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Fast atom transport and launching 
in a nonrigid trap
A. Tobalina, M. Palmero, S. Martínez-Garaot & J. G. Muga

We study the shuttling of an atom in a trap with controllable position and frequency. Using invariant-
based inverse engineering, protocols in which the trap is simultaneously displaced and expanded are 
proposed to speed up transport between stationary trap locations as well as launching processes with 
narrow final-velocity distributions. Depending on the physical constraints imposed, either simultaneous 
or sequential approaches may be faster. We consider first a perfectly harmonic trap, and then extend 
the treatment to generic traps. Finally, we apply this general framework to a double-well potential to 
separate different motional states with different launching velocities.

An important goal of modern atomic physics is to control atomic motion for fundamental studies or to develop 
quantum-based technologies. Technological advances allow for driving individual atoms (ions1, 2 or neutral 
atoms3) along microscopic or mesoscopic predetermined space-time paths. This control will enable us to use 
the rich structure and interactions of ions and neutral atoms in circuits and devices where quantum phenom-
ena play a significant role. Many operations require moving the atoms fast to keep quantum coherence, leaving 
them unexcited at their destination. Slow adiabatic shuttling may avoid excitation in principle, but the long times 
required make the processes prone to decoherence. Shortcuts to adiabaticity (STA)4, 5 are protocols for the con-
trol parameters that produce final states of an adiabatic process in much shorter times, typically via diabatic 
transitions at intermediate times. In this paper, we find STA to drive a single atom by a moving and nonrigid 
potential with time-dependent frequency as schematically shown in Fig. 1. We shall focus first on harmonic 
traps, and then a theory for more general potentials is also put forward. Two types of basic processes addressed 
are: (i) transport where the wave packet center and trap start and end at rest, and also (ii) launching or stopping 
processes, where the wave-packet center and trap start (resp. end) at rest, and ends (resp. start) with a nonzero 
velocity. Invariant-based inverse engineering has been applied to designing STA for rigid transport (with a con-
stant potential in the moving frame)6–8, and trap expansions or compressions4, 9–12. While shuttling and expansion 
or compression could be performed sequentially, doing both operations simultaneously, as proposed here, may 
save time and offers broader control possibilities. “Dual-task” operations must thus be compared to sequential 
operations. In principle, STA for rigid transport and expansions can be done in arbitrarily short times, but only 
if infinite resources and energies are available, which is never the case in practice. Often, the control parameters 
cannot go beyond certain values. For example, a very fast trap expansion without final excitation needs transient 
imaginary frequencies of the external trap (a concave-down potential), which are not easy to implement in all 
trap types. In optical traps, for example, the passage through the atomic resonance of the laser frequency to go 
from a trap to an antitrap may produce undesired excitation. A different, common constraint is the limitation on 
the spatial domain allowed for the trap center. We shall show that, depending on the constraints imposed, either 
sequential or dual-task protocols may be faster.

There are different fields or applications where simultaneous transport and expansion or compression between 
initial and final states at rest is of relevance. In quantum heat engines and refrigerators13–22 for example, the (ther-
modynamically) adiabatic expansion or compression strokes of the cycle could be realized simultaneously trans-
porting the quantum working medium between baths at different locations. Also, when expanding or separating 
ion chains, which are basic processes to develop a scalable quantum-information architecture23, the effective 
dynamics of the normal modes involves simultaneous transport and frequency change24, 25. One more scenario 
where transport and frequency change occur simultaneously is the bias inversion of an asymmetric double-well 
potential26.

Launching and stopping protocols are as well useful for many applications. An example of a stopping device is 
the “inverse coil gun” implemented by Mark Raizen and coworkers27. It uses pulsed magnetic fields to slow down 
a supersonic beam (e.g. from 500 to 50 m/s27) so as to leave the atoms ready for spectroscopic studies, controlled 
collisions, or further cooling techniques. One advantage of stopping techniques by magnetic (for paramagnetic 
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species) or electric fields (for ions), is their broad range of applicability, beyond the very restricted class of atoms 
with a cycling transition that can be treated by standard laser cooling approaches. The opposite process, launch-
ing, is also of much current interest: launching ions with a specific speed is used in particular for their implanta-
tion or deposition28. Accurately controlled launching can contribute to different quantum technologies such as 
ion microscopy, those using a controlled “soft landing” of slow ions on a surface, and those controlling the loca-
tion of defects (NV centers) that have been proposed for sensors and also as the basis of a possible architectures 
for quantum information processing. Deterministic sources of single cold ions have been proposed and demon-
strated28, 29 that limit the position-momentum uncertainty only due to the Heisenberg principle. Our goal here is 
to control of the velocity, and its dispersion. This is facilitated by the possibility to change the trap frequency along 
the shuttling. Differential launching of different motional states is also possible as we shall demonstrate with a 
double well.

While the mathematical framework of this work is equally applicable to neutral atoms or trapped ions, the 
numerical examples make use of parameters adapted to trapped ions1, 2.

Invariant-based inverse engineering. Lewis and Riesenfeld30 noted that the solutions of the Schrödinger 
equation for a time-dependent Hamiltonian can be written as superpositions of eigenstates of its dynamical invar-
iants. Dhara and Lawande31 and Lewis and Leach32 worked out the details for a particle of mass m that evolves 
according to Hamiltonians of the form
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where F(t) is a homogeneous force, ω πt( )/(2 ) the frequency of a harmonic term, U an arbitrary function, and α(t) 
and ρ(t) are auxiliary functions. x and p represent conjugate position and momentum operators of the particle.

The Hamiltonian in Eq. (1) has the quadratic-in-momentum invariant
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where the dot means time derivative. I satisfies indeed the invariance equation
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where ω0 is a constant. For simplicity we choose ω0 = ω(0).
Any wavefunction ψ(t) driven by the Hamiltonian (1) may be written in terms of eigenvectors ψn of the invar-

iant (2),
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where cn are constant coefficients, the λn are the eigenvalues, and θn are Lewis-Riesenfeld phases that can be cal-
culated from H and ψn
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where the φ σ( )n  (normalized in σ = α
ρ
−: x  space) are the solutions of the auxiliary, stationary Schrödinger 

equation

Figure 1. Scheme of the transport protocol with a change in the frequency of the trap.
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The physical meaning of α is made evident in Eq. (7) as a centroid for the dynamical wavefunctions that satis-
fies the Newton equation (5). α is also the center of the potential term ρ α ρ−− U x[( )/ ]2  when U does not 
vanish.

To inverse engineer the interaction between the initial time, t = 0, and a final time tf, we first set the initial and 
final Hamiltonians. For transport between stationary traps, commutativity is imposed between the Hamiltonian 
and the invariant at boundary times so that they share eigenstates. Thus the dynamics maps eigenstates of H(0) 
onto eigenstates of H(tf) via the corresponding invariant eigenstates, even though at intermediate times diabatic 
transitions may occur. The commutation of H and I at boundary times implies boundary conditions for α, ρ, and 
their derivatives. We design these functions to satisfy the necessary boundary conditions, and then, from the 
auxiliary Eqs (4) and (5) the control parameters ω t( ) and F t( ) are found. For launching/stopping processes the 
invariant and Hamiltonian do not commute at final time in the laboratory frame, but the states may be chosen as 
eigenstates of the Hamiltonian in the comoving and coexpanding frame.

Results
Dual-task transport in a nonrigid harmonic trap. Let us assume first that the external trap is purely 
harmonic, i.e., we take U = 0 and ω=F m t x t( ) ( )2

0 , where x t( )0  is the position of the trap center. Then, the 
Hamiltonian in Eq. (1) becomes, adding a purely time-dependent term that does not affect the physics to com-
plete the square,
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The average energy for this system in the nth state (7) is given by
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For rigid transport6, ω is constant and Eq. (4) is trivially satisfied for ρ =t( ) 1. Here, the goal is to transport a 
particle a distance d, and additionally change the angular frequency of the trap from the initial value ω0 to the 
final value ω ω ω γ≡ =t( ) /f f 0

2, without final excitation. The control parameters are the frequency ω(t) and the 
position of the center of the trap x t( )0 . Figure 1 shows schematically this process. The auxiliary functions α(t) and 
ρ t( ) have to satisfy the boundary conditions
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We also find, by imposing commutativity between Hamiltonian and invariant at boundary times, the bound-
ary conditions
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Additionally, to satisfy the invariant condition in Eq. (3) we need to impose
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Now, we may propose ansatzes that satisfy all boundary conditions in Eqs (11), (12) and (13). A simple choice 
is ρ ρ= ∑ =t s( ) i i

i
0

5  and α α= ∑ =t s( ) i i
i

0
5 , where =s t t/ f . Fixing the coefficients ρi and αi to satisfy the boundary 

conditions, the auxiliary functions become
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Substituting ρ in Eq. (4), the time dependent frequency in (9) takes the form
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whereas, from Eq. (5), the transport function (position of the trap center) is
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that can be now calculated with Eqs (14) and (15). The form of the polynomial for ρ in Eq. (14) is not affected by 
the transport, so the function for the frequency in Eq. (15) is the same as the one used for pure expansions4. 
Similarly, the form of α t( ) is not affected by the expansion, but the trap position x t( )0  is different from the one in 
rigid transport6 due to the time dependence of the frequency. The dual task protocol is thus not just a simultane-
ous superposition of recipes for pure expansions and rigid transport but a genuinely different process.

We performed a number of tests to compare the times required by the sequential or dual protocols. In princi-
ple, both the sequential and the dual drivings can be done arbitrarily fast, if no limitations are imposed. However, 
subjected to technical limitations the minimal times may be different. One of the bounds will be to keep the fre-
quency always real, ω >t( ) 02 , since a repulsive parabola may be difficult to implement in some trapping meth-
ods. Other natural constraint is to limit the trap position bounded within the “box” [0, d].

We carry out the comparisons for a 9Be +ion, shuttled over a distance =d 370 μm in a trap with initial fre-
quency ω π =/(2 ) 20  MHz expanded by a factor of 10, γ2 = 10. For these parameters and polynomial ansatzes, the 
simple expansion has a minimal final time = .t 0 443f

min( )
exp

 μs, below which imaginary frequencies appear. Note 
that this will also be the limit time before getting imaginary frequencies in the dual process, as Eq. (15) gives 
exactly the same evolution for ω in a simple expansion or a dual process. For rigid transport, carried out before 
the expansion at the highest trap frequency, the limit time is = .t 0 2f

min( )
tra

 μs before exceeding the box. Thus, the 
total minimal time for the sequential protocol is = .t 0 643fseq

 μs. For the dual protocol, the minimal final time 
before exceeding the box is = .t 0 91fdual

 μs. Under the stated restrictions (real frequencies and the trap bounded 
by the predetermined box [0, d]), the dual protocol is slower than the sequential one, if performing the transport 
first and then the expansion. All final times are summarized in Table 1.

If the only restriction is to keep real frequencies, dropping the limitation on the domain of the trap position, 
the minimal final time is in principle = .t 0 443f

min( )  μs for both the sequential and dual protocols, but in the 
sequential protocol this is a really challenging limit since the transport should be done in zero time. In both pro-
tocols the transport function exceeds the box [0, d]. In Fig. 2 we compare the ratio between the exceeded distance 
beyond [0, d] and d for the sequential and the dual drivings, with respect to the total process time. The exceeded 
distance is defined in terms of the maximum (x0max

) and the minimum (x0min
) values of the trajectory as 

= − −x x x de 0 0max min
. The figure shows that the dual protocol is much more robust. As the minimal possible 

time is approached, the ratio in the sequential protocol increases dramatically. In contrast, the ratio in the dual 
protocol is very stable, making potentially easier to perform the dual protocol for short times.

Dual-task launching in a harmonic trap. We study now launching processes where the frequency of the 
trap is time dependent (stopping processes may be designed by inverting the launching protocols). If the ion is to 
be launched adiabatically with a very precise velocity, the trap should have a small final frequency to minimize the 
uncertainty. STA protocols will achieve the same goal in a shorter time.

The order of the sequence plays a relevant role to compare sequential or dual launching protocols. In the 
previous subsection, when the final state is at rest, the sequential protocol may be faster than the dual one when 
transport is done first, then the expansion. For the launching process, the only meaningful sequential process 
implies to expand first, and then to transport, but a small trap frequency does not enable us to implement a fast 

ω > 0 trap in [0, d] Both conditions

Sequential 0.443 μs 0.2 μs 0.643 μs

Dual 0.443 μs 0.91 μs 0.91 μs

Table 1. Minimal times for the transport + expansion process when the trap frequency or/and center are 
limited, see text. Parameters: =d 370 μm, γ = 10 , and ω π =/(2 ) 20  MHz.

Figure 2. Ratio of the exceeded distance xe and the transport distance d for the dual (blue circles) and 
sequential (red diamonds) non-rigid harmonic tranport protocols, for final times that do not require imaginary 
frequencies. Parameters used are =d 370 μm, γ = 10 , and ω π =/(2 ) 20  MHz.
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launching. It is therefore useful to combine the time dependences of frequency and displacement of the trap in a 
dual protocol.

The boundary conditions to be imposed for this launching protocol are the same as in Eqs (11), (12) and (13), 
except that the first derivative of α at final time, is now the final launching velocity vf ,

α = .


t v( ) (17)f f

Additionally, boundary conditions are imposed on the third derivative of α,

α α= =t(0) ( ) 0, (18)f
(3) (3)

where (n) means nth derivative, so that, according to Eq. (16), the velocity of the trap x0 and the velocity of the 
wave packet α  are the same at the boundary times. In order to satisfy the additional boundary conditions, we 
consider a higher-order polynomial ansatz for α, α α= ∑ = si i

i
0

7 , which upon fixing parameters to satisfy all 
boundary conditions gives

α = − − − + − − − .t d t v s d t v s d t v s d t v s( ) 5(7 3 ) 3(28 13 ) 2(35 17 ) 10(2 ) (19)f f f f f f f f
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Boundary conditions for ρ are the same as in the previous subsection, so the same ansatz used in Eq. (14) is valid 
here. Thus, the evolution of the frequency is given in Eq. (15), while the evolution of the trap position is found 
substituting Eqs (15) and (19) into Eq. (16).

We evaluated the sequential and dual launching protocols limiting the frequencies to real values and the 
domain of the trap center to [0, d]. For the same parameters used in the previous subsection, and for a final veloc-
ity =v 10f  m/s, the minimal expansion time is the one given in the previous subsection, = .t 0 443f

min( )
exp

 μs, as the 
expansion does not change for the new boundary conditions. The rigid transport, however, performed with the 
final trap frequency, can be done in a minimal time = .t 2 295f

min( )
tra

 μs without exceeding the box. Thus, the minimal 
sequential time is = .t 2 734ftot

min( )  μs. For the dual protocol, the minimal time not exceeding the box is = .t 1 216fdual
 

µ s. The times are summarized in Table 2. Here the dual protocol clearly outperforms the sequential one.
A control possibility we have for the dual process, which does not exist for the sequential one, is to design the 

launching with a given constant expanding velocity, i.e., we impose α =


t v( )f f  as before and also

ρ ε= .
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3, which guarantees that the expansion velocity of the 
dynamical state matches that of the instantaneous eigenstates of the trap, consistently with the time derivative of 
ρ = ω
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7  the coefficients are fixed to satisfy the boundary conditions,
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With the evolutions considered in this section, either for the expanding or the nonexpanding launching, a 
state which is initially an eigenstate of H(0) will not become an eigenstate of the Hamiltonian H t( )f . Instead, the 
state of the system at the end of the process is, see Eq. (7), ψ ϕ= ε γ γ ε γ

γ γ
+ − −( )x t e( , ) ,n f

x v d x
n

x d[ /2 ( ) / ] 1im
f

2

1/2
  which 

can be shown to correspond to the Hamiltonian eigenstate in the moving and expanding reference system of the 
trap (see Methods).

The expectation value of the velocity for ψ x t( , )n f  is vf  and its dispersion is

ω
γ ε

ω
γ
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v n
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2

,
(23)0
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2

4


minimal with respect to ε for ε = 0. It can be lowered further by decreasing the final trap frequency (increasing 
γ). This result may be compared with the process where the initial trap is turned off and a constant electric field is 

ω > 0 trap in [0, d] Both conditions

Sequential 0.443 μs 2.295 μs 2.734 μs

Dual 0.443 μs 1.216 μs 1.216 μs

Table 2. Minimal final times for the launching + expansion process with limited frequency or/and trap center, 
see text. Parameters: =d 370 μm, γ = 10 , =v 10f  m/s, and ω π =/(2 ) 20  MHz.



www.nature.com/scientificreports/

6Scientific RepoRts | 7: 5753  | DOI:10.1038/s41598-017-05823-x

applied. Then the dispersion does not change,  ω∆ = + .v n m[ (2 1) ]/(2 )0  Much smaller spreads can be 
achieved by the dual protocol, but γ  cannot be made arbitrarily small in a fixed process time. In particular, the 
requirement of keeping the frequency real implies the bound9, 14 γ ω> −t 1 /f

2
0. A constant electric field has 

its own, different limitations, in particular, with constant acceleration the time is fixed as =t d v2 /f f  to reach a given 
final velocity vf  in a distance d.

Dual-task shortcuts in an arbitrary trap. Now, we extend the analysis to move and expand or compress 
an arbitrary confining potential from U x( ) to 
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. To stay within the family of processes described by 

Eq. (1), so that invariants are known, we must impose that the harmonic and linear terms depending on ω2 and F 
vanish at the boundary times. We thus set ω =00  hereafter. If initial and final potentials are at rest, by imposing 
commutativity between the Hamiltonian (1) and the invariant (2) and continuity at the boundary times, we get 
the same boundary conditions as in Eqs (12) and (13). We must also impose the boundary conditions in Eq. (11) 
for the system to be displaced and expanded or compressed, noting that now the constant γ is not related to ω0. 
With these boundary conditions, using the auxiliary Eqs (4) and (5), ω ω= = = =F F t t(0) ( ) (0) ( ) 0f f . That is, 
the only non vanishing term of the potential at the boundary times =t t0,b f  is = 
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ρ
−V t U( )b t

x t
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1
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 We design 
the functions α t( ) and ρ t( ) polynomially as before, so that they satisfy all boundary conditions, and introduce 
them in the auxiliary equations to inversely obtain the control parameters. The auxiliary functions can be the 
same as in Eq. (14). Substituting ρ in Eq. (4),

ω ρ
ρ

=− ̈t( ) ,
(24)

2

and substituting this result and α in Eq. (5) we get

α ω α= + .̈F t m m( ) (25)2

In other words, the protocol requires auxiliary time-dependent linear and quadratic potential terms apart 
from the scaled potential 



ρ

α
ρ

−U
t

x t1
( )

( )
2 . This protocol is of course technically more demanding than the one 

designed for the simple harmonic trap, because of the need to implement and control all terms (linear, quadratic, 
and U-term) of the Hamiltonian (1).

The results can be extended to a launching scenario. To be specific, we shall consider the double well, a par-
adigmatic quantum model that has been used, for example, to study and control some of the most fundamental 
quantum effects, like interference or tunneling. With the advent of ultracold-atom-based technology, it also finds 
applications in metrology, sensors, and the implementation of basic operations for quantum information process-
ing, like separation or recombination of ions24, as well as Fock state creation33, and multiplexing/demultiplexing 
vibrational modes34, 35. Here, we explore the possibility of using it for differential launching of vibrational modes.

We set U (in σ = α
ρ
−: x  space) as

σ βσ λσ µσ= + +U( ) , (26)4 2

where β, λ and μ are constant parameters. β, is positive and λ negative so that we have indeed a double well. The 
linear term produces a bias between the wells. The condition26 µ| | − λ

β


4 2
3

3
 enables us to approximate σU( ) 

as the sum of two harmonic potentials with minima at26

σ
λ
β

µ
λ

=± − +± t( ) 1
2 4 (27)

in σ-space, and effective angular frequency

λ
Ω = − .

m
2

(28)

Limiting the linear coefficient as µ β< m(2 / )1/2 , the first excited and ground states lie in different wells34. 
We want to implement a protocol with a nonzero final expansion velocity, such that the effective launching veloc-
ities for ground and first excited states are different so that they separate further. We choose the boundary condi-
tions for the auxiliary functions in Eqs (11) and (13) and for the first derivatives

α α

ρ ρ ε

= =

= = .
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Here the boundary conditions for the third derivatives [Eqs (18) and (21)] are not necessary. With these condi-
tions, using fifth-order polynomial ansatzes, the auxiliary functions are finally given by

α = − + − + + −t d t v s d t v s d t v s( ) 2(5 2 ) ( 15 7 ) 3(2 ) , (30)f f f0
3

0
4

0
5



www.nature.com/scientificreports/

7Scientific RepoRts | 7: 5753  | DOI:10.1038/s41598-017-05823-x

ρ γ ε γ ε γ ε= + − + − + − + + − + − .t t s t s t s( ) 1 2( 5 5 2 ) (15 15 7 ) 3( 2 2 ) (31)f f f
3 4 5

These parameters directly give us the evolution of the potential term ρ α ρ−− U x[( )/ ]2 . The auxiliary harmonic 
and linear terms in the total Hamiltonian (1) are found by substituting α and ρ in Eqs (24) and (25), respectively. 
The resulting potential (the sum of the three potential terms in Eq. (1)) is depicted in Fig. 3 as a function of 

α−x d( )/ , with α depicted in Fig. 4.
For this evolution, we can calculate the average final velocity of the ground states in each well, and the final 

dispersion,

ε µ
λ

λ
β λ

ε λ
γ

= +





± −
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−

−±⟨ ⟩v v v
m m4

1
2

,
4

( 4 ) ,
(32)

0
2

2


Figure 3. Time evolution of the shape of the launching double-well potential with velocities =v 10f  m/s and 
ε= s2/ . Each snapshot has been vertically displaced, without affecting the dynamics of the system, so that the 
minimum of the left well always lies at zero potential. The parameters used are λ = − .4 7 pN/m, β = .5 2 mN/
m3, µ = .86 4 zN, =d 370 μm, γ = 3  and =t 1f  μs. Even though not appreciated by the naked eye in the 

Figure 4. Scaled trajectory α, Eq. (30), of the center of the trap in a double well launching protocol with 
parameters λ = − .4 7 pN/m, β = .5 2 mN/m3, µ = .86 4 zN, =d 370 μm, γ = 3  and =t 1f  μs, and velocities 

=v 10f  m/s and ε= s2/ . Blue rectangles mark the points of the trajectory in which a snapshot of the potential is 
depicted in Fig. 3.
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which is the same in both wells, as the effective frequency is also equal. Details of these calculations are displayed 
in Methods. Choosing the parameters so that − > ∆+ −v v v2 , guarantees that the wave packets of each well 
will never overlap.

Discussion
In this paper, we have used the invariant-based inverse-engineering method to design shortcuts to adiabaticity for 
nonrigid driven transport and launching. Shortcuts for a harmonic trap are designed first, and then the analysis 
is extended to an arbitrary trapping potential. Compared to rigid transport6, nonrigid transport requieres a more 
demanding manipulation, but it also provides a wider range of control opportunities, for example to achieve 
narrow final velocity distributions in a launching process, suitable for accurate ion implantation or low-energy 
scattering experiments. A further example is the possibility to launch the ground states of each well in a double 
well with different velocities. In a previous work34 processes to separate the ground and the first-excited states of a 
harmonic trap into different wells of a biased double well using STA were described. The processes discussed here 
can be applied to different systems such as neutral atoms in optical traps, or classical mechanical oscillators, for 
which, mutatis mutandis, most of the results apply.

Methods
Unitary diplacement and dilatation transformations. First, we prove that given an arbitrary unitary 
transformation U, the transformed invariant ′ = †I UIU  is an invariant of the effective Hamiltonian 

′ = + ∂
∂

† †H UHU i UU
t

 . Their commutator is given by

′ ′ = +
∂
∂

= +
∂
∂

−
∂
∂

† † † † † † †I H UHU i U
t

U UIU U H I U i U
t

IU i UIU U
t

U[ , ] [ , ] [ , ] , (33)  

and the invariance condition [see Eq. (3)] for the transformed operators is satisfied,

 ∂
∂

− =




∂
∂

−


 = .

′
′ ′ †i I

t
I H U i I

t
H I U[ , ] [ , ] 0

(34)

Now we introduce the specific unitary time-dependent operator =U U U U Ud d p x2 1
. Operators Ud1

 and Ud2
 perform 

a time-dependent dilatation, and Ux and Up a time-dependent translation in space and momentum, and are given 
by36

= =

= = .

ρ
ρ

ρ

α α

− +

−





U e U e

U e U e

; ;

; (35)

d

im
x

d

iln
px xp

p
im x

x
i x

2 2 ( )
1

2

2
 

 

In the comoving and coexpanding frame defined by this transformation, the new invariant

ω′ = = = + +† † † † †I UIU U U U U I U U U U
m

p m x U x1
2

1
2

( ), (36)d d p x x p d d
2

0
2

2 1 1 2

becomes time independent37. Note that I′ has the same form of the Hamiltonian in Eq. (8) and therefore, the 
eigenstates of I′ are given by φ x( )n . The inverse transformation acting on φn provides the time dependent eigenvec-
tors of I(t) in Eq. (7),

ψ φ φ
ρ

φ α
ρ

= = =





− 



.ρ ρ αρ αρ ρ+ −′† † † † † ˙ ˙ ˙x t U x U U U U x e x( , ) ( ) ( ) 1

(37)
n n x p d d n

im x x
n

[ /2 ( ) / ]
1 2

2


The Hamiltonian in the comoving and coexpanding frame is


ρ

ω
ρα
ρ

α αα= +
∂
∂

=


 + +



 +






−





−′ ¨ ˙ ¨† †H UHU i U
t

U
m

p m x U x m m1 1
2

1
2

( )
2

,
(38)2

2
0

2
2

2

which, up to global terms that depend only on time, is proportional to the transformed invariant (36), so they 
commute at all times and thereby, share eigenstates at all times.

Note that the noninertial frame considered is comoving with α, which is the center of the term 
ρ α ρ−− U x[( )/ ]2 , but not necessarily the center of the harmonic potential ω −x x( )m

2
2

0
2 in Eq. (9) when U = 0. 

However, the boundary conditions are set, see Eq. (18), so that indeed the frames moving with α and x0 coincide 
at boundary times =t t0,b f , as α =t x t( ) ( )b b0 , and α =


t x t( ) ( )b b0 . Similarly Eq. (21) implies that the coexpand-

ing frame depending on ρ agrees with the one defined by the scaling factor ρ ω ω= /trap f0  associated with the 
expansion of the trap, ρ ρ=t t( ) ( )b trap b , and ρ ρ=

 
t t( ) ( )b trap b .

Average velocity and dispersion in a double well. Here, we consider the Hamiltonian in Eq. (1) with 
σU( ) given by a double well, Eq. (26), where ground and first-excited states lie in different wells and may be 

approximated by ground states of corresponding harmonic oscillators centered in σ± [see Eq. (27)], and effective 
angular frequency Ω [see Eq. (28)]. If the initial state is either the ground or first-excited state, the dynamical state 
of the system is in either case
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ψ
ρ

ϕ= ρ ρ αρ αρ ρ± + − ±
  x t e( , ) 1 ,

(39)

im x x[ /2 ( ) / ]
1/2 0

2

where φ σ= 

 − 


.π

σ α
ρ

± Ω − − Ω −
±

α
ρ

Ω −
± ( )( ) e Hm m x

0
1/4

( )
0

m x
2

2

 


Using standard properties of Hermite polynomials the average of the velocity and its square are found to be

∫ ψ ψ α ρ σ〈 〉 = − ∂ = +±
± ±

± 

⁎v i
m

dx( ) , (40)x


∫ ψ ψ α ρσ ρ
ρ

= − ∂ = + +
Ω






+
Ω 



.±

± ∗ ±
±⟨ ⟩ ˙ ˙ ˙v
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dx

m
( ) ( )

2 (41)
x

2
2

2
2 2 2

2

2
 

Finally, the dispersion, common to both wells, is given by

 ρ
ρ

∆ = ∆ = − =
Ω






+
Ω 




.± ± ±⟨ ⟩ ⟨ ⟩ ˙v v v v
m2 (42)

2 2 2
2

2

Equation (32) follows by substituting in Eqs (40) and (42) the expressions for σ± and Ω, Eqs (27) and (28), and the 
final values of the auxilary functions and their derivatives in Eqs (11) and (29).
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