
1Scientific REPORtS | 7: 6155 | DOI:10.1038/s41598-017-06307-8

www.nature.com/scientificreports

Lateral-drag propulsion forces 
induced by anisotropy
Igor S. Nefedov1,2 & J. Miguel Rubi3

We predict the existence of lateral drag forces near the flat surface of an absorbing slab made of an 
anisotropic material. The forces originate from the fluctuations of the electromagnetic field, when 
the anisotropy axis of the material forms a certain angle with the surface. In this situation, the spatial 
spectra of the fluctuating electromagnetic fields becomes asymmetric, different for positive and 
negative transverse wave vectors components. Differently from the case of van der Waals interactions 
in which the forward-backward symmetry is broken due to the particle movement, in our case the 
lateral motion results merely from the anisotropy of the slab. This new effect, of particular significance 
in hyperbolic materials, could be used for the manipulation of nanoparticles.

Fluctuating electromagnetic fields are responsible for important phenomena such as thermal emission, radiative 
heat transfer, van der Waals interactions, Casimir effect, and van der Waals friction between bodies1. The exist-
ence of attractive forces between two perfectly conducting parallel plates, induced by vacuum fluctuations at zero 
temperature, was predicted by Casimir in 19482, 3 and subsequently by Lifshitz4 for any media at finite temper-
ature. A general electromagnetic fluctuation theory, referred to as fluctuational electrodynamics, was proposed 
by Rytov in 19505. The conventional Casimir force between two parallel surfaces is orthogonal to the surfaces, of 
attractive or repulsive nature depending on the separation distance and on the medium filling the gap between 
surfaces6, 7.

The lateral component of the Poynting vector, integrated over the whole spatial spectrum, vanishes near flat 
surfaces because its positive and negative components balance each other out. This symmetry can be broken 
by a mutual lateral movement of the bodies, as happens in the case of contact-free van der Waals and quantum 
friction8, 9. To observe these forces, one applies an electric current to a conducting layer and measures the friction 
drag effect of electrons in a second parallel metallic layer10, 11. Lateral drag forces can also be present nearby sur-
face inhomogeneities, such as corrugations12–14. These forces, however, can only give rise to local displacements 
that follow the periodicity of the corrugations15–17 and not to a net movement of the particle over an appreciable 
distance. A lateral propulsion force, exerted on an anisotropic particle in a non-equilibrium regime, was predicted 
by Müller and Krüger18. In the situation analyzed, the forces acting on the particle cause not only lateral motion 
but also rotation leading the particle to a state of minimal energy where lateral motion ceases. Anisotropy can 
also induce van der Waals torques, predicted between anisotropic half-spaces19, anisotropic cylinders20, and other 
objects. For more details see the review article14.

In this work, we propose a new mechanism able to generate lateral forces not subjected to the restriction of 
local motion imposed by surface corrugations. The force is induced by fluctuations of the electromagnetic field 
and not by quantum (zero field) fluctuations. If the absorbing medium is anisotropic and the anisotropy axis is 
tilted with respect to the slab surface, absorption of the TM-polarized wave incident on the slab is different for 
positive and negative incident angles, although the reflection be the same21, 22. The net force induced moves the 
particle in a direction parallel to the surface.

To calculate the lateral force, we solved the boundary-value problem for electromagnetic waves, excited by 
point-like fluctuating currents within a finite-thickness slab of an anisotropic medium (see Fig. 1). The correla-
tions of the current are given by fluctuating electrodynamics5. Due to the homogeneity of the considered geome-
try in the x and y directions, the electric and magnetic fields and the current can be represented by means of their 
corresponding Fourier transforms E(ω, kx, ky), H(ω, kx, ky), and j(ω, kx, ky). To find a fully accurate solution of the 
electromagnetic fields is a difficult task because the fields in the considered geometry cannot be decomposed into 
TM and TE waves. To show the existence of a lateral force, however, it is enough to consider TM waves propagat-
ing along the slab in the anisotropy plane, assuming ky = 0.
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The article is organized as follows. In section II, we solve the boundary value problem for electromagnetic 
waves propagating in the anisotropic slab and calculate the normal and lateral components of the Poynting vector. 
In Section III, we obtain the eigenwaves. Section IV is devoted to the calculation of the radiative force on a dipole 
particle. Finally, in Section V, we present our results for the lateral force.

Normal and lateral components of the Poynting vector
In the coordinate system (x′, y′, z′) (see Fig. 1) the relative permittivity tensor has the diagonal form

   ′ ′′ = ′ ′ + ′ ′ + .z z x x y y( ) (1)t0 0 0 0 0 0

where the subscript 0 denotes unit vector. The components of the permittivity tensor in the reference frame x, y, 
z, associated with the slab interface  are the following21:
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If the anisotropy axis is tilted with respect to the slab interfaces, the Maxwell equations can be split up into TM 
and TE subsystems, provided that the wave vector lies in the anisotropy axis plane or is orthogonal to it. We will 
restrict our analysis to TW waves.

The propagation constants of those waves, travelling along the z-direction for a fixed kx are given by21
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where k0 is the wavenumber in vacuum. The transverse wave impedances Z1,2, connecting tangential field com-
ponents, reads as21
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where η = 120π Ohm is the wave impedance of vacuum.
For the tangential field components X(z) = (Ex(z), Hy(z)), excited by the fluctuating currents jx(z), jz(z) located 

within the absorptive layer 0 < z < h (see Fig. 1), the Maxwell equations reduce to the system of two ordinary 
differential equations:

= +
d
dz

z z zX( ) [A]X( ) F( )
(5)

where the matrix elements of [A] are given by
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and the components of the vector F(z) = (F1(z), F2(z)) are

Figure 1. The anisotropic slab and the small particle affected by the lateral force. The anisotropy axis, indicated 
by a thick blue arrow, forms an angle φ with the slab interface. Its thickness is h. Reference frames (x, y, z) and 
(x′, y′, z′) are associated with the slab interface and the anisotropy axis, respectively. The black arrow shows the 
direction of motion of the particle due to the action of the x-component of the radiative forces Fx.
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The elementary bulk current source has the form: j(z) = j0(z′)δ(z − z′).
The solution of Eq. (5) for points 0 < z < h is23:

∫ τ τ= + τ−z e e dX( ) X(0) F( ) , (8)
z z z[A]

0

[A]( )

with [M(z)] = e[A]z the transfer matrix. Expressions for the two-by-two matrix components, for the case in which 
the wave impedances and vector components are different for waves propagating in opposite directions, are given 
in refs 21, 22. For the considered case, where Z2 = −Z1 = Z, those expressions reduce to
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The boundary conditions are: X2(0) = X1(0)/Z0, X2(h) = −X1/Z0, where η= −Z k k k( ) /x0 0
2 2

0 is the transverse 
wave impedance in vacuum. We can then express the tangential field components at the interface x = 0, created 
by a current located at z′ in the form
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The Fourier components of the electric and magnetic fields out of the layer are given by
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where = −k k kz x0 0
2 2  and Hy(kx, z, z′) = Ex(kx, z, z′)/Z0. For evanescent waves, |kx| > k0, we have to take 

kz0 = −i|kz0|, if z < 0 and kz0 = i|kz0|, if z > h.
The average values of the fluctuating currents vanish, only their correlations contribute to the energy flux. 

These correlations are given through the fluctuation-dissipation theorem24 The ensemble-averaged Poynting vec-
tor in the plane z = 0, for the kx mode, induced by fluctuating currents located within the slab, 0 < z′, z″ < h, reads
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where the correlation ′ ″⁎E k z H k z( , ) ( , )x x y x  is obtained by using the fluctuation-dissipation theorem24
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the Planck’s oscillator energy. Contribution from vacuum fluctuations is omitted since thermal fluctuations only 
contribute to the lateral forces. In Eq. (14),  ″ ≡ Im( )mn mn , 0  is the permittivity of vacuum, ħ the reduced Planck 
constant, T the temperature, and kB the Boltzmann constant.

Using the fluctuation-dissipation theorem (14), we then obtain
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where we have defined the coefficients
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The expressions for these coefficients are found to be
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If the anisotropy axis is parallel or orthogonal to the interface, then 〈Sz(ω, kx)〉 = 〈Sz(ω, −kx)〉. Otherwise, that 
average becomes asymmetric with respect to the normal to the slab interface, as occurs in absorption21, 22. This 
value is real if |kx| < k0 and imaginary if |kx| > k0. Actually, the real part of 〈Sz(ω, kx)〉 determines the far-field ther-
mal emission at the angle θ = arcsin kx/k0.

Outside the slab, the lateral time-averaged component of the Poynting vector is given by

ω ω= − =⁎S k z E H k
k

S k f z( , , ) 1
2

( , ) ( ),
(22)
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where f(z) = 1, if |kx| < k0, and =f z e( ) k z2 z0  (z < 0), if |kx| > k0. Unlike 〈Sz(ω, kx)〉, this value is real for all kx, i.e. 
both for propagating and evanescent waves. The contribution of all kx-modes to the x-component of the Poynting 
vector outside the slab is given as:

∫ω
π

ω= .
−∞

∞
S S k z dk( ) 1

2
( , , ) (23)x x x x

Despite the fact that the lateral component of the Poynting vector is real for all kx, propagating waves only give 
contribution to the overall value (23), hence 〈Sx(ω, kx, z)〉 ≠ 〈Sx(ω, −kx, z)〉, if |kx| < k0 and 〈Sx(ω, kx, z)〉 = 〈Sx(ω, 
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−kx, z)〉, if |kx| ≥ k0. These results come from the fact that the field correlators outside a finite-thickness slab of an 
absorbing medium are expressed via transmission and reflection coefficients for the propagating waves spectrum 
and via reflection coefficients only for evanescent waves (see, for example25, Eq. (120), and ref. 26, Eq. (103)). For 
the slab made of an anisotropic material with a tilted anisotropy axis the reflection coefficients are symmetric with 
respect to ± kx for any kx, whereas the transmission coefficients are asymmetric.

Since 〈Sx(ω, kx, z)〉 ≠ 〈Sx(ω, −kx, z)〉 (|kx| < k0), one can expect the appearance of radiative forces dragging a 
particle placed nearby the slab along its surface.

When |kx| < k0, expression (13) gives us the thermal power radiating from the slab in the anisotropy axis (x, 
z) plane, i.e. for ky = 0. The total energy flux density in the x-direction, produced by electromagnetic fluctuations, 
is given by

∫ ∫ ∫
ω
π

ω= .
∞

−
S z d S k k dk dk( )
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( , , )

(24)x
k

k
x x y x y
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0 3
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An exact value of this quantity for nonzero values of kx and ky is difficult to obtain since the fluctuating fields in 
the slab are carried by hybrid waves whose solution is more difficult to obtain than that for TM waves.

The calculation of the total energy flux in the x-direction is based on the following consideration. If the aniso-
tropy axis is orthogonal to the slab interfaces or if the medium is isotropic, due to azimuthal symmetry, one can 
replace dkxdky by 2πkxdkx, therefore
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and = + ≡S z S z S z( ) ( ) ( ) 0x x
s

x
ptot . Let us consider separately the cases in which the wave vector is either 

parallel or orthogonal to the plane normal to the slab surface, containing the anisotropy axis. In both cases, waves 
in an anisotropic slab can be split up into p-polarized and s-polarized waves. Obviously, for the s-polarized waves 
the asymmetry never takes place and ≡S z( ) 0x

p  for both cases, kx ≠ 0, ky = 0 and kx = 0, ky ≠ 0. For p-polarized 
waves, the asymmetry is absent if kx = 0, at any ky and it is maximal if kx ≠ 0, ky = 0. Thus, the integral over waves, 
propagating in the y-direction, i.e. kx = 0, gives zero contribution to S z( )c

p . A good approximation to the total 
lateral energy flux density is then given by
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Asymmetry with respect to ±kx takes place for any absorbing anisotropic material but it becomes particularly 
important for media characterized by hyperbolic dispersion, for the so-called hyperbolic materials, whose diag-
onal components of the permittivity tensor have different signs. To illustrate the lateral drag effect, we will con-
sider the orthorhombic modification of boron nitride which exhibits hyperbolic dispersion in certain frequency 
ranges27, 28.

The Lorentzian model and the eigenwaves in a boron nitride medium
The components of the permittivity tensor are given by the Lorentz model27, 28:

ω

ω ω ω
= +

− − Γ
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,
 

where ω τ
⊥,  and ⊥U ,  are, respectively, the transverse phonon frequency and the oscillator strength of the lattice 

vibration for the parallel and perpendicular polarizations, and Γ ⊥,  is the damping constant. The constants ⊥
∞
,  are 

the components of the permittivity tensor at frequencies ω that greatly exceed the phonon resonance frequency 
ω τ

⊥, . The values of the parameters of  (27) used are:  = .∞ 2 7, = .U 0 48, ω = . ×τ 1 435 1014  rad/s, 
Γ = . ×8 175 1011 rad/s, = .⊥

∞ 5 2 , U⊥ = 2, ω = . ×τ
⊥ 2 588 1014 rad/s, Γ⊥ = 1.29 × 1012 rad/s. For this parameters, 

the Lorentzian resonances of   and ⊥, take place at frequencies ≈22.8 THz and ≈41.2 THz, respectively.
The propagation constants and the transverse wave impedance of the TM waves, traveling along the 

z-direction under fixed kx, are given by Eqs (3) and (4), respectively. In order to correctly identify the waves 
propagating in the positive and negative directions of the z-axis, we have to analyze the imaginary parts of 
kz

(1,2), according to the causality principle. Let us define the normal wave vector component for the downward 
wave (propagating in the positive z-direction) as k1 and for the upward wave as k2. One then has: Im (k1) > 0 
and Im (k2) < 0. The parallel   and perpendicular ⊥ components of the permittivity tensor of orthorhombic 
boron nitride, taken for illustration of the predicted effect, exhibit the Lorentzian resonances at frequencies 
≈22.8 THz and ≈41.2 THz, respectively. It is expected, that k1 and k2 exhibit a resonant behavior nearby these 
frequencies.

Figure 2 illustrates the frequency dependencies of the real and imaginary parts of the normal components k1, 
k2 of wave vectors. One can see that Re(k1) changes the sign in the vicinity of the resonance, so the downward 
propagating wave becomes the forward wave at low frequencies and the backward wave in the frequency range 
from ≈23.6 THz to ≈25 THz. The upward wave remains the forward one within the considered range. Figure 3 
shows similar dependencies on the frequency range around the ⊥  resonance. Unlike the previous case, here the 
upward wave changes the sign of dispersion.
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The dependence of the transmission, |T|2, reflection, |R|2, and absorption A = 1 − |T|2 − |R|2 on the incidence 
angle, calculated at 45 THz which is close to the Lorentzian resonance for  , is shown in Fig. 4. The displayed 
dependence of the absorption versus the incidence angle is the signature of the asymmetry of thermal emission 
and radiative forces with respect to kx.

Figure 2. Real and imaginary parts of k1 and k2, normalized to the wavenumber in vacuum k0, versus frequency 
in the vicinity of the  - resonance.

Figure 3. Real and imaginary parts of k1 and k2, normalized to the wavenumber in vacuum k0, versus frequency 
in the vicinity of the ⊥ - resonance.
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Figure 4. Absorption A (black), transmission |T|2 (red) and reflection |R|2(blue) of the plane wave incident onto 
the slab of orthorhombic boron nitride versus the incidence angle θ [rad]. The thickness of the layer h is 1.5 μm 
and the tilt angle φ = 40°.
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Radiative forces on a dipole particle
To evaluate the effect of the lateral forces, we will consider a small particle moving under the influence of fluctu-
ating electromagnetic fields. The dipolar force acting on the particle can be written as29


α σ σ= ∇ + × +






⋅ ∇
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with r and  its radius and permittivity, respectively, and σ = k0Im{α}/0. The origin of the force is the presence of 
thermal fluctuations in the anisotropic slab which give rise to thermal emission from the slab into the far zone. 
Finite thickness of the slab and tilted anisotropy axis are conditions necessary to generate the force. Zero-field 
fluctuations do not give a contribution to the force since the energy flows incoming from the left and the right 
sides balance each other out.

The first term in (28), related to the gradient forces, causes attraction of the particle toward the slab interface 
due to the z-dependence of fields through e k zz0 , for z < 0 (van-der-Waals forces1). The explicit expression for 
∇|E|2 is

ω ω η∇ =
∂
∂

+ =
−⁎ ⁎k z

z
f z E E E E S k f z k k

k
E( , , ) ( )[ ] 2 ( , ) ( )2 ,

(30)x x x z z z x
x2
2

0
2

0

Only the evanescent waves (|kx| > k0) contribute to this force.
In the second contribution, the x- and z-component of the Poynting vector exert pulling forces along the cor-

responding directions. At small |z|, the attractive gradient force is dominant, whereas at larger |z| the dominant 
force is the repulsive force proportional to the z component of the Poynting vector.

Due to the fact that

⋅ ∇ =
∂
∂

+
∂
∂

=

⋅ ∇ =
∂
∂

+
∂
∂

=

⁎ ⁎ ⁎

⁎ ⁎ ⁎

E
x

E E
z

E

E
x

E E
z

E

E E

E E

( ) 0,

( ) 0,
(31)

x x x z x

z x z z z

the third term in (28) does not contribute to the radiative forces. The x-component of the Poynting vector in (28) 
is given by Eq. (26) and the z-component can be found by replacing ωS q( , )x

p  by ω ω= −S q k k S q( , ) ( / ) ( , )z
p

z x x
p

0 .
Note, that since the TM (p)-polarized waves only contribute to the lateral Poynting vector at ky = 0 and in our 

approximation we have not taken into account the hybrid nature of waves in the anisotropic slab at ky ≠ 0, we can 
consider contributions of the p-polarized waves only to the x-directed forces.

As an example of particle experiencing a lateral drag force, we consider a spherical nanoparticle, made of 
doped silicon, whose complex permittivity s  in the infrared and far infrared ranges can be calculated by using the 
Masetti model30. This model considers that the permittivity of heavily doped silicon is given by the Drude for-
mula30, 31:

 ω
ω

ω ω γ
= −

−∞ j
( )

( ) (32)
p
2

where ∞ ≈ 11.6 is the high-frequency limit value of the permittivity32, and γ is the scattering rate which depends 
on the mobility of the carriers. The plasma frequency and scattering rate are expressed as ω = ⁎Ne m/( )p

2
0  and 

γ = e/(m*μ), respectively, where e is the electron charge, N is the carrier concentration, m* is the carrier effective 
mass, and μ is the mobility. For n-type heavily doped Si, the mobility expression is given as31

µ µ
µ µ µ

= +
−

+
−

+
.α βN C C N1 ( / ) 1 ( / ) (33)r s

1
max 1 2

Here m* = 0.27m0, where m0 is the electron mass, μ1 = 68.5 cm2/V s, μmax = 1414 cm2/V s, μ2 = 56.1 cm 2/V s, 
Cr = 9.2 × 1017 cm−3, Cs = 3.42 × 1020 cm−3, α = 0.711 and β = 1.98. For these parameters, ωp = 1.084 × 1015 rad/s 
and γ = 8.586 × 1013 rad/s. The concentration of carriers is 9 × 1019 cm−3 and its radius 15 nm. For these values of 
the parameters the particle exhibits a dipole resonance within the same frequency range as for the perpendicular 
component of the permittivity tensor of orthorhombic boron nitride, namely, around 44 THz, see Fig. 5. In the 
figure, one can see a very strong enhancement of Im (α), proportional to the lateral force, within the frequency 
band, providing main contribution to the lateral component of the Poynting vector.

Results and Discussion
Figure 6 shows the dipolar forces acting on the particle, computed at z = 1 μm, and integrated in frequencies. The 
lower integration limit is 20 THz since below this frequency contributions to all radiative forces are very small. 
The upper limit corresponds to a current frequency at the abscissa axis. One can see that the main contributions 
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to all forces come from the frequency band 41–45 THz corresponding to the Lorentz resonance for kz. Further 
integration does not change the results; saturation is observed after 47 THz.

The normal component of the force consists of contributions from the gradient force, Fg, and the force, caused 
by the Poynting vector, Fz. One can verify, that at such a distance the van-der-Waals attractive force is comparable 
with the lateral force. The magnitude of the lateral drag force is even stronger than the repulsive z-directed force. 
The spectral densities of these forces were calculated and pictured within the frequency range 20 THz–60 THz in 
which the Lorentz model for orthorhombic boron nitride (27) applies, see Fig. 6. Our estimations thus show that 
the predicted lateral force could be detected experimentally. Visualization of the velocity of the colloidal nano-
particle could be carried out by using the method of particle image velocimetry successfully employed with gold 
nanoparticles33. Under the influence of this lateral force, the acceleration of the nanoparticle is 2.46 m/s2. One 
can expect saturation of the particle speed due to contactless quantum friction. To make that lateral forces are the 
only ones acting on the particle, one can inhibit the perpendicular Casimir force by placing a non-absorbing layer 
between the particle and the absorbing layer. In this way, the particle could only move along the lateral direction.

In summary, we have predicted a new effect caused by the fluctuations of the electromagnetic field nearby an 
absorbing anisotropic slab: the presence of lateral drag forces emerging when the anisotropy axis of the slab is 
tilted. Electromagnetic fluctuations have been treated within the framework of Rytov’s formalism which consti-
tutes one of the important tools to study fluctuation-induced interactions, and it is applicable at the nanoscale 
as well5. This effect systematically occurs in any absorbing anisotropic media, but it may be especially relevant 
for materials with a strong anisotropy. To prove the existence of such forces, we have solved the boundary value 
problem in the TM-waves approximation that ignores the hybrid nature of the waves supported by the slab for 
the considered anisotropy, if ky ≠ 0. The presence of these drag forces which can be referred to as “the driving force 
from nothing”34 can play an important role in the manipulation of nanoparticles close to a surface.

Figure 5. Real and imaginary parts of the polarizability α [F · m2] of the nanoparticle, made of doped silicon 
with concentration of carriers 9 × 1019 cm−3.
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Figure 6. Radiative forces [N] versus frequency for h = 400 nm, T = 450 K, and φ = 50°: Fg is the conservative, 
attractive gradient force, exerted by non-homogeneous fields of evanescent waves (red); Fx (black) and Fz (blue) 
are the lateral and normal repulsive, non-conservative forces, induced by the corresponding components of the 
Poynting vector, respectively.
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