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Critical behaviour in the optimal 
generation of multipartite 
entanglement
M. G. M. Moreno & Fernando Parisio

Two systems whose correlations cannot be classically accounted for display the simplest instance 
of quantum entanglement. Although this two-party association has caused a revolution in the 
foundations and uses of quantum mechanics, genuine entanglement among several parties unveils 
a whole new class of phenomena and applications. In this work we suggest a way to prepare Dicke 
states from a tunable source of bipartite entanglement to investigate foundational issues. The scheme 
has the following distinctive features: (i) it relies on controlled information loss and unentangled 
measurements; (ii) irrespective of the source entanglement, whenever a Dicke state is produced, it is 
ideal; (iii) the optimal entanglement of the bipartite source undergoes a second-order-like transition 
depending on the parameters of the Dicke state to be produced. These properties lead to asymptotic 
results on the entanglement between any qubit belonging to a Dicke state and the remaining qubits.

Quantum entanglement involving two parties has led to groundbreaking advances, of which preeminent exam-
ples are Bell inequalities and nonlocality1, teleportation2, and dense coding3, 4. It would be natural to think, at a 
first sight, that multipartite entangled systems would present the same features in a larger scale. However, since 
the seminal study on the nonlocality of certain tripartite states in the early 90’s5, it became gradually clear that 
completely new phenomena and potential applications could arise. It is now known that n particles can be highly 
entangled without any pairwise correlation: entanglement appears in many different, inequivalent forms, of which 
the Einstein-Podolsky-Rosen (EPR) type is the simplest instance6, 7. As for applications, there are, e.g., paradigms 
for quantum computation which rely on the feasibility of cluster states of several qubits8.

It is, then, clear that conceiving means to produce multipartite entangled states is of relevance. To date, there 
are three ways to meet this goal: controlled interactions between qubits, measurements in entangled basis, and 
indistinguishability of identical particles. The first way relies on the fact that initially uncorrelated interacting 
subsystems may become entangled. Of course, the interactions must be finely tuned and the qubits protected from 
noise. The second possibility is related to the fact that, to any orthogonal entangled basis corresponds a physical 
observable that can be measured, in principle, leaving the system entangled. There are, however, serious provisos 
regarding this simplistic picture. Firstly, measurements are commonly destructive, photo-detection for instance, 
so, after their realisation there remains no system whatsoever. This problem can be circumvented if bipartite 
entanglement is an available resource. So, instead of using n qubits, one employs n EPR pairs and proceed with 
the n-partite measurement on one particle of each pair. The remaining qubits will end up, with some non-zero 
probability, in a n-partite entangled state, see, e.g., ref. 9. This brings the second difficulty. In practice, it is very 
hard to make full measurements in entangled bases, even in the bipartite case10, 11. The third way is more related 
to a fundamental principle than to deliberate procedures, see however12. It simply amounts to the fact that two 
indistinguishable electrons, e.g., can only exist in an entangled state.

In this article we present a procedure for creating arbitrary Dicke states, Dn
k( ) , of n particles and ≤ ≤ −k n1 1 

excitations. It employs a combination of induced indistinguishability and unentangled Fock measurements. The 
protocol has the property that, irrespective of how poor is the source of entanglement, every time a Dicke state is 
created, it is ideal. In addition, the probability of creating Dn

k( )  behaves similarly to a thermodynamic potential 
during a second-order phase transition, as n grows, where the entanglement of the optimal source undergoes a 
qualitative change at a critical n. Finally, we establish exact results on the asymptotic entanglement between any 
qubit belonging to Dn

k( )  and the rest of the system.
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Entanglement lifting
We begin by sketching an optical realisation of the scheme in the simple case of three photon pairs. It illustrates 
what we refer to as entanglement lifting. Differently from usual entanglement concentration, we start with M 
bipartite entangled pairs and, in the end, we obtain j n-partite entangled systems. More precisely, in the pure case, 
we will consider the process φ → Ψ⊗ ⊗M j with φ ∈ i and Ψ ∈ f , where not only j < M, but also D > d, 
with =d dim i, and =D dim f . It will become clear that lifting also entails concentration.

Consider three identical sources of pairs of polarisation-entangled photons (alternatively one can consider 
that there is a single source producing the pairs which are posteriorly distributed). We initially assume that each 
pair is maximally entangled, with state φ = ++ ( 00 11 )/ 2 , with 0 (1) denoting horizontal (vertical) polar-
isation. One photon of each pair is delivered to Alice, while the others are sent to Bob, Brian and Brandon. After 
this, the total quantum state reads φΨ = = ∑ ⊗+ ⊗ − ijk ijk2 i j k A B0

3 3/2
, , , where A stands for Alice and B for 

the spatially separated system of Brandon, Brian and Bob (Fig. 1).
Alice synchronizes her photons, e.g., using quantum memories13–15 (process denoted by S) before sending 

them to a polarization beam splitter (PBS). It is important that the three wave packets overlap so that the photons 
are undistinguishable when they arrive at the PBS. With this, Alice intentionally discards the information on the 
former holder of each photon.

After passing the PBS, the photons proceed to detectors capable of discriminating the Fock state in each spatial 
mode of Alice’s system16, 17. The indistinguishability induces a natural partition of Alice system’s Hilbert space into 
subspaces generated by kets with a fixed number of photons with a given polarisation, so that, states like  001  and 
010  coalesce into 2 horizontal; 1 vertical . In this way, we have four detection possibilities: →000 3; 0 , 

→{ 001 , 010 , 100 } 2; 1 , →{ 011 , 101 , 110 } 1; 2 , and →111 0; 3 . The first entry in the kets on the 
right-hand side gives the photon number of path 2, and the second entry the photon number of path 1, see Fig. 1. 
It is clear that this process is non unitary since it can map orthogonal states into the same final state. This is due to 
the fact that synchronisation can only be achieved through the interaction between the photons and some ancil-
lary systems which, generally speaking, store the information on the initial delay between the photons. In ref. 14, 
where the possibility of using this technique in the scalable generation of photonic entanglement is already men-
tioned, the auxiliary systems consist of Rubidium atom ensembles. The global unitary evolution of the larger 
system leads to the non unitary evolution of the reduced system of the photons to be synchronised.

In the full indistinguishability situation, just before the detection, the state is proportional to:
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Therefore, after the detection of Alice’s photons there are four possible states left to the B-group. If all three pho-
tons are either detected in path 1 or in path 2 (probability 1/8 for each event), then, B-group’s state is separable 
and, after appropriate classical communication, it is disposed. With probability 3/8 two photons are detected in 
path 2 and one in path 1 and, then, B-group’s state is already a W state, ≡ ∝ + +D W 001 010 1003

(1)
3 . 

Lastly, also with probability 3/8, two photons are detected in path 1 and one in path 2. In this case, Alice 

Figure 1.  Three photon pairs are produced in an EPR polarisation state. One photon of each pair is sent to 
Alice, while the B-group members receive one photon each. Alice sends her synchronised photons to a PBS, 
after which they are detected, leaving the B-group with an ideal Dick state with probability p = 0.75.
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communicates the B-group members that each of them have to perform a bit-flip operation in his qubit, and, in 
the end, ideal W states are prepared with probability 3/4.

Results
We now generalise the lifting procedure to the case where n EPR pairs are used per run. We will see that this leads 
to the production of arbitrary, unambiguously heralded Dicke states. The initial state is given by φΨ = + ⊗n

0 , 
and it is easy (but crucial) to see that it can be written as Ψ = ∑ … ⊗ …( ) j j j j j j

n

n A n B0
1
2

/2

1 2 1 2 , where ji = 0, 
1. Again, one photon of each pair is sent to Alice and the others to each of the elements of the B-group, now com-
posed by n parties. Alice’s photons are synchronised and sent to the PBS. Given the indistinguishability, besides 

… → n00 000 ;0A  a n d  … → n11 111 0;A ,  w e  h a v e  t h e  f o l l o w i n g  c o r r e s p o n d e n c e s : 
…ˆ{ 00 001 }j A j

(1)
 ,→ −n 1; 1  



, … → −
−ˆ n{ 01 111 } 1; 1j

n
A j

( 1)
 , where ˆ

j
k( )

  represents the jth non-trivial 
permutation of the ket entries. Thus, for each k, we have = … ( )j n

k1, 2, , . It is simple to show that the global state 
of the system immediately before the detection of Alice’s photons is

∑
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is a n-partite Dicke state with ≤ ≤ −k n1 1 excitations. Note in Eq. (1) the perfect correlation between Alice’s 
output of an unentangled Fock measurement and the production of a specific ideal Dicke state shared by the ele-
ments of the B-group. The probability of having output −n k k; , or yet, to remotely produce Dn

k( ) , is −( )n
k 2 n. 

Dicke states with different number of excitations are generally inequivalent under local operations and classical 
communications (LOCC). The obvious exception occurs for k and n − k excitations, since σ= ⊗ −ˆD Dn

k
x

n
n

n k( ) ( ) . 
Therefore, after Alice communicates her outcome, the B-group may transform all the states with > +k n2 1 
( >k n2 ), into states with ≤ −k n2 1 ( <k n2 ), for n odd (even). We will assume that this procedure is always 
adopted in the remainder of this manuscript. For n even and k = n/2, we already have = −D Dn

k
n

n k( ) ( ) .
We are in a position to further extend the scheme to the case of tunable sources producing pairs with arbitrary 

entanglement18–21: φ = +a b0 0 1 1A B A B . In this case the total initial state Ψ0  can be written as:
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Under full indistinguishability, the surprising result is that after the PBS, and before detection, the state reads:
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that is, despite the asymmetry of the source states, whenever an entangled state is produced it is still a perfect 
Dn

k( ) . It is of great importance to note that, had we kept all initial information, namely, the distinguishability of 
Alice’s photons, then entangled measurements would be required to leave the B-group with Dicke states. The 
unbalanced character of the bipartite source, rather than affecting the ideality of the outputs, only changes their 
probabilities of occurrence, which are given by

= +− −( )( )P n
k a b a b ,

(4)n
k n k k k n k

n k
( ) 2 2

,

with = 1n k,  for n odd and δ= + −(1 )n k k n, , /2
1  for n even, and, with the LOCC-equivalence between k and n − k 

excitations already considered.
In Fig. 2 we display (a) Pn

(1) and (b) Pn
(2), as functions of |a|2, for selected values of n. The left panel shows that 

for =n 3, the optimal source corresponds to maximally entangled states (|a|2 = 1/2). This is also true for n = 4, 
but, in this case there is a broad plateau around |a|2 = 1/2. For n ≥ 5, Pn

(1) is maximal for non-maximally entangled 
sources and, two symmetric optimal values of |a|2 appear. By using the general expression (4) one can analytically 
determine the bifurcation condition:

η> + + + ≡ .n k k2 1
2

2 1
4 (5)c
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Since the right-hand side of the above equation is not necessarily integer, we define η= ⌈ ⌉nc c , which stands for the 
ceiling function (smallest following integer). For =k 1 and =k 3, η = =n 4c c  and η = =n 9c c , respectively. In 
these cases the critical value is indeed integer and one can see the typical behaviour shown in Fig. 2(a) for =n 4. 
In contrast, for =k 2, η ≈ .6 56c  (⇒nc = 7), see Fig. 2(b), and the exact critical point is passed by, for, there is no n 
for which the plateau appears: for =n 6 there is a single maximum in Pn

(2), whereas for =n 7 there are two max-
ima. However, the properties hereafter derived are the same no matter if ηc is an integer or not. In Fig. 3(a) we plot 
the optimal source parameter ≡ a aopt

2 2 against n for k = 1 (nc = 4) and k = 3 (nc = 9). The optimal source state 
remains maximally entangled up to =n nc, after which a bifurcation develops.

These features remind us of the classical Landau theory22, 23 of second order phase transitions, with the role of 
the thermodynamic potential being played by Pn

k( ), |a|2 as the order parameter, and n inversely related to the tem-
perature. Given this similarity, we set to find further evidence to support our analogy. Figure 3(b) displays the 
probability Pn

(3) as n varies. The filled bullets represent Pn
(3) if one employs a maximally entangled source, 

= ∀a n1/22 , leading to a steep decay toward zero. As soon as >n nc, if, instead, one uses the optimal, but less 
entangled source determined by the lateral maxima, the decay follows a power law with a finite, non-vanishing 
asymptotic value. This regime is represented by the stars in Fig. 3(b). We found that the state of the optimal bipar-
tite source for the production of  Dn

k( ) , is asymptotically given by:

Figure 2.  Probability of producing Dicke states with (a) one excitation and (b) two excitations for selected 
values of n. As n grows there is a transition from functions with a single maximum at =a 1/22  to curves with 
two maxima.

Figure 3.  (a) “Pitchfork” bifurcation diagram of | | ≡ | |~a aopt
2 2 versus n for k = 1 (diamonds) and k = 3 (bullets). 

(b) Probabilities of getting creating a Dicke state with 3 excitations versus n. If EPR pairs are used Pn
(3) drops 

exponentially (bullets). If the optimal source is used, it undergoes a power-law decay (stars).
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φ → + − → ∞

k
n

k
n

n00 1 11 , ,
(6)n

k( )

with k finite. The other optimal state is obtained via 
a b  [Lower branches in Fig. 3(a) tend to Eq. (6)]. Thus, 

the optimal source tends to a collection of quasi-separable states. Yet, by using it we end up with a non-zero prob-
ability of obtaining n-partite entangled states. In this limit, the behaviour of the optimal probability, Pn

k( ), is given 
by:

= + +∞
− −

 P P k n O n[1 (2 ) ] ( ), (7)n
k k( ) ( ) 1 2

where the constant asymptotic probability reads

≡ = .
→∞

∞

−
 P P k e

k
lim

! (8)n
n

k k k k( ) ( )

Although these are asymptotic results, the convergence is fast for small k’s. The stars in Fig. 3(b) are close to the 
continuous curve [ . + n0 224(1 3/2 )] already for >n 15, see the lower-order non-constant term in the asymptotic 
expression for Pn

k( ), derived in the methods section.
The properties derived so far provide information on the entanglement of Dicke states. Result (8) leads to the 

conclusion that, if entangled pairs are an available resource, the probability to create Dicke states as → ∞n , with 
a finite number of excitations k is non-vanishing even if the source has an arbitrarily low entanglement per pair. For 
k = 1, e.g., one obtains ≈ .∞

P 0 368(1) , with →a n1/2 . This is the signature of entanglement concentration: the 
exchange of a large number of copies with low entanglement by a small quantity of more entangled systems24. 
Here, in addition to concentration, the initial bipartite entanglement is lifted to a larger Hilbert space.

Finally, we derive asymptotic results on the amount of entanglement between any single qubit which is part of 
a system in a Dicke state and the rest of the system. Therefore we address the partition … −B B(Alice, , , ,j1 1

… | ≡ |+B B B I II, , ) ( )j N j1 , where Bj represents any of the elements in the B group (due to the symmetry of the 
Dicke state the analysis does not depend on which qubit is being singled out). Note that, after Alice’s local meas-
urements this same partition reads … … |− +B B B B B( , , , , , )j j N j1 1 1 , which indeed refers to the entanglement 
between an arbitrary B-group member and the rest of the group. Suppose one intends to produce Dn

k( )  with k 
finite and n arbitrarily large from a reservoir of optimal bipartite states, given by Eq. (6). The initial entanglement 
between I and II is precisely the entanglement between Bj and the rest of the system, i.e., φ| 〉E( )n

k( )
, once local 

operations and classical communications should not increase the entanglement between any bipartition, the final 
amount of entanglement between theses parts are upperbounded by φ| 〉E( )n

k( )
, where E is an arbitrary bipartite 

measure or monotone. Nevertheless it must also be lowerbounded by the amount of entanglement 
×P E D( )n

k
I II n

k( )
( )

( )  between Bj and the rest of the B group–at this point Alice’s part is completely factorable and 
plays no role. This holds because we are disregarding the contributions coming from the other Dick states that 
may be created. So, we must have,

φ| 〉 > | 〉 .
∼∼

E P E D( ) ( ) (9)n

k

n

k

I II n
k

( ) ( )

( )
( )

As → ∞n  the left-hand side goes to zero from above, the same must be true for the positive-definite quantity in 
the right-hand side. However, in this limit the asymptotic probability is non-vanishing, which demands

| 〉 → → ∞.E D n( ) 0, (10)I II n
k

( )
( )

This result is to be contrasted with the entanglement referring to the same partition of a system in a GHZ state of 
n qubits: = +− ⊗ ⊗GHZ 2 ( 0 1 )n

n n1/2 , which gives =E GHZ( ) 1I II n( )  ebit, for arbitrary n. As a specific exam-
ple let us consider the 2-tangle as the bipartite measure. In this case, equation (9) reads, τ <D( )I II n

k
2( )

( )

+− −
k P n O n(4 / ) ( )n

k( ) 1 2 . Therefore, the 2-tangle between an arbitrary qubit in a Dicke state and the rest of the 
system must go to zero, at least, as fast as n−1, as → ∞n  with k fixed.

Discussion
We presented an efficient protocol to create Dicke states without the need of entangled measurements, a major 
technical difficulty. The efficiency is due to a high success probability and to the fact that whenever a Dicke state 
is produced it is ideal. In optimally executing this protocol the tunable source states present a behaviour that is 
analogous to a second-order phase transition in thermodynamics. In particular, the optimal source is not neces-
sarily made of maximally entangled pairs.

Although our conclusions rely on the fact that our scheme is possible, in principle, an experiment seems to 
be already feasible for a relatively small number of parties. The most important ingredients, namely, tunable 
bipartite sources18–21, photon-number-resolving detectors16, 17 and synchronisation techniques13–15 are presently 
available, although, the conjunction of these elements may pose technical difficulties. The result of such an imple-
mentation would be the production of highly entangled multipartite states with a strong robustness against poor 
sources and with an increasing success rate for large n’s. We finally call attention to the fundamental relation 
between the information loss induced by synchronisation and the simpler nature of the required measurements. 
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This counterintuitive fact has been first reported, in a quite distinct context, in ref. 25 and it deserves further 
investigation.

Methods
Here we give the main steps to demonstrate equations (6) to (8). We intend to find the optimal probability of 
obtaining the state Dn

k( )  in the situation >n nc. For ≠n k/2 the probability reads

= − + −− −( )P n
k A A A A[ (1 ) (1 ) ], (11)n

k n k k k n k( ) ( )

where =A a 2. Initially we had numeric evidence that the optimized probability would follow a power law to 
reach a finite value as → ∞n . We, therefore, set to look for a source state that would support this behaviour. 
Looking at Eq. (11), since ≤ ≤A0 1, we see that as → ∞n , we must have either →A 0 [lower branches in 
Fig. 3(a)] or →A 1 [uper branches in Fig. 3(a)] in order to observe a Pn

k( ) finite. These two choices are equivalent 
due to the symmetry of equation (11), so we address the lower branch →A 0 as → ∞n . In this case, the first 
term in Eq. (11) vanishes, leading to the following result:

=
− … − + −

−→∞
→

P n n n k
k

A A
A

lim ( 1) ( 1)
!

(1 )
(1 )n

A
n

k k
n

k
0

( )

The product − ⋅ … ⋅ − +n n n k( 1) ( 1) gives rise to a term of order nk plus lower-order terms. So the only way 
to keep Pn

k( ) finite is to assume that A ~ n−1, say, = αA
n

. With this we indeed obtain the finite asymptotic value:

α α α
=



 −



 = ≡α

→∞
→
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−
∞P

k n k
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!
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!
,
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n
k

n

k n k
k

0

( ) ( )

with α to be determined. Since we are seeking the optimal source, we simply maximize ∞P k( ):

α
α= ⇒ = ≡ =

∼
∞

d
d

P k A A k
n

0 , ,k
opt

( )

which justifies Eqs (6) to (8). Equation (7) is obtained by collecting the following lower order term, leading to

∼




+


.−

P k
k

e k
n!

1
2n

k k
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In general, for small k this regime is quickly reached and, as the number of excitations increases (remaining 
finite), we observe a longer transient.
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