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Prediction of presynaptic and 
postsynaptic neurotoxins by 
combining various Chou’s pseudo 
components
Haiyan Huo1, Tao Li2, Shiyuan Wang3, Yingli Lv3, Yongchun Zuo4 & Lei Yang3

Presynaptic and postsynaptic neurotoxins are two groups of neurotoxins. Identification of presynaptic 
and postsynaptic neurotoxins is an important work for numerous newly found toxins. It is both costly 
and time consuming to determine these two neurotoxins by experimental methods. As a complement, 
using computational methods for predicting presynaptic and postsynaptic neurotoxins could provide 
some useful information in a timely manner. In this study, we described four algorithms for predicting 
presynaptic and postsynaptic neurotoxins from sequence driven features by using Increment of 
Diversity (ID), Multinomial Naive Bayes Classifier (MNBC), Random Forest (RF), and K-nearest 
Neighbours Classifier (IBK). Each protein sequence was encoded by pseudo amino acid (PseAA) 
compositions and three biological motif features, including MEME, Prosite and InterPro motif features. 
The Maximum Relevance Minimum Redundancy (MRMR) feature selection method was used to rank the 
PseAA compositions and the 50 top ranked features were selected to improve the prediction accuracy. 
The PseAA compositions and three kinds of biological motif features were combined and 12 different 
parameters that defined as P1-P12 were selected as the input parameters of ID, MNBC, RF, and IBK. The 
prediction results obtained in this study were significantly better than those of previously developed 
methods.

Neurotoxins can be divided into presynaptic and postsynaptic neurotoxins based on their mechanism of action1. 
Presynaptic neurotoxins are commonly called β-neurotoxins. These neurotoxins act on the plasmatic membranes 
of nerve endings, promote the generation of interterminal signals, and lead to a massive stimulation of the release 
of the neuromediator2–4. Presynaptic neurotoxins are rich sources of phospholipases5–9 and produce neuro-
muscular blockade by inhibiting the release of acetylcholine from the presynaptic membrane10. Postsynaptic 
neurotoxins are commonly called α-neurotoxins11–13, and most of these neurotoxins are from the venoms of 
snakes of families. Postsynaptic neurotoxins bind specially to the nicotinic acetylcholine receptor resulting in 
the prevention of nerve transmission, leading to death from asphyxiation14–17. Due to postsynaptic neurotoxins 
have similarity action to the reversible acetylcholine receptor antagonist curare with curare-mimetic toxins, there 
are often referred to as “curare-mimetic toxins”5. These two neurotoxins contribute to the understanding of the 
molecular steps of neurotransmission, and have potential use in cell biology and neuroscience research as well 
as therapeutics in some human neurological disorders. For example, presynaptic neurotoxins have been used for 
the treatment of migraine headache and cerebral palsy18. With the numerous of neurotoxin sequences generated 
in the post-genomic era, it is desired to develop a method for identification of neurotoxins for basic research and 
drug discovery.

In recent years, many computational algorithms have been developed for analyzing and predicting toxins. 
Short animal toxin and toxin-like protein sequences can be predicted by the web-based classifier ClanTox19, 20. 
The neurotoxins and bacterial toxins derived from Swiss-Prot were predicted by Feed-forwarded Neural Network 
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(FNN), Partial Recurrent Neural Network (RNN) and Support Vector Machine (SVM)21–23. Four kinds of cono-
toxin superfamilies for 116 conotoxin sequences were predicted by ISort predictor, Least Hamming, Multi-class 
SVMs, one-versus-rest SVMs24, modified Mahalanobis discriminant25, and dHKNN26. Four conotoxin superfam-
ilies for 261 conotoxin sequences that collected from Swiss-Prot were predicted by SVM27. In our previous work, 
based on the Animal Toxin Database (ATDB)28, 29, the presynaptic and postsynaptic neurotoxins were predicted 
by Increment of Diversity (ID)30, and the correlation coefficient (CC) value was 0.7963 when evaluated by the 
jackknife test.

In this study, four algorithms were proposed for predicting presynaptic and postsynaptic neurotoxins by using 
Increment of Diversity (ID), Multinomial Naive Bayes Classifier (MNBC), Random Forest (RF), and K-nearest 
Neighbours Classifier (IBK). Pseudo amino acid (PseAA) compositions, MEME motif features31, Prosite motif 
features32 and InterPro motif features33 were used to represent the protein sequences. The Maximum Relevance 
Minimum Redundancy (MRMR)34, 35 was used to rank the features for improving the performance of the pre-
dictors. When these algorithms were applied to the neurotoxin dataset with 78 presynaptic neurotoxins and 69 
postsynaptic neurotoxins, the overall success rates obtained by the jackknife test were significantly higher than 
those of existing classifier on the same dataset. In addition, as demonstrated by a series of recent publications36–43 
in compliance with Chou’s 5-step rule44, to establish a really useful sequence-based statistical predictor for a bio-
logical system, we should follow the following five guidelines: (a) construct or select a valid benchmark dataset 
to train and test the predictor; (b) formulate the biological sequence samples with an effective mathematical 
expression that can truly reflect their intrinsic correlation with the target to be predicted; (c) introduce or develop 
a powerful algorithm (or engine) to operate the prediction; (d) properly perform cross-validation tests to objec-
tively evaluate the anticipated accuracy of the predictor; (e) establish a user-friendly web-server for the predictor 
that is accessible to the public. Below, we are to describe how to deal with these steps one-by-one.

Results
Phylogenetic trees of presynaptic and postsynaptic neurotoxins.  In this study, the Molecular 
Evolutionary Genetics Analysis (MEGA) software45 was used to provide the phylogenetic trees of presynaptic 
and postsynaptic neurotoxins, only the neurotoxins that had the signal peptides were uploaded to the MEGA 
software for generating phylogenetic trees. The phylogenetic trees for presynaptic and postsynaptic neurotox-
ins were shown in Fig. 1A and B, respectively. These two figures illustrated some useful information about the 
inferred evolutionary relationships among those two neurotoxins, and the neurotoxins that in the same branch 
were believed to have a common ancestor. The Fig. 1A and B may also help us to better understand how the pre-
synaptic and postsynaptic neurotoxins diversified over times.

Analysis of Prosite motif features.  In 78 presynaptic neurotoxins, PS00118 was conserved in 29 
sequences and PS00119 was conserved in 31 sequences. PS00118 is a pattern of phospholipase A2 histidine active 
site which is centered on the active site histidine and PS00119 is a pattern of phospholipase A2 aspartic acid 
active site which is centered on the active site aspartic acid. Both PS00118 and PS00119 contain three cysteines 
that involved in disulfide bonds. PS60004 belongs to PROSITE documentation PDOC60004 which is a pattern 
of omega-conotoxin family signature, and appears in 19 presynaptic neurotoxins. Omega conotoxins are cal-
cium channel blockers and the cysteine arrangement [C-C-CC-C-C] is included in PS60004. PS00280, PS01138, 
PS01186, PS60015, PS60021, PS60022, PS60023 and PS60025 are also observed in presynaptic neurotoxins. 
PS00272 is a pattern of snake toxin signature and observed in 49 sequences. Snake toxins are a group of short and 
long neurotoxins, cytotoxins, short toxins and miscellanous venom peptides. Snake toxin signature includes four 
conserved cysteines and a conserved proline is thought to be important for the maintenance of the tertiary struc-
ture. The second cysteine in this pattern is linked to the third cysteine by a disulfide bond. PS60014 is a pattern of 

Figure 1.  The phylogenetic trees for (A) presynaptic neurotoxins and (B) postsynaptic neurotoxins.
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alpha conotoxin family signature and appears in 8 postsynaptic neurotoxins. This pattern includes a common part 
of the cysteine arrangement [CC-C-C], four conserved cysteines are believed to be important for the maintenance 
of the tertiary structure of alpha conotoxins.

The comparison of MEME motifs (Fig. 2) with Prosite motifs shows that the conserved region from the fourth 
site to the eleventh site in the presynaptic neurotoxin motif 2 is corresponded to PS000118, this indicate that the 
presynaptic neurotoxin motif 2 may have the biological function of PS000118; PS000119 is corresponded to the 
conserved region from the third site to the eleventh site in the presynaptic neurotoxin motif 3; for PS00272, the 
conserved region from the tenth site to the twenty second site is corresponded to the first site to the twelfth site in 
the postsynaptic neurotoxin motif 2.

Prediction of presynaptic and postsynaptic neurotoxins.  In order to investigate the influence of dif-
ferent parameters on the prediction quality, 12 different parameters were selected as the input parameters of ID, 
MNBC, RF, and IBK. The jackknife test results obtained by ID, MNBC, RF, and IBK with 12 different parameters 
were shown in Tables 1 and 2, Fig. 3A and B.

In this study, when using P12 as the input parameters of ID, MNBC, RF, and IBK for predicting presynap-
tic and postsynaptic neurotoxins, the overall accuracy of 95.92% and the CC value of 0.9208 were obtained by 
MNBC and RF, which were the highest overall accuracy and CC value in this study, and were also higher than the 
predictive results in our previous work30. For prediction of presynaptic and postsynaptic neurotoxins, based on 
the same input parameters, generally speaking, MNBC had the best prediction quality among four algorithms. 
For example, based on the parameters of P1, P2, P3, P4, P7, P8 and P12, the CC values were 0.8227, 0.8361, 
0.8497, 0.8635, 0.8932, 0.9080 and 0.9208 for MNBC, which were 0.0264, 0, 0.0270, 0.0138, 0.0146, 0.0126 and 
0.0147 higher than those of ID. The overall accuracies obtained by MNBC were better than or equivalent to those 
of ID, RF and IBK when using the same parameters. These results clear indicated that MNBC could perform bet-
ter than three other algorithms for prediction of presynaptic and postsynaptic neurotoxins.

Based on the same algorithm, it was clear that the performances were improved when sequence derived fea-
tures and motif features were used as input parameters, when compared with other sequence derived features. For 
ID, when using P2, P3, P4, P5 and P6 as the input parameters, the CC values were 0.8361, 0.8227, 0.8497, 0.8497 
and 0.8635, respectively, which were higher than the CC value obtained by P1. Similarly, the higher CC values 
could also be obtained by MNBC, RF and IBK when using the same parameters. In addition, we found that the 
predictive results obtained by 19 motifs (13 Prosite motifs and 6 MEME motifs) were better than those obtained 
by 13 Prosite motifs or 6 MEME motifs in most cases. These results clearly illustrated that the MEME motifs, 
Prosite motifs and InterPro motifs could significantly improve the predictive power of ID, MNBC, RF and IBK 
for predicting the presynaptic and postsynaptic neurotoxins.

In this study, the prediction performance was improved by the effective feature selection method when using 
the same algorithm. Tables 1 and 2 illustrated that the results of the ID, MNBC, RF and IBK with the parameters 
of P1-P7. Except for the predictive results of IBK, it was clear that higher or equivalent overall accuracy had 
been obtained by the proposed algorithms with the parameter of P7, when compared with the overall accuracy 
obtained by the parameters of P1-P6. For example, for the problem of presynaptic and postsynaptic neurotoxins 
prediction, when P7 was selected as the input parameter, the CC value was 0.8786 for ID, which was 0.0823, 
0.0425, 0.0559, 0.0289, 0.0289, and 0.0151 higher than those of P1-P6, respectively. Similarly, except for the pre-
dictive results of IBK, the CC value obtained by P7 for MNBC, and RF were also higher than those of P1-P6. 
These results clearly indicated that MRMR feature selection method was effective and helpful for the prediction 
of presynaptic and postsynaptic neurotoxins.

For the problem of presynaptic and postsynaptic neurotoxins prediction, as shown in Tables 1 and 2, the 
sensitivity of presynaptic neurotoxins and the specificity of postsynaptic neurotoxins varied significantly with the 

Figure 2.  MEME motifs for (A) presynaptic neurotoxins motif 1, (B) presynaptic neurotoxins motif 2, (C) 
presynaptic neurotoxins motif 3, (D) postsynaptic neurotoxins motif 1, (E) postsynaptic neurotoxins motif 
2, and (F) postsynaptic neurotoxins motif 3 in logo format. The regular expression for each MEME motif was 
shown at the bottom of each figure.
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parameters, indicating that the prediction results of presynaptic neurotoxins were more correlated with different 
parameters than the prediction results of postsynaptic neurotoxins. That was because more protein motifs were 
discovered in the presynaptic neurotoxins than in the postsynaptic neurotoxins. For example, 11 Prosite motifs 
were discovered by ScanProsite in the presynaptic neurotoxins, however, only 2 Prosite motifs were discovered by 
ScanProsite in the postsynaptic neurotoxins.

As shown Tables 1 and 2, the best predictive results of ID were obtained by using P10 as the input param-
eter. In this case, all of the presynaptic neurotoxins were predicted correctly, and 7 postsynaptic neurotoxins 
were predicted incorrectly. The Animal Toxin database entries numbers of these 7 postsynaptic neurotoxins were 
AT0001110, AT0000526, AT0002477, AT0000527, AT0000327, AT0002380 and AT0000334, respectively. MEME 
motifs were not discovered in these postsynaptic neurotoxins, only Prosite motifs and InteroPro motifs were 
discovered in AT000110 and AT0002380. However, AT000110 and AT0002380 not only belonged to the presyn-
aptic neurotoxins but also belonged to the postsynaptic neurotoxins, and in this case, they were predicted as the 
presynaptic neurotoxins. Based on these results, we suspected that the motif features may provide an important 
role in the problem of presynaptic and postsynaptic neurotoxins prediction.

Discussion
In this paper, in order to predict presynaptic and postsynaptic neurotoxins, 12 different parameters were selected 
as the input parameters of ID, MNBC, RF, and IBK. The prediction results of the jackknife test were shown in 
Tables 1 and 2, and Fig. 3. Based on the similar results of different methods presented in Tables 1 and 2, and Fig. 3, 
we suspected that when using the same parameters, ID, MNBC, RF, and IBK had little impact on prediction 
results for predicting presynaptic and postsynaptic neurotoxins, and this maybe an intrinsic characteristics of 

ID MNBC RF IBK

Presynaptic Postsynaptic Presynaptic Postsynaptic Presynaptic Postsynaptic Presynaptic Postsynaptic

Sn (%) Sp (%) Sn (%) Sp (%) Sn (%) Sp (%) Sn (%) Sp (%) Sn (%) Sp (%) Sn (%) Sp (%) Sn (%) Sp (%) Sn (%) Sp (%)

P1a 88.46 92.00 91.30 87.50 91.03 92.21 91.30 90.00 96.15 82.61 86.21 95.00 88.46 82.61 85.19 86.36

P2 92.31 92.31 91.30 91.30 92.31 92.31 91.30 91.30 98.72 84.06 87.50 98.31 92.31 85.51 87.80 90.77

P3 91.03 92.21 91.30 90.00 93.59 92.41 91.30 92.65 94.87 86.96 89.16 93.75 91.03 89.86 91.03 89.86

P4 93.59 92.41 91.30 92.65 94.87 92.50 91.30 94.03 96.15 88.41 90.36 95.31 93.59 88.41 90.12 92.42

P5 93.59 92.41 91.30 92.65 91.03 92.21 91.30 90.00 97.44 85.51 88.37 96.72 92.31 88.41 90.00 91.04

P6 94.87 92.50 91.30 94.03 93.59 92.41 91.30 92.65 97.44 85.51 88.37 96.72 94.87 88.41 90.24 93.85

P7 97.44 91.57 89.86 96.88 98.72 91.67 89.86 98.41 96.15 88.41 90.36 95.31 84.62 88.41 89.19 83.56

P8 100.0 90.70 88.41 100.0 100.0 91.76 89.86 100.0 100.00 89.86 91.76 100.00 87.18 88.41 89.47 85.92

P9 98.72 92.77 91.30 98.44 98.72 91.67 89.86 98.41 97.44 91.30 92.68 96.92 88.46 88.41 89.61 87.14

P10 100.0 91.76 89.86 100.0 100.0 90.70 88.41 100.0 100.00 89.86 91.76 100.00 92.31 94.20 94.74 91.55

P11 98.72 91.67 89.86 98.41 97.44 92.68 91.30 96.92 97.44 91.43 92.68 96.97 89.74 92.75 93.33 88.89

P12 98.72 92.77 91.30 98.44 100.0 92.86 91.30 100.0 100.00 91.30 92.86 100.00 92.31 94.20 94.74 91.55

Table 1.  Results obtained by ID, MNBC, RF and IBK in identifying presynaptic and postsynaptic neurotoxins 
with 12 parameters. aCome from30 by using Increment of Diversity (ID).

ID MNBC RF IBK

Presynaptic Postsynaptic Presynaptic Postsynaptic Presynaptic Postsynaptic Presynaptic Postsynaptic

Acc (%) CC Acc (%) CC Acc (%) CC Acc (%) CC

P1a 89.80 0.7963 91.16 0.8227 89.80 0.7998 85.71 0.7131

P2 91.84 0.8361 91.84 0.8361 91.84 0.8428 89.12 0.7819

P3 91.16 0.8227 92.52 0.8497 91.16 0.8237 90.48 0.8088

P4 92.52 0.8497 93.20 0.8635 92.52 0.8511 91.16 0.8227

P5 92.52 0.8497 91.16 0.8227 91.84 0.8401 90.48 0.8088

P6 93.20 0.8635 92.52 0.8497 91.84 0.8401 91.84 0.8368

P7 93.88 0.8786 94.56 0.8932 92.52 0.8511 86.39 0.7289

P8 94.56 0.8954 95.24 0.9080 95.24 0.9080 87.76 0.7549

P9 95.24 0.9061 94.56 0.8932 94.56 0.8917 88.44 0.7681

P10 95.24 0.9080 94.56 0.8954 95.24 0.9080 93.20 0.8640

P11 94.56 0.8932 94.56 0.8917 94.59 0.8990 91.16 0.8236

P12 95.24 0.9061 95.92 0.9208 95.92 0.9208 93.20 0.8640

Table 2.  Overall predictive accuracy and CC values obtained by ID, MNBC, RF and IBK in identifying 
presynaptic and postsynaptic neurotoxins with 12 parameters. aCome from30 by using Increment of Diversity 
(ID).
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machine learning algorithms which also occurred in the other prediction problems. However, we also found that 
the input parameters have big impact on prediction results. Taking the ID algorithm as an example, we found 
that the Acc can increase from 89.80% to 95.24%, and the CC can increase from 0.7963 to 0.9080 for prediction 
the presynaptic and postsynaptic neurotoxins. Similar improved Acc and CC can also be obtained by other three 
algorithms. So, the input parameters should have more impact on the prediction results.

In our previous work30, for using the same dataset, 78 presynaptic neurotoxins and 69 postsynaptic neurotox-
ins were predicted by Increment of Diversity (ID), the highest Sn, Sp and CC obtained in our previous work were 
88.46%, 92.00% and 0.7963 for presynaptic neurotoxins, and were 91.30%, 87.50% and 0.7963 for postsynaptic 
neurotoxins, respectively. In this study, we found that, the best Sn, Sp and CC were 100.0%, 92.86% and 0.9208 for 
presynaptic neurotoxins, and were 91.30%, 100.0%, and 0.9208 for postsynaptic neurotoxins, respectively. Based 
on these results, we can conclude that the prediction algorithms presented in this study had some advantage over 
the previous one.

With the increased number of toxins in the public dataset, it is indispensable to develop some reliable meth-
ods for classification of presynaptic and postsynaptic neurotoxins. In this study, ID, MNBC, RF, and IBK were 
applied to classify presynaptic and postsynaptic neurotoxins, a new promising feature representation method was 
presented by embedding PseAA compositions, MEME motif features, Prosite motif features and InterPro motif 
features to represent a protein sample. The MRMR feature selection method was also used to select 50 top ranked 
PseAA compositions to improve the predictive results. In order to obtain the best performance of the proposed 
algorithms, different kinds of motif features and PseAA compositions were combined and selected as the input 
parameters of four algorithms. The predictive results presented in this study clearly indicated: (1) MRMR feature 
selected method, complemented with motif features can significantly improve the prediction quality of neuro-
toxins; (2) using different parameters would make it possible for algorithms to perform better than the others. 
The best prediction results were obtained when using 50 PseAA compositions, 46 InterPro motif features and 6 
MEME motif features as the input parameters of MNBC and RF. In summary, the above results indicated that 
ID, MNBC, RF and IBK by using 50 PseAA compositions and biological motif features as the input parameters 
were reliable for prediction of presynaptic and postsynaptic neurotoxins. We hope that the machine learning 
algorithms will provide some support for the identification of neurotoxins in the future. The proposed algorithms 
may become the useful tools in bridging the gap between the huge number of toxins in the public databases and 
the relatively less number of toxins that have been functionally characterized. As pointed out in Shen and Chou46 
and demonstrated in a series of recent publications36, 37, 41, 47–54, user-friendly and publicly accessible web-servers 
represent the future direction for developing practically more useful methods that will significantly enhance their 
impacts55, we shall make efforts in our future work to provide a web-server for the analysis method presented in 
this paper.

Figure 3.  (A) Overall predictive accuracies and (B) CC values obtained by four different algorithms with 12 
parameters.
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Methods
Datasets.  The dataset generated by Yang and Li was used to estimate the effectiveness of the new prediction 
methods30. The protein sequences in this dataset were downloaded from the Animal Toxin Database (ATDB)28, 29. 
The PISCES56, 57 was used to cull the presynaptic and postsynaptic neurotoxin sequences where no two proteins 
in each dataset had more than 80% sequence identify. In the final dataset, presynaptic neurotoxin dataset consists 
of 78 protein sequences, and postsynaptic neurotoxin dataset consists of 69 protein sequences.

Machine learning approaches.  In this study, Increment of Diversity (ID)58, Multinomial Naive Bayes 
Classifier (MNBC), Random Forest (RF), and K-nearest Neighbours Classifier (IBK) were used to classify the 
presynaptic and postsynaptic neurotoxins. The ID algorithm was implemented in the C++ software while the 
rest of the algorithms were implemented in the Weka package59.

Pseudo amino acid composition.  It is very important to select a set of reasonable parameters for protein 
sequences prediction. As mentioned in previous works, pseudo amino acid composition (PseAAC) is a widely 
used approach for representation of protein sequences42, 44, 60–71, and can be generated by a series powerful web-
servers developed recently. In this study, according to the concept of the Chou’s PseAA compositions72–74, 400 
dipeptide compositions were selected as the parameters of our approaches, which were defined in 400-dimension 
(400-D) space, formulated as:

… …Y y y y: { , , } (1)1 2 400

where yi (i = 1, 2, 3 …… 400) was the absolute occurrence frequencies of 400 dipeptides.

Maximum Relevance Minimum Redundancy.  In this study, MRMR34, 35 was applied on 400 PseAA 
compositions. After considering both the predictive accuracy and the MRMR score, the top 50 features were 
selected as the input parameters of the machine learning algorithms, which were defined in a 50-dimension 
(50-D) space, formulated as:

… …Z z z z z: { , , , } (2)1 2 3 50

MEME motif features.  In this study, the presynaptic and postsynaptic neurotoxin datasets were uploaded 
to MEME software to conduct motif search31. The maximum motif number was set to 3 and the maximum motif 
length was set to 15. The logo format and the regular expression of these motifs were shown in Fig. 2. Six MEME 
motifs had been created which were corresponded to the presynaptic neurotoxins and postsynaptic neurotoxins, 
and the number of motif features was 6. Each element of the vectors represented the presence or absence of a 
motif in the protein sequences. That was, the corresponded feature value was 1 if a motif was presented; other-
wise, it was 0. Consequently, each protein sequence was converted into a 6-dimension (6-D) space, formulated as:

M m m m: { , , } (3)1 2 6

Prosite motif features.  In this study, 11 kinds of Prosite motifs32 were found in 78 presynaptic neurotoxin 
sequences and 2 kinds of Prosite motifs were found in 69 postsynaptic neurotoxin sequences. The total number 
of motif features was 13. Consequently, each protein sequence was converted into a 13-dimension (13-D) space, 
formulated as:

…P p p p: { , , , } (4)1 2 13

InterPro motif features.  InterPro is an integrated database of protein families, domains and functional 
sites33. In this study, 78 presynaptic neurotoxin sequences and 69 postsynaptic neurotoxin sequences were 
scanned by InterPro, and 46 functional motifs were found in the neurotoxin datasets. The total number of motif 
features was 46. Consequently, each protein sequence was converted into a 46-dimension (46-D) space, formu-
lated as:

…N n n n: { , , , } (5)1 2 46

Features for prediction algorithms.  In order to improve the prediction accuracy, 400 PseAA composi-
tions, 50 PseAA compositions, 13 kinds of Prosite motifs, 6 kinds of MEME motifs and 46 InterPro motifs were 
combined. Because the Prosite motifs were contained in the InterPro motifs, so 13 Prosite motifs were not com-
bined with 46 InterPro motifs. P1-P12 indicated 12 kinds of parameters, and these parameters were selected as 
the input parameters of ID, MNBC, RF, and IBK (Table 3).

Evaluation of methods.  In this study, in order to roundly estimate the accuracy of our predictor, the sensi-
tivity, specificity, correlation coefficient and overall accuracy were also calculated:



www.nature.com/scientificreports/

7Scientific Reports | 7: 5827  | DOI:10.1038/s41598-017-06195-y

∑











=
+

=
+

=
× − ×

+ × + × + × +

=

Sn TP
TP FN

Sp TP
TP FP

CC TP TN FP FN
TP FP TN FN TP FN TN FP

Acc TP
N

( ) ( )
( ) ( ) ( ) ( )

(6)i

i

where TP denoted the numbers of the correctly recognized positives, FN denoted the number of the positives rec-
ognized as negatives, FP denoted the number of the negatives recognized as positives, TN denoted the numbers 
of correctly recognized negatives, N was the total number of protein sequences.

The set of metrics is valid only for the single-label systems. For the multi-label systems whose existence has 
become more frequent in system biology75 and system medicine40, 76, a completely different set of metrics as 
defined in work of Chou77 is needed. In order to take the advantage of using the Chou’s intuitive set of metrics for 
studying protein signal peptide cleavage site42, 43, 47–49, 78–82, the TP, TN, FP, and FN can be represented as follows:
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where N+ denoted the total numbers of the positives, N− denoted the total numbers of the negatives, +
−N  denoted 

the number of the negatives incorrectly predicted as positives, and −
+N  denoted the number of the positives incor-

rectly predicted as negatives. In addition, the jackknife test was also used to validate the prediction power of our 
algorithms.

Parameters Number Description of parameters

P1 400 400 dipeptides

P2 406 400 dipeptides and 6 kinds of MEME motifs

P3 413 400 dipeptides and 13 kinds of Prosite motifs

P4 419 400 dipeptides, 6 kinds of MEME motifs and 13 
kinds of Prosite motifs

P5 446 400 dipeptides and 46 kinds of InterPro motifs

P6 452 400 dipeptides, 6 kinds of MEME motifs and 46 
kinds of InterPro motifs

P7 50 50 dipeptides selected by MRMR

P8 56 50 dipeptides and 6 kinds of MEME motifs

P9 63 50 dipeptides and 13 kinds of Prosite motifs

P10 69 50 dipeptides, 13 kinds of Prosite motifs and 6 
kinds of MEME motifs

P11 96 50 dipeptides and 46 kinds of InterPro motifs

P12 102 50 dipeptides, 46 kinds of InterPro motifs and 6 
kinds of MEME motifs

Table 3.  Combination of dipeptide parameters and motif parameters.
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