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Partial Correlation between Spatial 
and Temporal Regularities of 
Human Mobility
Wei Geng1,2 & Guang Yang1,3

The regularity of human mobility has been extensively studied because of its prominent applications in 
a considerable number of important areas. Entropy, in addition to many other measures, has long been 
used to quantify the regularity of human mobility. We adopt the commonly used spatial entropy and 
develop an analogical temporal entropy to separately investigate the spatial and temporal regularities 
of human mobility. The underlying data are from an automated transit fare collection system operated 
by a metropolitan public transit authority in China. The distributions of both spatial and temporal 
entropies and their dependences on several widely used statistics are examined. The spatial and 
temporal entropies present a statistically significant correlation, which has not previously been 
reported to the best of our knowledge.

Intensive human displacement is driven by the fundamental needs of modern society, but such displacement 
consequently also reshapes society. Understanding human mobility is of great importance and has prominent 
applications in many areas, including, but not limited to, location-based services1, transportation2–4, migration5, 
epidemiology6, 7, disaster recovery8, 9, and even entrepreneurship10. Various data sources have been employed to 
improve the knowledge on human mobility. Mobile phone data, ranging from calling to texting and either individual 
or aggregated, have been extensively investigated in the literature due to their tractability on approximating human 
moving trajectories11–17. GPS trajectories18, location-based check-in data19, survey and interview results10, 20, 21,  
bank note circulations22, and census data5, 14, 23 also contribute to this body of literature. Another rich data source 
comes from automated transit fare collection systems, where smart cards are used to generate passengers’ exact 
spatiotemporal trajectories while completing fare transactions2–4, 24–26.

Regularity, also known as predictability, is the kernel of the current research on human mobility13, 15. Spatial 
regularity, which is closely related to the act of human displacement, has received a considerable amount of  
attention6, 13, 15, 21, 22. However, in many studies, the time dimension is considered as either a timescale in which 
human mobility is observed and measured22 or as a time order whereby human displacements are sequentially 
arranged for further investigation15. An emerging trend in the literature is focusing on temporal reoccurrence, 
i.e., temporal regularity, which harbours substantial potential. The latest advancements in this trend include 
explaining”familiar strangers” through the temporal regularity of daily bus transit4 and measuring the variability 
of temporal regularity as a function of time resolution26, among others.

Diverse types of measures, such as the probability distribution of displacements of a certain length21, 22, the 
probability distribution of the radius of gyration13 and the intensity of transit flows6, 12, have been developed to 
convey research on the regularity of human mobility, particularly along the spatial or spatiotemporal dimension. 
Moreover, the stream focusing on temporal regularity has some other measures, e.g., time variation of an individ-
ual’s daily transit known as absolute time difference4, inter-temporal difference of aggregated population between 
periods16, and accumulated variance based on the correlation between vectors at the aggregated level26. In addi-
tion to these measures, a more widely used quantity is entropy, which is analogous to the entropy that is well 
established in physics and information science. Entropy has long been used in spatial analysis and research27–29, 
and it is used to quantify the predictability of human spatial or spatiotemporal mobility8, 15.

In this paper, we separately investigate the spatial and temporal regularities of human mobility by calculating 
the spatial and temporal entropies for each individual. The underlying data are from an automated transit fare 
collection system operated by a transit authority in China. Compared to the data sizes reported in the literature, 
which range from hundreds10, 18, 21 to hundreds of thousands19 of individuals, our data set is fairly large, and it 
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includes 5,759,234 trips of 195,065 individuals. Rich information from the data allows us to calculate spatial 
entropy as in the literature8, 15, as well as to calculate temporal entropies with appropriate time resolution, which 
is found to account for the variability of temporal regularity26. We examine the distributions of both spatial and 
temporal entropies, evaluate their dependences on several related factors, and test the correlation between spatial 
and temporal entropies. The obtained statistically significant correlation has not previously been reported to the 
best of our knowledge.

Results
Spatial and temporal regularities of individual mobility. We conduct our analysis based on passen-
gers’ actual trips tracked by smart card transaction records. The data set contains 195,065 passengers’ daily tran-
sits in two months within a bus rapid transit system in Chengdu, China. For details about the data set, please refer 
to Methods.

Remarkable heterogeneity in individual mobility could be observed from the data set. In Fig. 1, we present 
spatiotemporal trip tracks from four typical passengers with different travel patterns, which are distinguished 
from each other in terms of the dispersion of trip displacement and time interval. These figures reveal tremendous 
changes in spatiotemporal regularity across the entire population, and they also imply that a correlation between 
a single passenger’s spatial reappearance and temporal reoccurrence can hardly be achieved.

Having an anatomy of trips along either the spatial or temporal dimension provides further information. 
Panels (a)-(d) in Fig. 2 show origin-destination pairs with respect to repeating counts for the four individuals, and 
panels (e)-(h) show each individual’s empirical on-board time density. The eight panels serve as visualizations of 
those individuals’ spatial and temporal mobilities, which apparently have diverse patterns. The individual in the 
first row, i.e., panels (a) and (e), transits with high regularity in both the spatial and temporal dimensions. The 
individual in the second row transits with low spatial but high temporal regularity. The third individual transits 
with high spatial but low temporal regularity. The final individual transits with low regularity in both the spatial 
and temporal dimensions. These panels suggest that there is a high degree of heterogeneity in human mobility. To 
better characterize the heterogeneity and to conduct further analyses, measures of spatial and temporal mobilities 
should be introduced.

Figure 1. Individual spatiotemporal trip tracks. Each line segment in a specific panel represents a trip of the 
individual, where the left end indicates the trip origin and the right end indicates the trip destination. Every 
end point is located corresponding to its boarding or alighting time on the horizontal axis and stop on the 
vertical axis. The line segments are colour coded to illustrate the passage of time from day 1 to day 71 within the 
observation period. (a) The individual travels at an almost fixed time from a certain stop to another certain stop 
in the mornings and turns backwards in the afternoons. (b) The individual’s trips mostly occur at a stationary 
time but with diverse origins and destinations. (c) The individual always travels between two fixed stops but with 
a fairly large time diversity. (d) The individual’s trips are highly random. A subplot is provided in each panel to 
serve as a sketch map showing the origin-destination pairs of each individual with the colour bar omitted.
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Inspired by Song et al.15, we follow the trend of using entropies to investigate the regularity of human mobility.

Spatial entropy. The regularity of the passengers’ spatial displacement patterns could be well characterized 
by the temporal-uncorrelated entropy15, whose distribution serves as an indicator of heterogeneity in human 
spatial mobility. We relabel the temporal-uncorrelated entropy as spatial entropy in the remainder of this paper to 
highlight its role in measuring spatial mobility. In the context of displacement in a public transit system, two spa-
tial locations are of great importance: the origin and the destination. Hence, we use both the origin and destina-
tion stops of each trip in formulating the spatial entropy. The definition of spatial entropy is provided in Methods.

The spatial entropy is a function of the number of stops visited and the corresponding frequencies, both of 
which have diverse patterns at the individual level, as shown in Fig. 2. At the aggregated level, the number of stops 
visited follows an asymmetric unimodal distribution, as shown in Fig. 3(a), where its right tail exponentially 
decreases (logy = −0.2277n + 6.0895, p-value p = 0, and coefficient of determination R2 = 0.9801, excluding the 
last four observations). However, the spatial entropy, as shown in Fig. 3(b) in a histogram with a bin width of 
0.05, has a multimodal distribution that appears as an asymmetric unimodal distribution with many fibres. The 
most significant fibre or peak appears at 1. A total of 5.09% of the passengers out of the entire population, who 
form the largest group with equal entropies at a single value, have their spatial entropies exactly equal to 1, which 
indicates that they travelled with high regularity between two specific stops with no exceptions. The upper subplot 
in Fig. 3(b) presents the cumulative distribution of the spatial entropies over the entire population. The median 
of the passengers’ spatial entropies is 1.8131. Passengers whose spatial entropy is 1.8131 transited in diverse 
patterns: half of them transited among 5 stops with probability [0.4667, 0.2667, 0.2000, 0.0333, 0.0333], 23.53% 
of them transited among 6 stops with probability [0.4545, 0.3636, 0.0909, 0.0455, 0.0227, 0.0227], and the others 
each transited in a different pattern. Details of those passengers’ transit patterns are presented in the Supporting 
Information. A total of 81,058 different transit patterns are present. These patterns are sorted in descending 
order according to the number of passengers who transited in the pattern and are shown in the lower subplot in 
Fig. 3(b) in a log-log graph, where the x-axis is the order and the y-axis is the number of passengers. Intuitively 
from the definition, spatial entropy may increase in the number of visited stops. We evaluate the situation and 

Figure 2. Individual spatial and temporal regularities. Each row corresponds to the individual in the same 
row in Fig. 1. (a–d) Each scattered dot represents an observed origin-destination pair with its area and colour 
showing the count of observations. Dots with larger areas and warmer colours represent a higher degree of 
spatial displacement regularity. (e–h) The empirical on-board density at each time is calculated by the on-board 
count at that time over the total number of observations. Narrower support with fewer sharp peaks suggests a 
higher degree of temporal recurrence regularity.
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illustrate the dependence of spatial entropy on the number of visited stops in Fig. 3(c). The spatial entropy var-
ies within a considerable range at each value of the number of visited stops n, although the average entropies 
regarding each specific number of visited stops exhibit an increasing trend. A comparison of the spatial entropies 
between individuals based on their values of n is therefore not performed in most cases. A tight upper bound 
log2(n) could be provided theoretically (see Methods), which is empirically a real tight bound for many values of 
n based on our data, indicating that some passengers actually travel among several different locations with equal 
frequencies. Figure 3(d) displays the dependence of spatial entropy on the number of trips, which is a statistic 
commonly used to label passengers as heavy or light users and to further distinguish their behaviours30. For the 
case of mobility regularity, the commonly used statistic is probably intuitively believed to have little impact since 
it only considers transit intensity. Those who should strictly transit between their homes and workplaces do not 
change their behaviours irrespective of how many trips they have accumulated. As shown in the figure, however, 
the spatial entropy gradually decreases in general as the number of trips increases. For clarity, we present the 
average entropy of passengers who share a specific number of trips to illustrate collective behaviour.

Temporal entropy. A reasonable parallel concept on temporal regularity is temporal entropy, also known as 
spatial-uncorrelated entropy following the terminology used by Song et al.15. Given time slots and the probabili-
ties of revisiting each time slot, the definition of temporal entropy is an exact analogue of that of spatial entropy, 
in which boarding or alighting time slots are used rather than stops. Details can be found in Methods. Since time 

Figure 3. Spatial entropy and its distribution. (a) Each bar illustrates the number of passengers who visited 
a specific number of stops. As shown in the subplot, the right tail of the figure exponentially decreases. (b). 
The histogram shows the distribution of spatial entropy. The cumulative frequency distribution is presented 
in the upper subplot. The log-log graph in the lower subplot shows spatial transit patterns in descending 
order according to their counts in the entire population. (c) Dependence of spatial entropy on the number of 
visited stops. Each dot represents an individual. The theoretical upper bound log2(n) and the average entropies 
regarding each specific number of visited stops are also illustrated. (d) Dependence of spatial entropy on 
the number of trips. Each dot represents an individual. Each circle represents the average spatial entropy of 
passengers sharing a specific number of trips. For conciseness, a few outliers are not shown in the panels.
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moves continuously and only forward, we should select an appropriate aggregation level to form time slots, which 
is 30 minutes here, and consider recurrence on a quotient set, i.e., to identify time slots with the same temporal 
ends but on different days as the same one, which is also adopted in the literature26. Since the BRT system operates 
17 hours per day, the grid size of 30 minutes yields a total of 34 time slots, which is comparable to the number of 
total stops (29) in the previous section.

As in the previous section, we first evaluate the dependence of temporal entropy on the number of time slots 
visited, as shown in Fig. 4(a). The distribution is asymmetric with a heavier right tail. The distribution of temporal 
entropy, as shown in Fig. 4(b), has multiple modes. In contrast to the distribution of spatial entropy in Fig. 3(b), 
no remarkable peak appears to show any uniform transit pattern. The cumulative distribution of the temporal 
entropy is shown in the upper subplot. The median of the passengers’ temporal entropies is 3.3643. Passengers 
whose temporal entropy is 3.3643 transited in diverse patterns: nearly half of them transited among 13 time slots 
with probability [0.2500, 0.1429, 0.1071, 0.0714(×4), 0.0357(×6)], where (×n) denotes the number of repeating 
times; 11.76% of them transited among 12 time slots with probability [0.2500, 0.1071, 0.0714(×8), 0.0357(×2)]; 
11.76% of them transited among 13 time slots with probability [0.2250, 0.1500, 0.1000(×2), 0.0750(×3), 
0.0500(×2), 0.0250(×4)]; and the others each transited in a different pattern. Details of those passengers’ tempo-
ral transit patterns are presented in the Supporting Information. There are a total of 103,233 different temporal 
transit patterns. In the lower subplot, those patterns are sorted in descending order according to the number of 
passengers who transited in the pattern and are shown in a log-log graph, where the x-axis is the order and the 

Figure 4. Temporal entropy and its distribution. (a) Each bar illustrates the number of passengers who visited 
a specific number of time slots with a grid size of 30 minutes. (b) The histogram of bin width 0.05 illustrates 
the distribution of temporal entropy. The cumulative frequency distribution is presented in the upper subplot. 
The log-log graph in the lower subplot shows temporal transit patterns in descending order according to their 
counts in the entire population. (c) The dependence of temporal entropy on the number of visited time slots is 
illustrated with a theoretical upper bound of log2(n). Each dot represents an individual. The circles represent the 
average entropies regarding each specific number of visited stops. (d) The dependence of temporal entropy on 
the number of trips. Each dot represents an individual. Each circle represents the average temporal entropy of 
individuals sharing a specific number of trips. For conciseness, a few outliers are not presented in the panels.
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y-axis is the number of passengers. We illustrate the dependence of temporal entropy on the number of visited 
time slots in Fig. 4(c). The temporal entropy varies within a considerable range at each value of the number of 
visited time slots n. Similar to the case of spatial entropy, a comparison of the temporal entropies between indi-
viduals sharing the same n is not performed in most cases. The tight upper bound log2(n) and average temporal 
entropies regarding each specific number of visited stops are also shown. The dependence of temporal entropy on 
the number of trips is shown in Fig. 4(d). As the number of trips increases, the average entropy of passengers who 
share the same number of trips first increases, then has a decreasing trend in general, and finally loses its trend 
when the number of trips increases so much that the sample size becomes too small.

Spatial-temporal correlation at aggregated level. As we have already shown via some typical sam-
ples in Fig. 2, the spatial and temporal regularities may have diverse patterns and exhibit little correlation at the 
individual level. At the aggregated level, however, a different phenomenon emerges, similar to other behaviours 
reported in many previous works21, 26.

We locate individuals based on their spatial and temporal entropies to produce a heat map in Fig. 5. Passengers 
locating on the bottom left have lower values of both spatial and temporal entropies, implying that their transit 
behaviours have higher regularities, whereas passengers locating on the top right have larger values of entropies 
and behave less regularly. The entire population disperses more or less in a flipped drop shape, which has a narrow 
tail on the bottom left and gradually expands towards the top. The heat map highlights areas where most passen-
gers’ spatial and temporal entropies locate. There are two distinct clusters observed in the figure. The first cluster is 
a very sharp band whose spatial entropies are 1 or very close to 1. The second cluster is an oblique band that leans 
from the lower left to the upper right around the point (2, 3.5). The oblique band suggests a correlation between 
the spatial and temporal entropies within this cluster. Regarding the spatial-temporal entropy pairs whose spatial 
entropies are not less than 1.05, which include 184,861 passengers (or 94.77% of the passengers), we conduct fur-
ther statistical analyses. The ordinary least squares method provides St = 0.6187Ss + 2.1350 with p-value p = 0 and 
coefficient of determination R2 = 0.2236. Meanwhile, the corresponding Spearman’s rank correlation coefficient 
between the two entropies is ρ = 0.4820 with p-value p = 0.

Discussion
One of the major findings from the presented results is the correlation between spatial and temporal entropies 
over the vast majority of the entire population. The alternative name for our spatial entropy in the literature15, 
i.e., temporal-uncorrelated entropy, indicates that its definition includes no explicit term concerning any tem-
poral mobility. The temporal entropy defined in this paper, however, includes no explicit term concerning any 
spatial mobility. Consequently, the two entropies respectively measure human mobility along two uncorrelated 
dimensions. The significant correlation between the two so-defined entropies over the vast majority of the entire 
population probably suggests that scholars should be cautious when they are attempting to adopt spatial entropy 
to control the temporal effect on human mobility, or vice versa. The significant correlation between the two entro-
pies also indicates that some degree of consistency between spatial and temporal human mobilities is present, 
which relates to the nature of human behaviour. Our finding contributes new evidence from the area of human 
mobility, where the correlation between spatial and temporal regularities has not previously been reported. This 
evident correlation may also shed light on future studies. The factors that determine the correlation between spa-
tial and temporal human mobilities are not yet clear. Further studies based on carefully designed and performed 

Figure 5. Spatiotemporal joint distribution. The heat map is produced based on a scatter plot, where every 
dot represents a passenger’s spatial-temporal regularity with its two coordinates being his or her spatial and 
temporal entropies, and multiple dots may overlap. The grid to support the heat map is 100 × 100 on [0, 5] × [0, 
5], i.e., the grid size is 0.05. The degree of overlapping is visible according to different colours with the colour 
legend to the right of the heat map.
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field experiments should be conducted to eliminate the noise of possible spurious correlations and to identify the 
origin of the present correlation. Moreover, the correlation that we found and reported is at the collective level; 
however, it should have its root in individual decision making and behaviours. As extensively studied in psy-
chology, consistency widely exists among human thoughts, feelings and actions31. Human mobility, irrespective 
of how we measure its regularity, is a type of human action or behaviour motivated by some inherent attitudes 
and personalities and should exhibit consistency to some degree. More research could be conducted to further 
advance our understanding of this topic.

Correlation is not the only story. Human mobility within a metropolitan public transit system is subject to 
urban planning, shift schedules, and many other outside influences. Therefore, a noticeable partial inconsist-
ency between spatial and temporal entropies also exists. The dispersion of passenger locations on the map of 
spatial-temporal entropies in Fig. 5, which has a flipped drop shape, evidently also supports the partial incon-
sistency. Outside the major band conveying consistency, the top left area of this plot is evidence of partial incon-
sistency, in which passengers probably transit with high regularity among few stops but with considerably less 
regularity in many of the time slots.

Extensive studies11, 13, 15, 21 have found that a great majority of individual displacements occur among a few 
dominant locations, such as home, school and workplace, whereas a long tail exists where the individual visits 
many other locations with very small frequencies. Less efforts, however, have been focused on examining these 
individuals’ temporal regularities. Our findings reveal significant heterogeneity within the aforementioned group 
in terms of temporal entropy, which is worth investigating further. It could be inferred that spatial constraints are 
relatively tighter for individuals that are studying, working, or conducting some other affairs, whereas temporal 
constraints are more flexible to offer individuals a larger degree of freedom in daily transit. Further discussions on 
urban planning, labour force policy, and work design could be constructed thereafter.

Methods
Data description. Our data are from Chengdu, one of the top metropolitan areas in China, which has 
installed and operated a loop BRT system that connects several major residential and commercial areas since 
2013. Two BRT lines, which respectively run clockwise and anti-clockwise, with 29 stops serve all the passengers 
in this area.

The data consist of all trips paid for using local smart cards, namely, Tianfutong, from Jun. 11, 2013, to Aug. 
20, 2013. We conducted a data screening process prior to the analysis. The first step is to remove those users who 
travel less than 10 trips, which is similar to the process in the literature4 and is performed to avoid insignificance 
and error from small sample outliers. The second step is to remove those users who have at least one trip whose 
origin and destination are the same stop to focus on ordinary travel behaviours. After the data screening process, 
we observe that a total of 195,065 users travelled in the BRT system during the aforementioned time period and 
that the overall number of trips was 5,759,234. For each trip, the following information is collected: origin, desti-
nation, boarding time, alighting time, and direction (clockwise or anti-clockwise). Trip duration, or dwell time, 
could subsequently be calculated. Stops are labelled with numbers from 1 to 29 for identification.

Similar to many rail transit systems, the BRT authority in Chengdu requires passengers to onboard or alight 
the vehicle in a paid area at every stop. Consequently, the automatic fare collection system actually tracked the 
times when the passengers entered or exited the paid area.

Throughout this paper, we do not separate the data to analyse passengers’ transit behaviours on weekdays and 
weekends. Some analyses based on separated data are presented in the Supporting Information. Briefly, the entro-
pies on all days significantly depend on the entropies on weekdays, and the findings based on data from weekdays 
are similar to those reported in the previous Results section.

Entropy. For an arbitrary passenger i, assume that he or she gets on board or gets off at Ni stops in total and 
visits any stop j out of the Ni stops with an empirical probability pi(j). The spatial entropy of passenger i is then

∑= − .
=

S p j p j( )log ( )
(1)
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i i
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To well define temporal entropy, time slots and the probability of revisiting are two preliminary issues.
The time stamp in our data has a resolution of up to one second, which provides great convenience for adjust-

ing and choosing an appropriate scale or grid size for the time slot. When calculating a spatiotemporal entropy, a 
grid size of one hour was chosen by Song et al.15, possibly to avoid a cumbersome state space. The grid size chosen 
by Sun et al.16 was 5 minutes, which is exactly the temporal resolution of their data. Meanwhile, Zhong et al.26 used 
grid sizes ranging from 1 minute to 12 hours to meet the needs of testing variability. For our purposes, we consider 
the grid size of 30 minutes.

Time only moves forward; hence, it is impossible to revisit any time slot of appropriate length. An alternative 
approach is to consider recurrence on a quotient set of time slots in one single day. In other words, we iden-
tify time slots with the same temporal ends but on different days as the same one, which is also adopted in the 
literature26.

For an arbitrary passenger i, assume that he or she gets on board or gets off at Mi time slots in total, and for any 
time slot j out of the Mi time slots, an empirical probability pi(j) applies. The temporal entropy of passenger i is then
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Boundaries. For an arbitrary passenger i, assume that he or she gets on board or gets off at n stops in total. 
According to the definition of spatial entropy, it is easy to determine that Si

s obtains its maximum value if and only 
if the passenger visits the n stops with equal probability 1/n. Therefore,

∑ ∑= − ≤ − = .
= =

S p j p j
n n

n( )log ( ) 1 log 1 log ( )
(3)

i
s

j

n

i i
j

n

1
2

1
2 2

Assume that pi(j) approaches 1 for an arbitrary j; it is easy to find that Si
s approaches 0, although it cannot reach 0 

unless n = 1. Hence, for any n > 1, Si
s > 0.

Similarly, Si
t > 0 for any n > 1 and Si

t ≤ log2(n).

Data availability. The data that support the findings of this study are available from Chengdu Public 
Transport Group Co., Ltd, but restrictions apply to the availability of these data, which were used under license 
for the current study and are thus not publicly available. However, the data are available from the authors upon 
reasonable request and with permission of Chengdu Public Transport Group Co., Ltd.
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