKIs, almost drug resistance will ultimately develop within 1 to 2 years. The most 
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N = 68 (%)

Median age in years (range) 66 (47–87)

Sex

  Male 14 (20.6)

  Female 54 (79.4)

Histology

  Adenocarcinoma 67 (98.5)

  Squamous cell carcinoma 1 (1.5)

Smoking history

  Never smoker 58 (85.3)

  Chronic smoker 2 (2.9)

  Ex-smoker 8 (11.8)

ECOG PS

  0 20 (29.4)

  1 48 (70.6)

Site of metastases before TKI therapy

  Lung 59 (86.8)

  Pleura/pleural effusion 30 (44.1)

  Brain 15 (22.1)

  Liver 11 (16.2)

  Bone 34 (50.0)

  Distant lymph nodes 18 (26.5)

Number of sites of metastases before 1st line TKI therapy

  1 15 (22.1)

  2 12 (32.4)

  3 19 (27.9)

  4 9 (13.2)

  5 3 (4.4)

Types of pre-treatment EGFR mutation

  Exon 19 mutations 37 (54.4)

  LRE deletions 34 (50.0)

  E746_A750 deletions 31 (45.6)

  Non-E746_A750 deletions 3 (4.4)

  Non-LRE deletions 3 (4.4)

  Exon 21 L858R mutations 31 (45.6)

  Double mutations 3 (4.4)

  Exon 19 deletion + exon 20 D807E mutation 1 (1.5)

  Exon 21 L858R mutation + exon V765L mutation 1 (1.5)

  Exon 21 L858R mutation + exon 18 G719A mutation 1 (1.5)

Number of lines of TKI therapies before liquid biopsy

  1 TKI 53 (77.9)

  2 TKIs 12 (17.6)

  3 TKIs 3 (4.4)

First-line TKI used 68 (100)

  Gefitinib 54 (79.4)

  Erlotinib 7 (10.3)

  Afatinib 7 (10.3)

Second-line TKI used 14 (20.6)

  Gefitinib 2 (2.9)

  Erlotinib 8 (11.8)

  Afatinib 4 (5.9)

Third-line TKI used 3 (4.4)

  Gefitinib 0 (0)

  Erlotinib 2 (2.9)

  Afatinib 1 (1.5)

Best overall response after 1st (n = 68)/2nd (n = 14)/3rd (n = 3) TKI therapy before liquid biopsy

  Complete response 5 (7.4)/0 (0)/0 (0)

  Partial response 39 (57.4)/2 (2.9)/0 (0)

Continued



www.nature.com/scientificreports/

3SCIEnTIFIC RepoRts | 7: 6595 | DOI:10.1038/s41598-017-06632-y

common mechanism of drug resistance is the development of somatic mutation T790M on exon 20, accounting 
for about 50% of all mutations of acquired resistance20.

There are two plausible explanations for the development of T790M mutation as acquired resistance to EGFR 
TKI therapy. As threonine 790 is located at the entrance in the back of the ATP binding cleft, one postulation is 
that substitution of threonine 790 with a bulky methionine causes steric interference with binding of TKIs20–22. 
Another explanation is that introduction of the T790M mutation increases the affinity for adenosine triphosphate 
(ATP) which in turn causes reduced binding of the ATP-competitive TKI including gefitinib and erlotinib20, 21, 23.  
Nevertheless, little attention has been paid to the mechanism of emergence of T790M mutation. Very limited 
information is known hitherto with respect to the reason why T790M emerges and the predictive factors for such 
development.

In this study, we analyzed a prospectively collected cohort of patients with metastatic EGFR-mutated NSCLC 
treated with gefitinib, erlotinib or afatinib as first-line treatment with or without subsequent TKI or system 
chemotherapy. Plasma biopsy with or without additional paired tumor biopsies were performed at the time of 
progressive disease (PD) after their last line of systemic therapy for detecting acquired T790M mutation. We eval-
uated the correlation of each personal attribute and presence of T790M after one or more line(s) of TKIs therapy 
with or without additional systemic therapy. Moreover, computational modeling and molecular dynamics (MD) 
simulations were employed to investigate the involved EGFR mutants and their motion patterns when bind-
ing with these three TKIs. We then further analyzed the stability of residues around T790 for each mutant-TKI 
complex.

Results
Patient characteristics and therapy profiles. This study prospectively recruited 68 patients with EGFR-
mutated NSCLC and their baseline characteristics were shown in Table 1. Almost all patients (98.5%) suffered 
from adenocarcinoma with the exception of one patient who suffered from squamous cell carcinoma. Baseline 
EGFR mutations were of the following types: exon 19 LRE deletions (most of them were delE746_A750, deletion 
of residues at sites 746–750) in 34 (50.0%) patients, exon 19 non-LRE deletions (deletion-starting codon other 
than L747, R748 nor E749) in 3 (4.4%) patients and exon 21 L858R point mutation in 31 (45.6%) patients. These 
three subgroups have been found prognostic of progression-free survival after first-line TKI therapy in our previ-
ous study24. Of the 34 patients with exon 19 LRE deletions, 31 of them had delE746_A750, while the remaining 3 
patients had delE746_S752insV, delL747_T751insP and delE746_T751insV, respectively. The 3 patients with exon 
19 non-LRE deletions had delS752_I759, delT751_I759insN and delT751_I759insS, respectively. Interestingly, 3 
(4.4%) patients had double mutations, coupled with either exon 19 deletion (1 patient) or L858R point mutation 
(2 patients).

All patients received first-line TKI with or without additional TKI and/or systemic therapies. Before plasma 
and/or tumor re-biopsy for acquired T790M mutation, 51 (75%) patients received only one line of TKI, 14 (21%) 
patients received two lines of TKI and 3 (4%) patients received three lines of TKI. 16 (23.5%), 6 (8.8%) and 
2 (2.9%) patients received one, two and three additional lines of chemotherapy with or without anti-vascular 
endothelial growth factor (anti-VEGF) therapy before plasma and/or tumor re-biopsy for acquired T790M muta-
tion. All patients had plasma re-biopsy by ddPCR at the time of PD after their last line of systemic therapy. Four 
(5.9%) patients had additional paired tumor re-biopsies for acquired T790M mutation and their tumor genotyp-
ing results were all concordant with the plasma re-biopsy result.

Attribute ranking results. To evaluate the importance of each attribute contributing to the presence of 
T790M mutation in tumor or plasma biopsy, we performed attribute ranking using six attribute ranking methods 
available in Weka 3.8.0. In Table 2, the first three selected attributes were listed for each attribute evaluator. We 
found that three attributes namely Bone_met, Number_sites_met and Initial_EGFR_mutation had the highest 
ranking for most attribute evaluators.

N = 68 (%)

  Stable disease 21 (30.9)/6 (8.8)/2 (2.9)

  Progressive disease 3 (4.4)/6 (8.8)/1 (1.5)

Number of lines of prior chemotherapy ± anti-VEGF therapy before liquid biopsy

  0 line 44 (64.7)

  1 line 16 (23.5)

  2 lines 6 (8.8)

  3 lines 2 (2.9)

Best overall response after 1st (n = 23)/2nd (n = 9)/3rd (n = 2) line chemotherapy ± anti-VEGF therapy before liquid biopsy

  Complete response 1 (1.5)/0 (0)/0 (0)

  Partial response 7 (10.3)/4 (5.9)/(1 (1.5)

  Stable disease 7 (10.3)/3 (4.4)/0 (0)

  Progressive disease 8 (11.8)/2 (2.9)/1 (1.5)

Table 1. Baseline patient characteristics. ECOG: Eastern Cooperative Oncology Group; EGFR: epidermal 
growth factor receptor; PD: progressive disease; PS: performance status; TKI: tyrosine-kinase inhibitors; VEGF: 
vascular endothelial growth factor.



www.nature.com/scientificreports/

4SCIEnTIFIC RepoRts | 7: 6595 | DOI:10.1038/s41598-017-06632-y

Altogether 27 (39.7%) patients acquired T790M mutation confirmed by plasma or tumor re-biopsy after TKI 
with or without subsequent TKI and/or systemic therapies. Also 34 (50.0%) patients had bone metastasis at base-
line and 21 (61.8%) of them acquired T790M mutation after TKI therapy, accounting for 77.8% of all of the 27 
patients who acquired T790M mutation. We observed that patients with bone metastasis at baseline were more 
likely to acquire T790M (61.8%) than patients without it (17.7%) (p = 0.0004). Moreover, 15 out of 18 (83.3%) 
patients who had both bone metastasis and delE746_A750 mutation at baseline developed acquired T790M 
mutation. If patients had both bone metastasis and delE746_A750 mutation, the probability of acquiring T790M 
was even higher (83.3%) (p < 0.0001). With respect to the number of sites of metastasis at baseline, 15 patients 
had only one site of metastasis and 14 (93.3%) of them did not acquire T790M. It was noted that if patients had 
only one site of metastasis, they were unlikely to develop T790M (p < 0.0001).

As far as the initial EGFR mutational types were concerned, 61.3% of patients with the delE746_A750 muta-
tion acquired T790M, compared to no patients and 25.8% of patients with exon 19 non-LRE deletions and L858R 
mutation respectively (p = 0.0059). Table 3 showed the probability of acquiring T790M for each mutation and 
for each TKI. Interestingly, the other 3 patients with exon 19 LRE deletions but not delE746_A750 (not shown in 
Table 3) did not acquire T790M.

Computational modeling results. After the attribute ranking analysis, we found that the probability of 
acquiring T790M after taking first-line TKIs (gefitinib, erlotinib and afatinib) was highly correlated with the 
patient’s initial EGFR mutation type. Patients with the delE746_A750 mutation have much higher probability 
of acquiring T790M than patients with the L858R mutation or exon 19 non-LRE deletions. Moreover, delE746_
A750 and L858R accounted for about 92% of all patients we studied and delS752_I759 was the most common 
exon 19 non-LRE deletions24. In order to investigate this relationship further, we carried out molecular modeling 
and analysis for these three EGFR mutations, delE746_A750, delS752_I759 and L858R. We explored the motion 
pattern of each mutant-TKI complex in MD simulations.

Although the EGFR L858R-gefitinib complex (2ITZ) is available in the Protein Data Bank (PDB)25, no infor-
mation of other EGFR mutant and drug complexes exist in the public domain. Furthermore, the EGFR kinase 
domain should contain residues from 696 to 1022, but 2ITZ was not completely recorded. Only three segments, 
697–865, 876–990 and 1002–1020, are available in 2ITZ. In this regard, we first needed computational modeling 
to predict the 3D structures of EGFR mutant-TKI complexes for the three EGFR mutations and the three TKIs 
(gefitinib, erlotinib and afatinib).

Attribute evaluator Top three attributes

1 Chi-squared Ranking Filter

1. Bone_met

2. Number_sites_met

3. Initial_EGFR_mutation

2 Correlation Ranking Filter

1. Bone_met

2. Initial_EGFR_mutation

3. Age_60

3 Filtered Attribute Evaluator

1. Bone_met

2. Number_sites_met

3. Initial_EGFR_mutation

4 Information Gain Ranking Filter

1. Bone_met

2. Number_sites_met

3. Initial_EGFR_mutation

5 ReliefF Ranking Filter

1. Bone_met

2. Initial_EGFR_mutation

3. Age_75

6 Symmetrical Uncertainty Ranking Filter

1. Bone_met

2. Number_sites_met

3. Initial_EGFR_mutation

Table 2. Attribute ranking results.

delE746_A750 non-LRE L858R Overall

Gefitinib 17/28 (60.7%) 0/3 7/23 (30.4%) 24/54 (44.4%)

Erlotinib 4/9 (44.4%) 0/1 0/5 (0%) 4/15 (26.7%)

Afatinib 4/6 (66.7%) 0/0 1/5 (20.0%) 5/11 (45.5%)

Overall 19/31 (61.3%) 0/3 8/31 (25.8%) 27/65 (41.5%)

Table 3. Probability of acquiring T790M for each mutation and tyrosine-kinase inhibitor.
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Complete wild-type (WT) EGFR structure. For the first step, we generated the complete WT EGFR 
structure using structure alignment methods. The results were shown in Fig. 1. 2ITY was used as the initial struc-
ture and segments of 3IKA (residues 858–879) and 3W2S (residues 987–1019) were used as the complements to 
the lost parts of 2ITY.

EGFR mutant-TKI complex. After obtaining the complete WT EGFR structure, we generated the struc-
tures for all EGFR mutants, (delE746_A750, L858R and delS752_I759) using Rosetta. Their results are shown 
in Fig. 2A. We realized that the structures of the three EGFR mutants (green) looked very similar to that of WT 
EGFR (gray). When examined more closely, however, some differences could be discerned in the deletion sites 

Figure 1. Computational modeling results for the complete WT EGFR structure. (A) The initial structure 
2ITY. (B) The generated complete WT EGFR structure. (C) The segments of 3IKA (residues 858–879). (D) The 
segments of 3W2S (residues 987–1019). In (C,D), the yellow part (2ITY) and the grey part (3IKA or 3W2S) 
aligned very well. The red segments replaced the corresponding yellow segments to generate the complete WT 
EGFR structure.

Figure 2. Computational modeling results for L858R, delE746_A750 and delS752_I759. (A) Overall structures 
for these three mutants. (B) Details in the deletion sites. Blue parts are the sites of E746 to A750 and red parts 
are the sites of S752 to I759.
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among these three different mutational types, as shown in Fig. 2B. Compared with the WT EGFR structure, the 
deletion sites of the deletion mutants were rearranged. Little difference was observed in the mutational site of 
L858R for the backbone.

Then we aligned the above EGFR mutants to templates of the three TKIs and placed the TKIs to proper posi-
tions to generate EGFR mutant-TKI complexes. 2ITY, 1M17 and 4G5J were selected as the templates for EGFR 
mutant-gefitinib, erlotinib and afatinib complexes. The results were displayed in Fig. 3. Each diagram contained 
the same four TKIs. Three of them are for the EGFR mutant-TKI complexes and the other one was for the tem-
plate. Afatinib was covalently bound to EGFR kinase domain and we combined afatinib and EGFR C797 into a 

Figure 3. The results of the aligned TKIs. (A) Gefitinib. 2ITY was the template. (B) Erlotinib. 1M17 was the 
template. (C) Afatinib. 4G5J was the template. Each figure contained four TKIs. Three of them were for the 
EGFR mutant-TKI complexes and the other one was for the template.

Z-score Verify3D

Ramachandran 
Plot Favored/
Allowed/Outlier

2ITY −1.38 88.00% 85.4%/10.5%/4.1%

delE746_A750-gefitinib −1.87 90.97% 93.7%/4.7%/1.6%

delS752_I759-gefitinib −1.90 89.90% 93.0%/6.1%/1.0%

L858R-gefitinib −1.63 92.70% 93.8%/5.9%/0.3%

delE746_A750-erlotinib −1.41 90.65% 91.8%/7.0%/1.3%

delS752_I759-erlotinib −2.01 88.60% 93.3%/5.8%/1.0%

L858R-erlotinib −1.54 92.38% 93.1%/6.5%/0.3%

delE746_A750-afatinib −1.65 88.35% 93.0%/5.4%/1.6%

delS752_I759-afatinib −2.11 88.89% 95.8%/2.9%/1.3%

L858R-afatinib −1.97 92.70% 93.8%/5.9%/0.3%

Table 4. Quality assessment of the nine EGFR mutant-TKIs complexes and the reference structure 2ITY. 
EGFR: epidermal growth factor receptor.

Figure 4. The residue stability of (A) delE746_A750-gefitinib complex, (B) delS752_I759-gefitinib complex 
and (C) L858R-gefitinib complex. The upper panels showed the mean value and the lower panels showed the 
standard deviation.
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new block “AFA”, as shown in Fig. 3C. The diagrams showed these TKIs were aligned well with RGFR mutants 
although there were minor differences produced in the energy minimization procedure.

Quality assessment of generated structures. Quality assessment of the predicted models is an impor-
tant part in protein structure prediction. In this study, we used three commonly used methods to assess the 
quality of our predicted EGFR mutant-TKI complexes. The first one is QMEAN Z-score26, 27, which estimates the 
quality of a single protein structure by relating it to a representative set of high resolution experiment structures, 
with a higher Z-score corresponding to a better quality of the structure. The second method is Verify3D28, which 
assesses the compatibility of a model with its amino acid sequence based on its location and environment. A value 
bigger than 80% will pass the verification. We also used Ramachandran Plot to validate the structures29. These 
three assessment methods were applied to the nine EGFR mutant-TKIs complexes and the reference structure 
2ITY. The results were shown in Table 4. We confirmed that, compared to the reference structure 2ITY, all 9 EGFR 
mutant-TKIs complexes passed the quality assessment with satisfactory results.

Molecular dynamics (MD) simulations and residue stability results. In order to investigate the rela-
tionship between patients’ initial EGFR mutation types and the presence of T790M as the second mutation after 
taking gefitinib, erlotinib or afatinib, we analyzed the stability from the motion patterns of residues around the 

Figure 5. The cumulative average stability for (A) EGFR mutant-afatinib complexes, (B) EGFR mutant-
erlotinib complexes, (C) EGFR mutant-gefitinib complexes and (D) EGFR mutants without ligand. The 
cumulative average stability for residue index k corresponded to the average stability of the first k residues 
closest to the residue T790.
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residue T790 for each mutant-TKI complex. Through performing MD simulations (simulation time 10 ns) we 
obtained a trajectory of 5000 frames for each EGFR mutant-TKI complex.

We calculated the stability of each residue in each EGFR mutant-TKI complex. Figure 4 showed the resi-
due stability of delE746_A750-gefitinib complex, delS752_I759-gefitinib complex and L858R-gefitinib complex, 
respectively. Only residues from 716 to 976 were presented since there might be a degree of arbitrariness of the 
stability of the head (residue 697–715) and the tail (residue 977–1019) of each EGFR mutant. The head and the 
tail were roughly selected because the first helix started at about residue 716 and the last helix ended at about 
residue 976. In Fig. 4, the horizontal axes were the residue indices and we rearranged their order according to 
their distance to the residue T790. Residue index 0 corresponded to the residue T790 itself and residue index 1 
corresponded to the closest residue to T790. From Fig. 4, we noticed that the stability, in terms of both the mean 
value and the standard deviation, of the residues in the EGFR mutant-gefitinib complexes around T790 was rela-
tively higher than residues far from T790. For EGFR mutant-erlotinib and EGFR mutant-afatinib complexes, the 
results were similar.

To compare the residue stability around T790 for different EGFR mutants-TKI complexes, we calculated the 
cumulative average for all stability results. Specifically, the cumulative average stability for residue index k in Fig. 5 
corresponded to the average stability of the first k residues closest to T790. The cumulative average stability, espe-
cially the first dozens of values, reflected the overall residue stability around T790. From Fig. 5, we found that for 
all three TKIs, delE746_A750 had a higher value (i.e. lower stability) around T790 than the other two mutations, 
delS752_I759 and L858R. This result was consistent with the fact that patients with delE746_A750 were more 
likely to acquire a second T790M mutation than patients with delS752_I759 or L858R after taking gefitinib, erlo-
tinib or afatinib as 1st line therapy. On the other hand, for afatinib and gefitinib, delS752_I759 has lower stability 
around T790 than L858R while delS752_I759 has higher stability around T790 than L858R for erlotinib. Because 
the probability of acquiring T790M mutation for patients with delS752_I759 or L858R was low, and there were 
only three patients whose tumor harbored delS752_I759 mutation, it was thus difficult to compare the residue 
stability of these two mutations. We also carried out simulations for EGFR mutants without ligand (Fig. 5D). We 
found that in this case, the stability results also roughly the same as those discussed above. We also observed that 
combining with a ligand could increase the stability of the EGFR mutant (see Supplementary Fig. S1).

Discussion
Patients with metastatic NSCLC which harbored activating EGFR mutations (exon 19 deletions and exon 21 
L858R mutation) respond very well to first generation TKI (gefitinib and erlotinib) and second generation TKI 
(afatinib) as first-line treatment, as exemplified by international phase III RCT8–19. However, more than 50% of 
such patients will develop acquired resistance to these TKIs because of a second mutation T790M20. Exploring the 
mechanisms of acquiring T790M after failure to TKIs is crucial to subsequent decision making and study design 
in future preclinical and clinical drug trials.

Plasma biopsy by ddPCR is one of the most sensitive techniques and platforms of detecting acquired T790M 
mutation after EGFR TKI therapy30, 31. The DNA templates by ddPCR were separated into thousands or even mil-
lions of individual parallel PCR reactions. The detection of the signal after amplification by droplet flow cytome-
try indicates the presence (positive) or absence (negative) of the target sequence. It allows for detection of mutant 
cfDNA in a high background of wild-type cfDNA, leading to a high sensitivity. The use of ddPCR is one of the 
strengths in our study that gives an accurate presentation of the genomic landscape of the tumor microenviron-
ment, as compared to single tumor biopsy which only offers the genomic picture of a particular tumor focus.

In this study, we found that bone metastasis, initial EGFR mutational type and the number of sites of metas-
tases correlated well with development of acquired T790M mutation after taking first-line TKI with or without 
subsequent TKI or systemic chemotherapy. If patients had both bone metastasis and delE746_A750 mutation, the 
probability of acquiring T790M was even higher. On the other hand, 61.3% of patients with the delE746_A750 
mutation acquired T790M, while the percentages for exon 19 non-LRE deletions and L858R were 0 and 25.81%, 
respectively. It seemed that patients with delE746_A750 would have a higher probability of acquiring T790M than 
those with exon 19 non-LRE deletions mutation, though a definite conclusion could not be made owing to the 
small number of patients with exon 19 non-LRE deletions.

Based on our results that patients who had delE746_A750 mutation were more likely to acquire T790M after 
targeted treatment than those with exon 19 non-LRE deletions or L858R mutation, we conducted computational 
studies by the use of molecular dynamics. Specifically, we first generated the structures for all EGFR mutant-TKI 
complexes involved using computational modeling methods. Through MD simulations, we obtained a trajectory 
of 5000 frames for each complex. Then we calculated the stability of each residue in each EGFR mutant-TKI com-
plex. We found that the stability of residues in the EGFR mutant-gefitinib complexes around T790 was relatively 
higher than residues far from T790 for all three EGFR mutations and the results were similar when the other two 
EGFR-mutant-TKI complexes we studied. We also found that for all three TKIs, delE746_A750 has lower stability 
around the residue T790 than the other two mutations namely delS752_I759 and L858R. These results echoed 
with our clinical observation that patients with delE746_A750 were more likely to acquire a second T790M muta-
tion than patients with delS752_I759 or L858R after taking gefitinib, erlotinib or afatinib. However, it is notewor-
thy that T790M mutation is no longer prognosticative of a worse survival32–34, especially when T790M specific 
TKIs have been developed and evaluated showing excellent objective responses and survival outcomes35, 36.  
In particular, osimertinib has been approved by the United States, Japan and Korea for metastatic NSCLC with 
acquired T790M mutation after prior failure to first or second generation TKI35. To the best of our knowledge, 
our study is the first providing a plausible computational explanation why progressive disease develops in those 
with T790M mutation after the first and second TKIs. The findings here can lead us to a better understanding of 
mechanism of acquiring the T790M mutation after targeted treatment and will be beneficial to EGFR-mutated 
NSCLC treatment design.

http://S1
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Our study also has some limitations. First of all, only 4 patients had paired tumor re-biopsies with plasma 
re-biopsies for acquired T790M mutation. Though ddPCR is one of the most sensitive methods of plasma biopsy 
for T790M mutation, the concordance rate between plasma and tumor re-biopsies was around 60–70%37, 38. 
Nevertheless, plasma re-biopsies provide a broader representation of the genomic landscape of all subpopu-
lations of tumors within a patient. Secondly, we created the structures of EGFR mutant-erlotinib and EGFR 
mutant-afatinib for this study specially because there was no previous literature showing their molecular struc-
tures. However, we believe that our methods of computational modeling are credible as they are based on stand-
ard protocols. In addition, quality assessment of our EGFR mutant-TKI complexes has been performed using 
three methods to ensure their stability. Thirdly, we could not provide a clear answer if our study results can be 
extrapolated to other rarer subtypes of sensitizing EGFR mutations, including delL747_P753insS and other inser-
tion/substitutions subtypes in exon 19 and L861Q in exon 21 as we reported previously24. A larger cohort with 
more dedicated methods of sequencing e.g. next-generation sequencing at baseline before TKI therapy for these 
rarer mutational subtypes is warranted to investigate their correlation with T790M development.

In conclusion, this is the first study demonstrating the predictive factors for acquired T790M mutation and the 
instability of binding between exon 19 delE746_A750 and TKIs leading to higher rates of acquired T790M devel-
opment which correlated with the clinical observations in our patients. Our results have provided some insight 
on future directions of research investigating the mechanisms of acquired T790M mutation, which is essential to 
the development of novel mutation-specific TKIs.

Methods
Patient eligibility and data collection. Prior approval by local institutional review board (Institutional 
Review Board of University of Hong Kong/Hospital Authority Hong Kong West Cluster) was obtained before 
study commencement. The study protocol and the experiment methods in this study were also approved by the 
same institutional review board. All patients provided written informed consent before recruitment. All clinical 
investigations and management were conducted according to the principles of Declaration of Helsinki. Patients 
were eligible for this study if they were histologically or cytologically diagnosed to have metastatic NSCLC, if 
they had known activating EGFR mutations (either exon 19 deletions or exon 21 L858R mutation), if they had 
clinical benefits (as defined by Jackman criteria) from first or second-generation EGFR-TKI (either gefitinib, 
erlotinib or afatinib) as first-line therapy and if they had confirmed radiologically confirmed PD, as defined by 
the Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1, while still receiving such EGFR-TKI39, 40.  
Regular imaging surveillance at baseline and then every 3 to 4 months after first-line TKI with or without sub-
sequent systemic therapy with either computed tomography (CT) of the brain, chest and abdomen or position 
emission tomography with integrated CT scan (PET-CT) was performed for tumor response assessment. Those 
who had pre-treatment exon 20 T790M mutation were excluded from this study. The number of lines of prior TKI 
therapies and/or systemic chemotherapy ± anti-VEGF therapy with bevacizumab was not limited in this study. 

Attribute Description

1 Age_55 Age ≥55 years

2 Age_60 Age ≥60 years

3 Age_65 Age ≥ 65 years

4 Age_70 Age ≥70 years

5 Age_75 Age ≥75 years

6 Age_80 Age ≥80 years

7 Sex Sex

8 Smoking Smoking history at baseline

9 Lung_met Lung metastasis at baseline

10 Pleural_met Pleural metastasis at baseline

11 Brain_met Brain metastasis at baseline

12 Liver_met Liver metastasis at baseline

13 Bone_met Bone metastasis at baseline

14 Distant_LN_met Distant lymph node metastasis at baseline

15 Number_sites_met Number of sites of metastases at baseline

16 Initial_EGFR_mutation Type of initial EGFR mutation before TKI therapy

17 Number_lines_TKI Number of lines of TKI used before liquid and/or tumor re-biopsy

18 Number_lines_chemo Number of lines of chemotherapy before liquid and/or tumor re-biopsy

19 First_TKI Use of first TKI

20 Second_TKI_used Use of second TKI

21 Third_TKI_used Use of third TKI

22 First_chemo_used Use of first-line chemotherapy

23 Second_chemo_used Use of second-line chemotherapy

24 Third_chemo_used Use of third-line chemotherapy

Table 5. Attributes selected for attribute ranking. EGFR: epidermal growth factor receptor, LN: lymph node.
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After progressive disease (PD) to first-line TKI therapy with or without subsequent TKI therapies or systemic 
therapies, blood taking for plasma biopsy for cell-free tumor DNA (cfDNA) by ddPCR and/or tissue re-biopsy 
followed by Sanger sequencing for detecting acquired T790M mutation was performed from all patients within 2 
weeks after radiological confirmation of PD to their last line of systemic therapy. The method and the platform for 
ddPCR was previously described41, 42. In brief, ddPCR assay was conducted by droplets generation using QX200 
generator (Bio- Rad Laboratories, Inc., Hercules, CA, USA), followed by endpoint PCR reactions using C1000 
(Bio-Rad) and droplet flow cytometry readings using QX200 reader (Bio- Rad). Analyzed data were processed 
using QuantaSoft (Bio-Rad) software. Several mutations including all types of exon 19 deletions, exon 21 L858R 
mutation and exon 20 T790M mutation could be detected simultaneously.

Attribute ranking. To evaluate the importance of each attribute contributing to the presence of T790M 
mutation in plasma or tumor biopsy after TKI therapy, attribute ranking was performed as follows. We selected 24 
attributes that were assessable and complete for all patients (Table 5), including patients’ baseline characteristics 
and their treatment modalities. We further sub-categorized age into different subgroups: age ≥55, 60, 65, 70, 75 
and 80 years. For the initial EGFR mutational types, we divided them into three groups: exon 19 LRE deletions, 
exon 19 non-LRE deletions and L858R point mutation. Weka 3.8.043, 44 was used to perform attribute ranking. We 
used multiple attribute evaluators available in Weka, including Chi-squared Ranking Filter, Correlation Ranking 
Filter, Filtered Attribute Evaluator, Information Gain Ranking Filter, ReliefF Ranking Filter and Symmetrical 
Uncertainty Ranking Filter for the subsequent analysis. For all these six methods, we used Ranker as the search 
method, which ranked attributes by their individual evaluations. Default parameters were applied to all attribute 
evaluators and the search method. The results were compared after performing attribute ranking with these six 
methods.

EGFR mutant-TKI complex modeling. Our method for EGFR mutant-TKI complex modeling consisted 
of three main steps. The first step was to generate a complete structure of the WT EGFR kinase domain. In our 
study, Molsoft ICM-Browser (http://www.molsoft.com/icm_browser.html)45 was employed and we used the vis-
ualization and alignment functions of this tool to complete this task. Specifically, we first selected three EGFR 
structures, 2ITY, 3W2S and 3IKA, from the PDB and we aligned them together using Molsoft ICM-Brower. We 
used 2ITY (EGFR WT-gefitinib complex) as the initial structure and segments of 3IKA (EGFR T790M-WZ4002 
complex) and 3W2S (EGFR WT-compound4 complex) were used as the complements to the lost parts of 2ITY. 
Combining these three structures we were able to produce a complete structure of EGFR kinase domain. Then, we 
performed an energy minimization on the structure using Amber46 to optimize the structure.

The second step was to generate structures for all EGFR mutants involved with the complete WT EGFR struc-
ture with the method previously described by us47. Specifically, Rosetta48 ddg_monomer protocol was used to 
generate the EGFR point mutation and Rosetta comparative modeling (CM) protocol was used to generate the 
mutations of amino acids deletion. For the point mutation, Rosetta first replaced the side-chain of the residue at 
the mutation position and then optimize the rotamers of all residues using its side-chain optimization module. 
For mutations of amino acids deletion, Rosetta first aligned these mutant sequences to the template WT EGFR 
sequence and then built the well-aligned regions using the CM protocol. Next, loop modeling with the fragment 
library was applied to rebuild the missing parts. After the final refinement step we were able to generate the 
required structure.

The third step was to combine the above EGFR mutants with the three TKIs to generate EGFR mutant-TKI 
complexes. The basic method was to align the EGFR mutant to a template and then add the TKI of the template 
to the current EGFR mutant. Specifically, we chose 2ITY as the template for EGFR mutant-gefitinib complexes, 
1M17 for EGFR mutant-erlotinib complexes and 4G5J for EGFR mutant-afatinib complexes. Since afatinib is 
an irreversible TKI which is covalently bound to EGFR kinase domain, we manually created a covalent bond 
between afatinib and the EGFR mutant to produce the EGFR mutant-afatinib complexes. Here, we deleted the 
H atom of the thiol side chain in the cysteine residue at position 797 of exon 20. However, this structure cannot 
be used directly for molecular dynamics simulations in Amber. We needed to combine afatinib and EGFR C797 
into a new block, which will be called “AFA”. Only in this way, Amber could deal with EGFR-afatinib as a single 
connected object, and not two separate unconnected objects like EGFR-gefitinib or EGFR-erlotinib complexes. 
Finally, we performed an energy minimization on the structure using Amber to optimize these structures.

Molecular dynamics (MD) simulations. We performed MD simulations using Amber12. We first 
employed the antechamber program49 to assign atomic charges and atom types for gefitinib, erlotinib and “AFA”. 
Then, the first step of MD simulations was preparation of the coordinate (.inpcrd) and topology (.prmtop) files 
using the LEaP tool in Amber. To achieve this, we first loaded the Amber force fields ff12SB and gaff to construct 
the molecular topologies. Then we loaded the EGFR mutant and combined it with the corresponding TKI to cre-
ate a complex. Subsequently, we created a solvent environment for each system with the TIP3P water model. The 
truncated octahedral water box was used and a 10-angstrom buffer was set around the solute in each direction. 
After neutralizing the solvated system, the coordinate and topology files were saved for further processing.

The next step was minimization and equilibration of the system to guarantee a stable simulation. This step 
was the same with the procedures applied before50. Specifically, we first performed a 1000-step energy minimi-
zation on the system to remove bad contacts within the solute. Then we heated the system for 50 ps from 0 K to 
300 K. Lastly, we implemented a density equilibration for 50 ps and a constant-pressure equilibration for 500 ps 
on the system. For minimization, heating and density equilibration, we applied a weak restraint with a weight of 
2 (in kcal/mol-Å^2) on all non-H atoms of the solute. We validated the equilibration of the system by observ-
ing the stability of the temperature, density, energy and root mean square deviation (RMSD) of the system (see 
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Supplementary Fig. S2). Once the system was equilibrated, the key production MD simulations of 10 ns were 
performed with constant temperature and constant pressure. Trajectory frames were sampled every 2 ps, resulting 
in 5000 frames for each EGFR mutant-TKI complex.

Residue stability calculation. After obtaining the trajectory data of each EGFR mutant-TKI complex, we 
evaluated the stability of each residue of the complex. The major method was to calculate the difference between 
each frame and a reference frame. For the reference frame, there were several choices, including the original 
structure (the structure of the EGFR mutant-TKI complex from modeling and 3D structure prediction), one of 
the frames of the trajectory, or the average structure of the trajectory. In this study, we used the average structure 
as the reference frame because it was more representative of all the frames in the trajectory. However, prior to 
calculating the average structure, it was required to remove the translation and rotation of each frame. The cpptraj 
program in AmberTools12 was used and the position of each frame was best-fit to the original structure of the 
EGFR mutant-TKI complex. Furthermore, we considered only non-hydrogen atoms since hydrogen atoms were 
too small and too light when compared to heavy atoms.

To calculate the residue stability, we first defined distance (A1, A2) (distance between two atoms A1 and 
A2) as the Euclidean distance between points A1(x1, y1, z1) and A2(x2, y2, z2) (Equation (1)). We then defined 
the distance between each residue in each frame and the corresponding residue in the reference frame as resi-
due_disti,j, equal to the average of the distances between corresponding atoms in this residue (Equation (2)). The 
residue stability represented the fluctuation of each residue in all trajectory frames around their average position. 
It consisted of two parts. One was the average distance between each residue in each frame and the corresponding 
residue in the reference structure (Equation (3)) and the other part was the standard deviation of the distances 
(Equation (4)). Both of them could reflect the stability of each residue.
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where Ai,j,k stands for the coordinates of the kth atom in the ith residue of the jth frame, refi,k represents the coor-
dinates of the kth atom in the ith residue of the reference structure, residue_disti,j corresponds to the distance 
between the ith residue of the jth frame and the ith residue of the reference structure, stability_meani and stabil-
ity_stdi represent the stability of the ith residue, K is the number of non-hydrogen atoms in the corresponding 
residue, and J is the number of frames in the trajectory.

To investigate the residue stability around the residue T790, we evaluated the average distance between each 
residue and the residue T790. Specifically, we first calculated the center coordinates of each residue in each frame 
(Equation (5)). We defined the distance between two residues as the distance between their centers. Then the 
average distance between each residue and the residue T790 was computed for all position frames (Equation (6)). 
We studied the stability of each residue as well as their distance to T790 to investigate the residue stability around 
the residue T790 and compare the residue stability of different EGFR mutant-TKI complexes.
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where residue_centeri,j stands for the center coordinates of the ith residue in the jth frame, and dist_to_T790i is the 
distance between the ith residue and the residue T790.

Statistical analysis. Fisher’s exact tests were performed for each high-ranking attribute for the statisti-
cal significance for the presence of acquired T790M mutation. Statistical significance was defined as p < 0.05 
(two-sided). All statistical analyses were performed using GraphPad InStat version 3.10 for Windows, GraphPad 
Software, San Diego California USA, www.graphpad.com.
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