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Investigation of the Changes in the 
Power Distribution in Resting-State 
Brain Networks Associated with 
Pure Conduct Disorder
Jiang Zhang1, Jiansong Zhou2, Fengmei Lu3, Liangyin Chen4, Yunzhi Huang1, Huafu Chen5, 
Yutao Xiang3, Gang Yang1 & Zhen Yuan3

Conduct disorder (CD) is a psychiatric disorder in children and adolescence. To investigate changes in the 
power distribution in brain networks between CD and typically developing (TD) groups, resting-state 
functional magnetic resonance imaging (rsfMRI) data of thirty-six subjects were first recorded, and then 
the data were preprocessed using DPARSF and SPM8. Meanwhile, the power of the blood oxygenation 
level-dependent (BOLD) signals of ninety brain regions was acquired using the integral of the Welch 
power spectral density (PSD). Additionally, the powers of the brain regions that reached significance 
(p < 0.05) were extracted using the bootstrap statistics, in which the standardized z-scores of the 
powers were used as a reference. The results of the analysis of the changes in power exhibited that 
there were significant power differences in some pairs of brain regions between the CD and TD groups, 
indicating a change in the power distribution. In addition, the results also suggest that the total power 
consumption of brain networks in CD patients is less than that observed in the TD group. Consequently, 
the study provided a paradigm for establishing quantifiable indicators via the power spectrum approach 
for the comparison and analysis of the BOLD signal power between CD patients and healthy controls.

Patients with conduct disorder (CD) may exhibit a repetitive and persistent pattern of aggressive and antisocial 
behaviors1–3. The symptoms of CD include but not limited to deception, theft, vandalism, violence, and serious 
violations of rules1–4. In addition, it is widely recognized that neural activity in the brain is accompanied by the 
changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2), which can be measured 
by using the functional magnetic resonance imaging (fMRI) technique5. In the past years resting-state fMRI (rsf-
MRI) has attracted extensive attention regarding the measurement of spontaneous neuronal activity without any 
specific task, making it a useful and powerful technique for non-invasive mapping the hemodynamic responses 
in the brain during rest6, 7. More importantly, the blood oxygen level-dependent (BOLD) signals in fMRI record-
ings are due to the changes in CBF and CMRO25. Consequently, the fluctuations of brain activity observed in the 
BOLD signals during the resting state play an essential role in exploring the neural mechanism of psychiatric and 
neurological disorders such as Alzheimer’s disease8 and epilepsy9. Interestingly, recent rsfMRI studies have been 
performed to explore the different brain activation patterns in CD1–4, 10, 11. However, most of work conducted 
focused on the investigation of the functional brain connectivity by examining the temporal correlation between 
the BOLD signals measured in different brain regions12.

In contrast to more commonly used functional connectivity analysis based on the correlation analy-
sis between different brain regions, a power spectrum analysis method is proposed in this study, which 
allows us to investigate the oscillation power of brain regions. Power spectrum is a commonly used physical 
quantity that can quantitatively reflect the energy density changes of the object movement, which gives an 
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intuitive sense of energy consumption changes in the dynamics. The adopted power spectrum method, such 
as the Welch spectrum method, has been validated to be able to improve the reliability of the analysis results 
of power spectral density (PSD)13, 14. In addition, it enables the neuroscientists to gain additional insight into 
the functional organization of the brain based on the generated power of BOLD signals within the whole 
brain regions. Based on the above reasons, we generated the hypothesis and concept for this study: 1) In rest-
ing state, whether or not the differences of BOLD signals in some brain regions are significant between CD 
and healthy subjects? 2) Can we use the improved power spectrum method to measure and quantitatively 

Figure 1. Network distribution of brain power with a nonparametric estimate p < 0.05: (a) CD; (b) TD. Panels 
(a,b) were generated by introducing the significant power values into the BrainNet Viewer (http://www.nitrc.
org/projects/bnv/) tool box.

http://www.nitrc.org/projects/bnv/
http://www.nitrc.org/projects/bnv/
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analyze the data from CD patients and healthy controls? 3) Can we identify the difference of brain region 
energy distributions between the two groups?

The purpose of the present study is to use the integrated power spectrum method to analyze the changes of 
the distribution of powers within different brain regions based on rsfMRI measurements. We will also examine 
whether the new paradigm can identify the difference of the powers of brain regions between young subjects with 
CD and young healthy controls. If succeeded, this model will provide us a tool towards an improved understand-
ing of the neural mechanism of CD.

Materials and Methods
Subjects. Eighteen right-handed patients with pure CD (aged 15–17 years, males) were recruited from 
the Hunan province Youth Detention Center (YDC) in China. In addition, eighteen age-, gender-, and edu-
cational level-matched healthy subjects (typically developing (TD) group: aged 15–17 years, males) recruited 
from the community of Changsha, Hunan province and local schools participated in this study. By experimental 
design, none of the CD patients had current and lifetime comorbid psychiatric problems. More importantly, 
the K-SADS-PL (the Schedule for Affective Disorder and Schizophrenia for School-Age Children-Present and 
Lifetime)15–17, a semi-structured psychiatric interview based on DSM-IV criteria (the Diagnostic and Statistical 
Manual of Mental Disorders)1, was adopted in this study to exclude the additional psychiatric disorders by a 
professional interview psychiatrist. Consequently, all CD subjects met the K-SADS-PL criteria for CD and also 
the following criteria18–21: (1) satisfying the DSM-V criteria for CD; (2) no histories of neurological disorders; 
(3) no histories of other psychiatric disorders (e.g., attention deficit/hyperactivity disorder (ADHD), anxiety and 
depression disorders, affective disorders, obsessive-compulsive disorder, oppositional defiant disorder (ODD), 
mental retardation, alcohol- and drug-use disorder, and substance use disorder); (4) right handed; and (5) normal 
and corrected-to-normal vision. The subjects used for the present study were the same with the screened ones in 
the previous work18.

Informed consent and ethical approval. All subjects, as well as their parents or caregivers, completed 
the written informed consent before the experimental tests. The protocol for all clinical trial was approved by 
the Biomedical Ethics Board of The Second Xiangya Hospital of Central South University and was carried out in 
accordance with the relevant guidelines, including any relevant details.

Data acquisition. During the rsfMRI recordings, a foam padding with extendable padded head clamps was 
used to minimize the head motion, and the earplugs were used to minimize the effect of the scanning noise. All 
subjects were instructed to stay as still as possible, and to rest quietly with their eyes closed, and to relax without 
thinking of anything or falling asleep. The experimental tests were performed with a Siemens Allegra 3-T MR 
scanner at the Magnetic Resonance Center of Hunan Provincial People’s Hospital in Changsha, China. The echo 
planar imaging (EPI) settings were as follows: repetition time = 3.0 s; echo time = 30 ms; and flip angle = 90°. 
The contiguous axial slices aligned along the anterior commissure-posterior commissure line were acquired, 
and the imaging parameters were as follows: the number of slices = 36; field of view (FOV) = 256 mm × 256 mm; 
matrix size = 64 × 64; and slice thickness = 3 mm without a gap. For each subject, total 100 volume images were 
analyzed.

Image pre-processing. The first 10 images for each subject were discarded to allow for steady-state lon-
gitudinal magnetization22. The remaining images were then preprocessed using DPARSF (http://restfmri.net/
forum/DPARSF) and SPM8 (http://www.fil.ion.ucl.ac.uk/spm/) as follows: differences in image acquisition time 
between slices were corrected; the time-series of images were realigned to remove movement artifact; the images 
were normalized to a standard SPM8 EPI template which warps each individual subject into standard space 
with a resolution of 3 × 3 × 3 mm3 based on the Montreal Neurological Institute (MNI) template; and the images 
were smoothed with the full-width at half-maximum (FWHM) specified as 8 mm. Detrend and band-pass filter-
ing (0.01~0.08 Hz) of the BOLD signals was performed to remove both low-frequency drift and high-frequency 
noise23–25. Additionally, the interferences were regressed out, which included the head motion parameters, white 
matter signal, cerebrospinal fluid signal and global mean signals.

Data analysis. The functional brain images for each subject were mapped to the automated anatomical labe-
ling (AAL) brain template, which were further separated into ninety anatomical brain regions within the cor-
tex and subcortex (excluding cerebellum)26. The time series from all the voxels within each brain region were 
extracted and averaged, and then the mean BOLD signal for each brain region was generated. To access the 
power of each brain region, the Welch PSD13, 14 of the BOLD signal was required to be first calculated by using the 
PWELCH function in Matlab. The parameters of the function were set as follows: a 75-point Hamming window 
was used; the parameter on samples of overlap was omitted according to the window; and the function returned 
the one-sided PSD of the BOLD signal. According to the acquired PSD, the power of each brain region was gen-
erated by using the following equation,

∫=P P f df( ) ,
(1)i j

f
i j, ,

where Pi,j (f) and Pi,j are the Welch PSD and power of the ith brain region from the jth subject, respectively.
In addition, further processing was performed according to the power of the different brain regions:

http://restfmri.net/forum/DPARSF
http://restfmri.net/forum/DPARSF
http://www.fil.ion.ucl.ac.uk/spm/


www.nature.com/scientificreports/

4Scientific RepoRts | 7: 5528  | DOI:10.1038/s41598-017-05863-3

 1) Every brain region had a single power value calculated using eq. 1 and those regions with significant power 
were identified by the bootstrap statistics for each subject27–31.

 2) Re-sampling was performed 5000 times to fit the normal distribution, and the mean and standard de-
viation of the distribution was calculated, in which the BOOTSTRP function in Matlab was utilized to 
implement this task. In particular, to obtain the power threshold corresponding to the statistical proba-
bility with p-value < 0.05, the inverse of the normal cumulative distribution with the corresponding mean 
and standard deviation needed to be calculated based on the following eqs 2 and 3. Here the inverse of the 
normal cumulative distribution was defined as:

= = =−x F x x F x P( ) { : ( ) } (2)1

where

∫π σ
= = .

µ

σ
−∞

− −

P F x e dt( ) 1
2 (3)

x t( )

2

2

2

Based on the symmetry of a normal distribution, we set the probability p value as 2 P. Meanwhile, μ and σ 
are the mean and standard deviation of the fitted normal distribution in bootstrap statistics, respectively. The 
NORMINV function in Matlab was used to calculate the inverse of the normal distribution, and the significance 
power threshold, corresponding to p-value < 0.05, was acquired using this function as well.

Consequently, for each subject we generated a very specific power threshold, and the power values of regions 
remained where they were greater than the corresponding threshold. In this way, the brain regions with the sig-
nificant power were obtained for each subject (corresponding probabilities at p-value < 0.05). Then, the analysis 
returned the mean values of those significant powers for the eighteen subjects in the CD group and the brain 
regions with significant powers. The same operations were also performed for the TD group as well. The mean 

Figure 2. Power of brain regions and the standardized z-scores (mean ± SE): (a) Power curves (the unit for 10 
log10 Power is decibels); (b) Standardized z-score curves. The blue color represents the CD group whereas the 
orange line represents the TD group. The horizontal axes denote the ninety anatomical regions of interest from 
the AAL template. The vertical axes in (a,b) denote the power of brain regions and standardized z-scores of 
power values, respectively.
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values of the significance powers from both groups were mapped to the AAL template, and the results were intro-
duced into the BrainNet Viewer (http://www.nitrc.org/projects/bnv/)32 tool box to visualize the relationships 
between region structures and power network patterns with the significance level p < 0.05.

Further, the standardized indicators were used as a reference. Pi,j was standardized as follows:

= −Z P mean P std P( ( ))/ ( ), (4)i j i j j j, ,

where Pj is the data vector including all powers of ninety brain regions from the jth subject and 
= P P P P P( , , , , )j j j j j1, 2, 3, 90, , the mean(Pj) is the mean value of the data vector Pj, and std(Pj) is the standard devi-

ation of Pj. Zi,j is the standardized z-scores of the ith brain region from the jth subject.

Results and Discussion
In this study, the bootstrap statistics was utilized to extract the significant power (p < 0.05) from ninety 
brain regions of each subject. Then, the mean values of the significant powers were generated for the eight-
een subjects in the CD and TD group, respectively. The mean values and their distributions across different 
brain regions were compared between the CD and TD groups, in which Fig. 1 displayed the reconstructed 
three-dimensional (3D) network distribution by using the mean values of the significant powers. The relevant 
brain structural and functional information was provided in Table 1 for the power networks and associated 
brain regions in Fig. 1.

To the best of our knowledge, power analysis was used for the first time to identify the differences of the brain 
activation patterns between the CD and TD groups. Interestingly, we discovered from Fig. 1 and Table 1 that both 
the CD and TD groups have twenty-eight brain regions with significant power, and most of the regions exhib-
ited the similar distribution. However, this is not the case for other brain regions, in which brain activity with 
significant power was only identified in Frontal_Mid_Orb_R (Label 26), Occipital_Sup_L, Occipital_Mid_R, 
Heschl_L and Heschl_R for CD group, whereas only in the Frontal_Inf_Orb_L, Rectus_L, Cingulum_Ant_R, 
Lingual_L and SupraMarginal_R only existed for TD group. Importantly, the identified orbital gyri is involved in 
the cognitive processing of decision-making, and is thought to represent emotion and reward in decision making 
in individuals with CD relative to healthy controls33–37. In addition, previous work has revealed that the supe-
rior frontal gyrus including Frontal_Mid_Orb_R plays an essential role in higher levels of cognitive processing, 

CD TD

Labels Regions Power Labels Regions Power

10 Frontal_Mid_Orb_R 119.17 10 Frontal_Mid_Orb_R 657.27

25 Frontal_Mid_Orb_L 352.80 15 Frontal_Inf_Orb_L 88.44

26 Frontal_Mid_Orb_R 197.19 25 Frontal_Mid_Orb_L 566.23

31 Cingulum_Ant_L 79.73 27 Rectus_L 101.69

35 Cingulum_Post_L 1392.70 31 Cingulum_Ant_L 713.39

36 Cingulum_Post_R 842.46 32 Cingulum_Ant_R 547.83

43 Calcarine_L 880.23 35 Cingulum_Post_L 984.99

44 Calcarine_R 693.32 36 Cingulum_Post_R 92.00

45 Cuneus_L 1039.49 43 Calcarine_L 1465.98

46 Cuneus_R 548.32 44 Calcarine_R 1072.58

48 Lingual_R 427.67 45 Cuneus_L 1768.73

49 Occipital_Sup_L 356.00 46 Cuneus_R 860.37

50 Occipital_Sup_R 158.87 47 Lingual_L 196.98

52 Occipital_Mid_R 133.43 48 Lingual_R 420.04

53 Occipital_Inf_L 146.18 50 Occipital_Sup_R 107.02

54 Occipital_Inf_R 472.82 53 Occipital_Inf_L 233.73

59 Parietal_Sup_L 245.45 54 Occipital_Inf_R 1314.46

60 Parietal_Sup_R 341.73 59 Parietal_Sup_L 317.68

61 Parietal_Inf_L 182.36 60 Parietal_Sup_R 517.99

62 Parietal_Inf_R 1470.02 61 Parietal_Inf_L 227.09

65 Angular_L 1006.63 62 Parietal_Inf_R 1395.20

66 Angular_R 454.15 64 SupraMarginal_R 87.82

67 Precuneus_L 147.90 65 Angular_L 1681.29

68 Precuneus_R 232.89 66 Angular_R 1334.14

69 Paracentral_Lobule_L 69.21 67 Precuneus_L 394.65

70 Paracentral_Lobule_R 735.13 68 Precuneus_R 474.96

79 Heschl_L 97.49 69 Paracentral_Lobule_L 1116.60

80 Heschl_R 69.01 70 Paracentral_Lobule_R 658.14

Table 1. Power of activated AAL regions of CD and TD groups in Fig. 1. The numbering sequence of labels is 
consistent with that of the ninety anatomical regions of interest in the AAL template.

http://www.nitrc.org/projects/bnv/
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such as working memory11, 38. In contrast, the superior/middle occipital gyrus including Occipital_Sup_L and 
Occipital_Mid_R are recognized to be related to the low-level perceptual systems and low-order cognitive pro-
cessing11, 39. Meanwhile, our findings based on energy exhibited that there existed significant correlation between 
the brain regions and higher-order/low-order cognitive function processes in CD patients. In particular, it is 
widely recognized that the cingulum forms the white matter core of the cingulate gyrus and the anterior cingulate 
cortex is linked to emotion, especially apathy and depression. The changes of power can cause the behavioral 
change since the function of anterior cingulate cortex is correlated with emotions40–42. Further, the lingual gyrus 
plays an important role in processing vision, which is also associated with logical reasoning43 and encoding visual 
memories44. Interestingly, a recent study showed that brain activation in lingual gyrus and cuneus was negatively 
correlated with risk-taking in CD individuals18, 45. The decreased activity of right supramarginal gyrus can causes 
individuals to be more egocentric whereas overcoming emotional egocentricity bias is associated with increased 
activation in the regions46. In addition, the most significant activation regions based on the power (Fig. 1) were 
identified to be correlated with the activated components identified by the independent component analysis 
(ICA) from previous studies11. Interestingly, we also found that the largest power value in the brain regions from 
CD group was smaller than that of the TD group.

More importantly, we also examined the power of the ninety brain regions for both CD and TD groups irre-
spective of whether the significant power was used or not. In Fig. 2(a), the blue color denoted the mean and 
standard error (SE) of the power of the brain regions from the eighteen subjects in the CD group, whereas the 
orange one represented those from the TD group. It was observed from Fig. 2 that the distribution of mean value 
of power from the CD group is similar to the TD group and the correlation coefficient between them is close to 
0.93. In contrast, the sum of the power of the ninety brain regions from the CD group (61802.67) was smaller 
than that of the TD group (94131.96). In this figure, the numbers associated with the brain regions were used to 
simplify the figure, and the information of the labels of the ninety brain regions matching the AAL template was 
shown in Table 2. In addition, the standardized z-scores of the powers within the ninety brain regions were plot-
ted in Fig. 2(b), in which we found that the distribution of mean value of the standardized power also exhibited 
the similarity between the CD and TD groups, and the correlation coefficient between them was 0.94.

Figure 3. Brain regions with statistically significant differences between the CD and TD groups: (a) Power 
(mean ± SE); (b) Standardized z-scores (mean ± SE) of power. The blue color represents the CD group whereas 
the orange color represents the TD group; the horizontal axes denote the anatomical regions of interest in the 
AAL template. The vertical axes denote the power of brain regions in (a) and standardized z-scores of power 
values in (b), respectively. *p < 0.05 and **p < 0.01 (the p values are from two-sample t-tests between CD and 
TD).
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Although there are great morphological similarities between the power curves of the CD and TD groups 
in Fig. 2, the correlation coefficients are less than 1. This suggests that power migration exists among the brain 
regions when comparing the CD with the TD group. Consequently, this study investigated the differences in the 
powers of brain regions between the CD and TD groups. Figure 3 showed the brain regions in which there was a 
statistically significant difference in power between the CD and TD groups. In particular, after powers were trans-
formed into the standardized z-scores, there were six brain regions that exhibited significant differences between 
the CD and TD groups, which were displayed in Fig. 3(b). Importantly, the brain regions identified in Fig. 3(b) 
are different from those revealed in Fig. 3(a).

To survey the change in the distribution of power within the ninety brain regions in the CD and TD groups, 
we also calculated the mean power intensity for each of the ninety brain regions for the subjects from the CD and 
TD group, respectively. Then, the brain regions were sorted by the power intensity in descending order, which 
were shown in Fig. 4. We discovered from Fig. 4 that the powers of brain regions in the CD group were smaller 
than that in the TD group, and the order of the brain regions changed from the TD group in (b) to the CD group 
in (a).

The power analysis of the BOLD signals was performed to examine the energy consumption difference 
between the CD and TD groups. Interestingly, the new power spectrum approach involves the analysis of the 
power of the BOLD signal across the whole frequency bands rather than several frequencies, which can acquire 
more unique features of patients in the CD group. The power of fMRI BOLD signals directly reflects the degree of 
energy consumption within a region, which is able to quantify the energy consumption during a certain period 
of time. In this study, we explored the mean power of each brain region using the integrals of power spectral 
densities (PSDs) of the BOLD signals, in which PSDs were calculated by using the Welch spectrum method13, 14. 
The Welch method allows for the selection of a variety of window functions and improving the calculation of the 
PSD (PWELCH is a Matlab function which calculates the PSD using the Welch’s method). To balance the variance 
and resolution by reducing the sensitivity of the PSD to noise in the BOLD signals, the function was set to use the 
default segment parameters in Matlab, and then the BOLD signal was automatically segmented into eight sections 
of equal length, each with 50% overlap based on a Hamming window.

We think it is reliable to adopt the power spectrum to detect the abnormal brain functions. Firstly, the 
power spectrum of fMRI time series has been used to analyze brain functional activation in previous stud-
ies47–51, which can quantitatively determine the power changes of BOLD signals. As such, the previous work 

Labels Regions Labels Regions Labels Regions

1 Precentral_L 31 Cingulum_Ant_L 61 Parietal_Inf_L

2 Precentral_R 32 Cingulum_Ant_R 62 Parietal_Inf_R

3 Frontal_Sup_L 33 Cingulum_Mid_L 63 SupraMarginal_L

4 Frontal_Sup_R 34 Cingulum_Mid_R 64 SupraMarginal_R

5 Frontal_Sup_Orb_L 35 Cingulum_Post_L 65 Angular_L

6 Frontal_Sup_Orb_R 36 Cingulum_Post_R 66 Angular_R

7 Frontal_Mid_L 37 Hippocampus_L 67 Precuneus_L

8 Frontal_Mid_R 38 Hippocampus_R 68 Precuneus_R

9 Frontal_Mid_Orb_L 39 ParaHippocampal_L 69 Paracentral_Lobule_L

10 Frontal_Mid_Orb_R 40 ParaHippocampal_R 70 Paracentral_Lobule_R

11 Frontal_Inf_Oper_L 41 Amygdala_L 71 Caudate_L

12 Frontal_Inf_Oper_R 42 Amygdala_R 72 Caudate_R

13 Frontal_Inf_Tri_L 43 Calcarine_L 73 Putamen_L

14 Frontal_Inf_Tri_R 44 Calcarine_R 74 Putamen_R

15 Frontal_Inf_Orb_L 45 Cuneus_L 75 Pallidum_L

16 Frontal_Inf_Orb_R 46 Cuneus_R 76 Pallidum_R

17 Rolandic_Oper_L 47 Lingual_L 77 Thalamus_L

18 Rolandic_Oper_R 48 Lingual_R 78 Thalamus_R

19 Supp_Motor_Area_L 49 Occipital_Sup_L 79 Heschl_L

20 Supp_Motor_Area_R 50 Occipital_Sup_R 80 Heschl_R

21 Olfactory_L 51 Occipital_Mid_L 81 Temporal_Sup_L

22 Olfactory_R 52 Occipital_Mid_R 82 Temporal_Sup_R

23 Frontal_Sup_Medial_L 53 Occipital_Inf_L 83 Temporal_Pole_Sup_L

24 Frontal_Sup_Medial_R 54 Occipital_Inf_R 84 Temporal_Pole_Sup_R

25 Frontal_Mid_Orb_L 55 Fusiform_L 85 Temporal_Mid_L

26 Frontal_Mid_Orb_R 56 Fusiform_R 86 Temporal_Mid_R

27 Rectus_L 57 Postcentral_L 87 Temporal_Pole_Mid_L

28 Rectus_R 58 Postcentral_R 88 Temporal_Pole_Mid_R

29 Insula_L 59 Parietal_Sup_L 89 Temporal_Inf_L

30 Insula_R 60 Parietal_Sup_R 90 Temporal_Inf_R

Table 2. Labels of the ninety brain regions matching the AAL template.
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exhibited that the power spectrum analysis approaches are effective and reproducible in the analysis of BOLD 
signals. In particular, the Welch power spectrum used in this study is able to cover a wide variety of window 
functions, which can improve the quality of spectrum to an even better degree, and is recognized to be an 
accepted classical power spectrum estimation approach. And the brain power analysis is quite different from 
the correlation analysis since the power and correlation coefficient are two distinct measurements. The power 
analysis results in this study directly reflects the degree of energy consumption within the brain regions while 
the correlation coefficient from two time series is indicative of the functional connectivity between two nodes. 
In addition, the power distribution analysis uses the integral of the Welch power spectral density (PSD) to 
measure the power consumption of brain networks, and to compare the BOLD signal power between patients 
and healthy subjects. The method is also different from reported regional homogeneity (ReHo) analysis52–54. 
ReHo is used to measure the temporal synchrony of regional blood oxygen level-dependent (BOLD) signals 
as well as similarities in spontaneous neural activity52–54. It assumes that within a functional cluster, the hemo-
dynamic characteristics of each voxel would be similar, or synchronous with that of each other, and such 
similarity could be changed or modulated by different conditions52, 54. Technically, ReHo uses the Kendall’s 
coefficient concordance (KCC) to measure the similarity of the time series of a given voxel to those of its near-
est neighbors in a voxel-wise way52.

As it is very hard to recruit the CD subjects, only 18 patients were identified to participate in this study. 
Meanwhile, 18 heathy controls were also invited to take part in this work to balance the size of two samples. 
The small sample size may affect the statistical power for determining neural marks of CD although our find-
ings indeed exhibit the significant difference in power between the two groups based on the small size sample. 
Although most brain regions with significant power were identified to be the same between the CD and TD 
groups, as displayed in Fig. 1 and Table 1, a few of the ninety brain regions analyzed did exhibit the difference 
between them. This indicates that a significant change in the distribution of power occurred between the two 
groups in a few of the ninety brain regions analyzed. The results shown in Fig. 1 and Table 1 also indicated that the 
significant powers for most of the brain regions in the CD group were lower than those of the TD group. Although 
these brain regions showed significant power during the resting state, most of the regions with significant power 
in the CD group were calmer than those in the TD group. Since the brain regions can interrelate and influence 
each other55, 56, we analyzed the relation of the powers in the ninety brain regions. In Fig. 2(a), by comparing the 
means of powers of the eighteen subjects from the CD group with that of the TD group, we discovered that the 
powers of the ninety brain regions in the TD group were larger than that in the CD group during the resting state, 

Figure 4. Power distribution and comparison. CD group in (a) and TD group in (b) express the power 
distribution of brain regions in descending order of power.; (c) expresses the comparison between CD and TD 
groups with the order of brain regions in panel (b).
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which implies that the brains of the TD group displayed a higher amount of activity. Further, the standardized 
z-score chart in Fig. 2(b) showed that the distributions of the two mean curves are highly similar. Thus, we further 
tested the statistically significant differences between the powers of brain-region pairs between the CD and TD 
groups. This study found that the powers of some brain-region pairs were significantly different between the CD 
and TD groups during resting state as shown in Fig. 3. The mean values of powers from the TD group were larger 
than that of the CD group during the resting state (shown in Fig. 3(a)), and statistically significant differences 
between standardized z-scores of the powers in the brain regions is also indicative of a change in the distribution 
of power between the TD and CD groups (shown in Fig. 3(b)). Moreover, we also sorted the brain regions of the 
TD and CD groups according to the strength of the power (shown in Fig. 4). The comparison of Fig. 4(a–c) reflect 
the change in power observed between the CD and TD groups. Based on these observed changes in the power 
in the brain regions of the CD group compared to the TD group, we can infer that functional activities related 
to these brain regions are observed in CD patients and the adjustment of these changes in power may provide a 
therapeutic strategy for the improvement and rehabilitation of CD. Clinically, the measure of power represents a 
specific level of brain activity, which can be used to identify the brain regions associated with different disorders 
or brain cognition functions, and to reflect the energy consumption within brain regions. These power indicators 
or neural marks can provide us additional clinical supplementary reference information for disease diagnosis and 
treatments.

Conclusions
Power spectrum estimation is one of the classic methods to analyze neural signals. In this study, power spectrum 
method was used to extract and analyze the power of functional brain regions in the CD and TD groups based on 
rsfMRI recordings. We discovered that there were significant differences in the power observed in brain regions 
in the CD and TD groups, indicative of a change in the distribution of power between the two groups, and the 
total power of the regions analyzed in the CD group was less than that of the TD group. The study provided a 
new paradigm for establishing quantifiable indicators via the power spectrum approach for the comparison and 
analysis of the BOLD signal power between patients and healthy subjects.
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