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Predictive modeling of Time-
Temperature-Transformation 
diagram of metallic glasses based 
on atomistically-informed classical 
nucleation theory
Yuji Sato1, Chiaki Nakai1, Masato Wakeda   1 & Shigenobu Ogata   1,2

Theoretical prediction of glass forming ability (GFA) of metallic alloys is a key process in exploring 
metallic alloy compositions with excellent GFA and thus with the ability to form a large-sized bulk 
metallic glass. Molecular dynamics (MD) simulation is a promising tool to achieve a theoretical 
prediction. However, direct MD prediction continues to be challenging due to the time-scale limitation 
of MD. With respect to practical bulk metallic glass alloys, the time necessary for quenching at a typical 
cooling rate is five or more orders of magnitude higher than that at the MD time-scale. To overcome 
the time-scale issue, this study proposes a combined method of classical nucleation theory and 
MD simulations. The method actually allows to depict the time-temperature-transformation (TTT) 
diagram of the bulk metallic glass alloys. The TTT directly provides a prediction of the critical cooling 
rate and GFA. Although the method assumes conventional classical nucleation theory, all the material 
parameters appearing in the theory were determined by MD simulations using realistic interatomic 
potentials. The method is used to compute the TTT diagrams and critical cooling rates of two Cu-Zr alloy 
compositions (Cu50Zr50 and Cu20Zr80). The results indicate that the proposed method reasonably predicts 
the critical cooling rate based on the computed TTT.

Metallic glasses possess brilliant properties as structural materials including high elastic limit1, high toughness2, 
and high corrosion resistance3. However, since reachable size of bulk metallic glass has been limited within cen-
timeters even for highly selected alloy compositions, the application of metallic glasses is substantially restricted 
as structural materials. Alloys with a lower glass forming ability (GFA) require a higher cooling rate in the 
melt-quenching process to realize a glass state eventually. In other words, the quenching must be finished prior to 
the spontaneous nucleation of a critical-sized crystal nucleus in the molten alloy. The critical size is the minimum 
size required for thermodynamic downhill crystal growth. A critical cooling rate Tc is defined as the minimum 
cooling rate that results in a glass state. When we quench a plate-like shaped molten alloy with thickness L from 
very high temperature Ti to ambient temperature Ts, the spatial distribution of time dependent cooling rate in the 
molten alloy T x t( , ) could be derived by solving the 1D heat conduction equation:
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under the conditions T(x, 0) = Ti and T(0, t) = T(L, t) = Ts, where t denotes time, x (0 ≤ x ≤ L) denotes coordinate 
of out-of-plane direction, and α denotes thermal diffusivity. Assuming constant thermal diffusivity, the solution 
is (see Supplemental Information for the details)
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Since > T Tc should be always satisfied throughout the molten alloy sample to obtain a glass state, the critical 
cooling rate Tc actually limits the possible sample size L as it can be understood from Eq. (2). Thus, Tc is potentially 
a good measure of GFA4. The key to obtaining a larger sample size involves searching for alloy composites with a 
slower critical cooling rate. The critical cooling rate can be estimated after depicting the 
time-temperature-transformation (TTT) diagram of an alloy5. Therefore, it is necessary to establish a method to 
predicting the TTT diagram as it can lead to a computational high-throughput screening of alloy composition to 
obtain a larger bulk metallic glass sample. Furthermore, it is essential to compute the incubation time for the 
nucleation of the critical crystal nucleus to illustrate the TTT5. Currently, molecular dynamics (MD) simulation 
is the best tool available for the computation of the incubation time because the critical crystal nucleus typically 
corresponds to the nanometer range6, and thus it is necessary for the crystal nucleation process to consist of 
atomic scale events. Additionally, the quantitative analyses of the event properties are possible given that reliable 
interatomic potentials are provided. Recently, a study demonstrated solidification from melting by using direct 
MD quenching simulations7, 8. This is followed by estimating the TTT and critical cooling rate from direct MD 
observation of the incubation time. However, these studies only focused on highly simplified model materials, 
such as the Lennard-Jones system, which possess a very high critical cooling rate because of the time scale limita-
tions of MD simulations. Conversely, the composition of target alloys must possess the potential to generate a 
centimeter sized metallic glass with a very long incubation time and a very slow critical cooling rate when com-
pared to simple system models. Thus, it is necessary for the incubation time to considerably exceed typical MD 
time scales such as microseconds. Thus, a direct MD simulation does not work well due to the fore-mentioned 
limitation. Therefore, in this study, classical nucleation theory is employed to compute the incubation time as 
opposed to the direct MD simulations. However, the intrinsic parameters of the materials that appear in classical 
nucleation theory are determined using MD simulations such as the free energy difference between a melt and 
crystal and the interfacial free energy between a melt and crystal. Finally, the TTT diagram is depicted, and the 
critical cooling rate is evaluated based on the TTT diagram.

Results and Discussion
Two alloy compositions possessing different GFA, such as Cu50Zr50 and Cu20Zr80, are examined in the study to 
demonstrate the proposed method.

Firstly, the critical nucleation radius r* is determined as follows. A cubic simulation cell is set with a periodic 
boundary condition (PBC) containing N atoms, which consist of supercooled liquid (melt) and a spherical crystal 
nucleus of a radius r (see Fig. S1 and Tables S1 and S2 for the details). The Finnis-Sinclair (FS) potential9 is used 
to describe the interatomic interaction for both alloy systems. The B2 crystal structure is assumed as the crystal 
structure of Cu50Zr50

10, while a distorted BCC like structure determined by MD quenching simulation is used as 
the crystal structure of Cu20Zr80. The melts of both alloys are prepared by annealing at 2,500 K for 100 ps under a 
zero pressure condition. The crystal nucleus is then embedded into the melt, while omitting all atoms in the melt 
that overlap with the embedded crystal nucleus. The systems are subsequently quenched at 10 K for 2 ps to fill the 
space gap at the interface between the melt and the crystal nucleus. The MD time step of 2 fs is used throughout 
the study for all the MD simulations. The constructed melt-crystal models are employed as the initial configura-
tion to determine the temperature dependent critical nucleus radius r*(T). The NPT ensemble MD simulations 
are performed with respect to the models with different nucleus radius at different temperatures under a zero 
pressure condition to determine the critical temperature as the middle point between the highest nucleus growth 
and the lowest nucleus shrinking temperatures (see Fig. S2). Ten MD simulations are performed for each con-
dition to reduce the statistical error. Actual growing and shrinking behaviors of the Cu50Zr50 crystal nucleus of 
r = 2.0 nm immediately above and below the critical temperature T = 1,175 K are shown in Fig. 1. The atoms in 
the melt and crystal are identified and colored using bond-order analysis11. The relationship between temperature 
and inverse of radius is summarized in Fig. S2, which clearly shows a trend in which the inverse of critical radius 
approximately linearly increases with increases in the temperature. Figure 2 represents the relationship between 
supercooled degree ΔT = Tm − T and the inverse of r*. The results indicate that ΔT is reasonably assumed as 
proportional to the inverse of r*:

∆ = −  ⁎T T T k
r

, (3)m

where the values of k are estimated as −3.29 × 102 nm/K (Cu50Zr50) and −4.66 × 102 nm/K (Cu20Zr80), respec-
tively. The melting temperatures Tm are determined from the ordinate intercept of the linear fitting line for crit-
ical temperatures in Fig. S2. Since Eq. (3), Tm is assumed as the critical temperature at r* → ∞. The obtained 
melting temperature is shown in Table 1. The melting temperature of Cu50Zr50 is lower than that of Cu20Zr80 by 
100 K. The difference is consistent with an experiment involving Cu-Zr alloys12 while the actual melting temper-
ature of Cu50Zr50, Tm = 1,208 K13 is slightly lower (by 134 K) than the computed value. The discrepancy can be 
mainly attributed to an underestimation of melting temperature subject to FS potential energetics. With respect 
to Cu50Zr50, the melting temperature is also estimated using a melt-crystal biphase model with PBC and a flat 
interface that is perpendicular to the (100) crystal plane (see Fig. S3). Determination of temperature involves an 
immobile interface under NPH ensemble MD simulation at a zero pressure condition14 to provide the melting 
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temperature. Although the melting temperature determined using biphase model can depend on interfacial crys-
tal orientation, both are in reasonable agreement with each other as shown in Fig. S2(a).

The free energy barrier of crystal nucleation ΔG* is computed using Eq. (16). The interfacial free energy σ 
is computed using Eqs. (14) and (15). The latent heat per unit volume ΔHm in Eq. (15) is evaluated from the 
enthalpy difference between the melt and crystal parts in the melt-crystal biphase model (Fig. S3). The melt and 
crystal models used in the biphase model are obtained by annealing the melt for 100 ps at 2,500 K and relaxing 
the crystal structure for 100 ps at 0.1 K under a zero pressure condition, respectively. The two structures are sub-
sequently attached as shown in Fig. S3, and 600 ps MD relaxation is performed at the melting temperature Tm 
and zero pressure condition. The computed ΔHm values are shown in Table 1. The findings reveal that ΔHm of 
Cu50Zr50 is almost twice that of Cu20Zr80. The temperature dependent enthalpy is obtained by averaging the total 
energy over a 1 ns NPT ensemble MD simulation using a N = 16,000 atoms simulation cell with PBC at different 
temperatures ranging from 50 K to Tm with 50 K intervals and a zero pressure condition. The obtained tempera-
ture dependent enthalpies of the melt and crystal are fitted by the following quadratic polynomial function (see 
Fig. S4):

Figure 1.  Snapshots of crystal nucleus growth and shrink processes of Cu50Zr50 model. (a) denotes the growth 
process (T = 1,100 K, r = 2.0 nm), and (b) denotes the shrink process (T = 1,200 K, r = 2.0 nm). Green atoms 
represent the crystal phase while blue atoms represent the liquid phase detected using bond-order analysis11.

Figure 2.  The relationship between supercooling degree ΔT and inverse of the critical radius 1/r*.

alloy Tm (K) ΔHm (J m−3)

Cu50Zr50 1,342 1.9 × 109

Cu20Zr80 1,436 7.4 × 108

Table 1.  Obtained values of the melting temperature and latent heat.
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The volumetric specific heats Cp of the melt and crystal are then obtained as the derivative of enthalpy (Eq. (4)) 
with respect to the temperature at constant pressure as follows:
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Additionally, ΔCp in Eq. (14) is estimated by ∆ = −C C Cp p
melt

p
crystal. The parameters determined in Eqs. (4) and 

(5) are summarized in Table S3. Subsequently, the temperature dependent interfacial free energy σ is computed 
and shown in Fig. 3. The interfacial free energy of Cu50Zr50 is consistently higher than that of Cu20Zr80.

Eventually, the free energy barrier of crystal nucleation ΔG* is computed as a function of temperature and 
shown in Fig. 4.

Figure 3.  Temperature dependent interfacial free energy.

Figure 4.  Nucleation free energy barrier as a function of ΔT.

alloy T (K) ρ⁎
c  (m−3) ρm (m−3) Z f+(n*) (ps−1) log10 exp(−ΔG*/kBT) log10J/Ω (m−3s−1)

Cu50Zr50 1,060 5.73 × 1028 5.41 × 1028 4.5 × 10−3 3.1 −36 3

′′ 1,095 5.72 × 1028 5.40 × 1028 3.2 × 10−3 9.0 −43 −4

′′ 1,125 5.72 × 1028 5.39 × 1028 2.6 × 10−3 16.2 −52 −13

′′ 1,155 5.71 × 1028 5.38 × 1028 1.8 × 10−3 33.6 −77 −37

Cu20Zr80 1,095 4.68 × 1028 4.58 × 1028 2.6 × 10−3 1.40 × 102 −21 19

′′ 1,125 4.67 × 1028 4.57 × 1028 2.2 × 10−3 1.63 × 102 −26 14

′′ 1,155 4.67 × 1028 4.57 × 1028 1.8 × 10−3 1.77 × 102 −31 9

′′ 1,175 4.66 × 1028 4.57 × 1028 1.5 × 10−3 1.78 × 102 −37 3

′′ 1,195 4.66 × 1028 4.56 × 1028 1.2 × 10−3 1.86 × 102 −47 −7

Table 2.  Obtained parameters with respect to the nucleation rate.
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The temperature dependent nucleation rate J and the incubation time t are directly computed from Eq. (8). 
The atomic number density of the melt ρmelt and that of the critical crystal nucleus ρ⁎

crystal are computed and sum-
marized in Table 2 by taking the average volume of simulation cell V (N = 16,000) with PBC over 100 ps NPT 
ensemble MD simulation at the critical temperature and a zero pressure condition. The Zeldovich factor Z is 
estimated by using Eqs. (18) and (19). With the exception of the parameters obtained in the previous sections, the 
attachment rate f+ that appears in the pre-exponential factor J0 (Eq. (19)) is still unknown, and thus it is necessary 
to obtain J. In order to compute the attachment rate, 4 ns NPT ensemble MD simulations on the same melt - 
spherical crystal model with r = r*(T) used in the previous analysis are performed at different temperatures rang-
ing from 1,060 to 1,160 K under a zero pressure condition. The number of atoms belonging to the embedded 
crystal, Δn*(t) = n*(t) − n*(0), are recorded during the MD simulations. This is followed by obtaining the MSD 
〈Δn*2(t)〉 and attachment rate (Eq. (20)). It should be noted that ten independent MD simulations are performed 
for each temperature, and they are averaged to reduce the statistical error. Figure 5 shows time evolution of the 
MSD for Cu50Zr50 at T = 1,155 K. The slope of the MSD-time plot corresponds to twice that of the attachment rate, 
2f+(n*). The computed attachment rates are plotted in Fig. 6 for Cu50Zr50 and are summarized for both alloys in 
Table 2. The attachment rate increases with increases in the temperature. The attachment rate of Cu20Zr80 is an 
order of magnitude higher than that of Cu50Zr50. The computed attachment rate is used to eventually compute the 
nucleation rate J of unit volume and summarize it in the Table 2. The nucleation rate rapidly increases with 
increases in the temperature. The rapid change in the nucleation rate is mainly attributed to the exponential term 
in Eq. (19) as opposed to the pre-exponential factors. As previously stated, the direct MD analyses of the attach-
ment rate f+(n*) are only performed above T = 1,060 K because a large statistical error due to the lower number 
of samples is expected below this temperature. In order to predict the attachment rate at low temperatures, the 
following Arrhenius type exponential function fitted to high temperature MD data of the attachment rate is used 
instead of performing direct MD analysis at the low temperatures.

−+


⁎f n A B T( ) exp( / ), (6)

where A and B denote fitting parameters. The values of A and B are summarized in Table S4. It is worth not-
ing that recent theoretical crystallization study for a Lennard-Jones system15 shows a super-Arrhenius behav-
ior of the attachment rate. Actually our attachment rate data of Cu20Zr80 also seem to exhibit super-Arrhenius 
like behavior, while data of Cu50Zr50 do not clearly exhibit at least within the examined temperature range (see 

Figure 5.  Time evolution of MSD 〈Δn*2(t)〉 at T = 1,155 K (Cu50Zr50).

Figure 6.  Attachment rate - temperature relationship (Cu50Zr50). The dashed line represents the fitted curve 
(Eq. (6) and Table S4).
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Fig. S5). However, since the deviation from Arrhenius behavior is not significant, here the Arrhenius behavior 
was assumed for simplicity.

The TTT diagrams for Cu50Zr50 and Cu20Zr80 are depicted with respect to the temperature dependent incuba-
tion time t = 1/J using the parameters obtained in previous analysis and shown in Fig. 7. The critical cooling rate 
Tc is approximately calculated from the following equation:

−� �T T T
t

,
(7)c

m n

n

where Tn and tn denote the nose temperature of the TTT diagram and incubation time at the nose temperature, 
respectively. Table 3 shows the estimated critical cooling rate for a local volume of Ω = 343 nm3. Fortunately, with 
respect to Cu20Zr80, the crystallization can be observed even in a direct MD quenching simulation due to its very 
low incubation time. Therefore, the obtained critical cooling rate using the proposed method is compared with 
that using direct MD simulation for the same average volume of the simulation cell. In order to directly estimate 
the critical cooling rate from MD, 1 ns NPT ensemble MD simulations are performed using N = 16,000 atoms 
simulation cell with PBC at different temperatures ranging from 800 K to Tm with 50 K intervals. The incubation 
time for each temperature is estimated as an incubation time for a rapid reduction of system potential energy, 
which is a sign of crystallization. The nose temperature corresponds to Tn = 950 K, and the incubation time cor-
responds to tn = 4.5 × 10−10 s. The average volume of the simulation cell at Tn corresponds to Ω = 343 nm3. The 
critical cooling rates obtained in the direct MD and experiment are also shown in Table 3. The experimental 
critical cooling rate Tc is approximately estimated using Eq. (2) as the slowest cooling rate throughout the sample 
when the local temperature = + = ∈

˙ ˙T x t x T T T T T x t x( , ( )) ( )/2; min ( ( , ( )))x Ln n m g c n , tn(x): time when T(x, 
tn(x)) = Tn at x, with L = 2 mm16, α = 2.5 × 10−2 cm2/s17, Tm = 1,208 K13, Tm − Tg = 400 K17, Ti = 1,500 K (>Tm), 
Ts = 300 K (room temperature) and assuming that the volume with the slowest cooling rate in the system is the 
same as the volume of the simulation cell (Ω = 343 nm3) (see Fig. S6). Note that the order of the slowest cooling 
rate has a weak dependence on the temperature T. The results in Table 3 indicate that the proposed method can 
reasonably reproduce the critical cooling rate obtained by the direct MD simulation and experiment. The com-
puted critical cooling rate of Cu50Zr50 is significantly lower than that of Cu20Zr80. This corresponds to the fact that 
Cu50Zr50 does actually form a bulk metallic glass at the usual experimental cooling rate16. In contrast, Cu20Zr80 
does not form a bulk metallic glass even at highest possible cooling rate in the experiment. Hence, the proposed 
classical nucleation theory - MD combined method allows the prediction of the critical cooling rate.

It should be noted that a homogeneous nucleation is assumed in this study. However, in practice, the nuclea-
tion is mostly heterogeneous due to the existence of impurities and/or the wall surfaces of containers. Thus, the 
proposed method underestimates the critical cooling rate. Nevertheless, it is necessary to adequately reproduce 
the GFA ranking, which is the most important factor in the high-throughput alloy design. It is worth noting 
that the target crystal structure and interatomic potential function are usually unknown for less familiar alloys. 
Although determination of them is non-straightforward task, recent development of crystal structure prediction 
methods18, 19 and interatomic potential construction methods20, 21 from first-principles may permit the task.

Figure 7.  TTT diagrams of Cu50Zr50 and Cu20Zr80.

alloy log10(Tc  (K/s))

Cu50Zr50 (This study) 5

Cu50Zr50(Experiment16) ∼4

Cu20Zr80 (This study) 14

Cu20Zr80 (Direct MD) 12

Table 3.  Critical cooling rate for a local volume corresponding to Ω = 343 nm3.
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In this study, an atomistically-informed method is proposed to predict a TTT diagram of alloys over a wide 
temperature range by combining classical nucleation theory and MD simulations. The proposed method is used 
to depict the TTT diagram and critical cooling rate of two Cu-Zr alloys, namely Cu50Zr50 and Cu20Zr80. The 
results indicate that the method reasonably reproduces the GFA ranking and the critical cooling rate by compar-
ing the direct MD simulation and experimental knowledge. Hence, it is expected that the method can open up a 
computational high-throughput screening of higher GFA alloys.

Methods
The incubation time t corresponds to the inverse of nucleation rate J for a certain piece of volume Ω22 of melt, 
which is subject to the Arrhenius equation23 as follows:

= Ω




−

∆ 




⁎
J J G

k T
exp ,

(8)
0

B

where kB denotes the Boltzmann constant, and T denotes temperature of the supercooled melt. Additionally, ΔG* 
denotes the free energy barrier of the nucleation process of a critical sized crystal nucleus. Subject to the classical 
nucleation theory, ΔG* is formulated as follows.

A change in the Gibbs free energy during the crystal growth process ΔG is expressed as a function of crystal 
nucleus radius r and interfacial free energy σ subject to the approximation of spherical nucleus shape24 as follows:

π π σ∆ = − ∆ +G r G r4
3

4 , (9)

3

v
2

where ΔGv denotes free energy difference per unit volume between the melt and crystal. Extant studies proposed 
several approximate expressions of ΔGv

25, 26. In this study, it is directly computes by using atomistically computed 
isobaric heat capacity per unit volume (volumetric specific heat) of melt Cp

melt and crystal Cp
crystal. The ΔGv is given 

as follows:

∆ = ∆ − ∆G H T S, (10)v

where ΔH and ΔS denote enthalpy and entropy differences per unit volume between the melt and crystal, respec-
tively. The ΔH and ΔS can be formulated using the isobaric volumetric specific heat difference between the melt 
and crystal, ∆ = −C C Cp p

melt
p
crystal as follows:

∫∆ = ∆ − ∆H H C Td , (11)T

T
m p

m

∫∆ = ∆ −
∆

S S
C

T
Td , (12)T

T
m

pm

where ΔHm denotes melting enthalpy (latent heat), and ΔSm denotes melting entropy. These are related to each 
other as follows:

∆ =
∆

.S H
T (13)m

m

m

Substituting Eqs. (11) and (13) into Eq. (10), the following expression is obtained:

∫ ∫∆ = ∆





−





− ∆ +
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T

T
v m
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p

pm m

It should be noted that the crystal nucleus shape is not exactly spherical as described by like Wulff construc-
tion27 because the interfacial energy is typically anisotropic and additionally, the interface should not very smooth 
at the atomic level, and thereby it should not be possible to precisely describe the interface by a smooth function 
especially with respect to a very small crystal nucleus. Specifically, this fact is observed in atomic simulations28 
and also observed in MD simulations (see Fig. S1). Nevertheless, the spherical approximation is sufficient for the 
incubation time estimation as demonstrated later in the study.

In the right hand side of Eq. (9), the two terms compete with each other, and this leads to a crossover with 
respect to the crystal nucleus radius r. The crystal nucleus tends to shrink at a small r (dΔG/dr > 0) while the 
crystal nucleus tends to grow spontaneously at a large r (dΔG/dr < 0). The first term decreases in proportion to r3 
while the second increases in proportion to r2 with increases in r. Therefore, ΔG is maximized at a critical nucleus 
radius r = r*, which should satisfy the following:

π π σ




∆ 

 = − ∆ + = .

=

∗ ∗

∗

G
r

r G rd
d

4 8 0
(15)r r

2
v

The free energy barrier, which corresponds to energy at the critical nucleus radius, is given as follows:
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πσ∆ = ∆ = .∗
=

∗
∗G G r4

3 (16)r r
2

It is assumed that the nucleus growth and shrink are achieved by attaching atoms to the nucleus, and thus the 
pre-exponential factor J0 in Eq. (8) is expressed as follows29:

ρ= + ⁎J Zf n( ), (17)0 m

π
= −
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2

2
c

2
3 4

3

where ρm denotes the number density of the melt, n denotes number of atoms in crystal nucleus, and 
π ρ= ==

⁎ ⁎ ⁎
⁎n n rr r

4
3

3
c . Additionally, ρ⁎

c  denotes atomic number density of the critical crystal nucleus. 
Furthermore, f+(n*) denotes the attachment rate of atoms to the critical crystal nucleus, and Z denotes the 
Zeldovich factor30. The attachment rate f+(n*) can be expressed as31 follows:

=
∆+ ⁎

⁎
f n

n t
t

( ) 1
2

( )
, (20)

2

where 〈Δn*2(t)〉 denotes the mean square deviation (MSD) of the atoms attached to the critical crystal nucleus 
during a time interval t. In the study, the nucleation rates J and incubation time t = 1/J are estimated using Eq. (8) 
with Eq. (17) using the atomistically determined ΔG* and f+(n*). The TTT diagram is then depicted using the 
obtained incubation time t at different temperatures below the melting temperature Tm.
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