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Biological analysis of cancer specific 
microRNAs on function modeling in 
osteosarcoma
Hao Wang1, Min Tang1, Liping Ou1, Mengyi Hou1, Tianyu Feng1, Yu-E Huang1, Yaqian Jin1, 
Heng Zhang2 & Guowei Zuo1

Osteosarcoma (OS) is the most common bone tumor characterized with a high risk of amputation and 
malignant morbidity among teenagers and adolescents. However, relevant pathogenic/biological 
mechanisms underlying OS-genesis remains to be ambiguous. The aim of this study was to elucidate 
functional relationship about microRNAs-mRNAs networks and to identify potential molecular 
markers via a computational method. Gene expression profile (GSE70415) was recruited from Gene 
Expression Omnibus. 3856 differentially expressed genes and 250 significantly expressed microRNAs 
were identified by using GCBI. The results of GO and KEGG pathways associated proteomics analysis 
indicated that extracellular matrix organization, small molecule metabolic process, cell adhesion (GO 
IDs: 0030198, 0044281, 0007155) and pathways in cancer, PI3K-Akt signaling pathway, metabolic 
pathways (pathway IDs: 5200, 4151, 1100) were significantly enriched. In addition, CKMT2, miR-
93b-5p, miR-29b-3p were found to be positively/negatively correlated with TP53, EGFR, and MMP 
members mediated OS development, including angiogenesis, migration and invasion. Further 
visualization of collective effect of 1181 microRNAs-mRNAs pairs and protein-protein interactions was 
realized by applying with cytosacpe. In summary, our work provided a better understanding of non-
coding regulatory mechanisms of transcriptomics and unraveled essential molecular biomarkers in 
osteosarcoma.

Osteosarcoma (OS) is the most frequent primary bone malignancy, characterized with a high potential for lung 
metastasis and has been the third common cancer-associated threat to adolescents1. It most occurs at the extrem-
ities of long bones, where osteoblasts transform into mature bone tissue. However, the putative molecular mecha-
nisms underlying OS carcinogenesis have not been deciphered completely and still been a challenge yet. Hitherto, 
cumulative evidences2–7 have demonstrated that a variety of factors including microRNAs (miRNAs), a group of 
non-coding RNAs, were involved in OS development. The first study on miRNAs expression in OS published by 
Gao et al.8 identified 182 differentially expressed miRNAs (DEmiRNAs), accelerating revelation that miRNAs 
may have an obscure but critical impact underlying OS pathogenesis. Recent researches9–12 also suggested that 
miR-1, -409-3p, -379, -665, -489-3p function as sequence-specific tumor suppressors mediating primary OS pro-
liferation, cell death and even distant metastasis.

Alternatively, development of high throughput testing technology (microarray, next-generation sequencing) 
has successfully made it convenient to acquire large-scale genetic data. Bioinformatics approach uniting biology, 
mathematics, and computer science has further widely facilitated molecular mechanism explanation and discov-
ery of tumor-correlated diagnostic markers. RNA-sequencing13 has found that amounts of genes come into dis-
crepancy along the course of bone malignancy transformation. By comparing mRNA expression profiles between 
OS tissues and cell lines and xenografts, Kuijjer M L et al.14 initially achieved histological subtyping classification 
(osteoblastic, chondroblastic, fibroblastic) at transcriptome level. In parallel, epigenetic events and RUNX2 inter-
actome were identified to be constitutively activated in OS15.

Nevertheless, targeting networks of miRNAs to mRNAs underlying osteosarcomagenesis have not been sys-
tematically interpreted yet. MiRNAs are essential components in biological homeostasis and the current paper 
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has accomplished miRNAs-involved networks construction and exploitation for essential biomarkers along pipe-
line of central dogma by means of easy-handling web-based analytical tool GCBI.

Results
DEGs and DEmiRNAs between hMSC and OS cell lines. The sample set GSE70415, which consists of 
miRNA (GSE70367) and mRNA (GSE70414) expression profiles of five human OS cell lines (MG63, Saos, HOS, 
NY, Hu09) and a corresponding control (hMSC) was obtained from Gene Expression Omnibus (GEO). Following 
standard protocol16 of samples qualification and normalization, raw expression values were summarized and ana-
lyzed in a consecutive workflow (seen in Fig. S1) based on GCBI. In total, 3856 (P < 0.01) significant DEGs were 
identified, of which 1705 over-presented and 2151 showed an attenuated behavior (Fig. 1a). Periostin (POSTN), 
a canonical osteoblast marker, has not only exhibited a most significant declination among the whole collection, 
but recent study has also already verified hypothesis that aberrant stimulation of it concerned with bevacizumab 
induced resistance in the cases of glioma implementing with anti-VEGF-A therapy17. Meanwhile 250 (P < 0.01) 
DEmiRNA picked out from microRNA repertoire comprised by 161 ascent items and 89 down-regulated miRNA 
episodes (Fig. 1b). Whereas, of some limitation, miR-182-5p and miR-708-5p, existing the highest contradictory 
deviation (absolute fold change|FC > 100) within current community events both could not be tracked among 
81 small sequences in curated Osteosarcoma Database5. Along the clarification of microRNA-engaged epigenetic 
reprogramming, potential connection between both of them and vorinostat, an approved histone deacetylase 
inhibitor was further validated in 143B and MG63 (data have not been published). In addition, DEGs which were 
statistically significant complied with cumulate information partially (about 7%) after matching to 911 trustwor-
thy entries within the Osteosarcoma Database (seen in Fig. S2). The full tables of DEGs and DEmiRNAs were 
included in Tables S2 and S3.

Functional enrichment of DEGs and DEmiRNAs between hMSC and OS cell lines. As known, 
tumorigenesis is featured with a number of biological disorders and cellular events dysregulation, such as angi-
ogenesis, cell adhesion, signaling transduction. Thus, it is absolutely necessary to unravel discrepant biological 
processes and pathways recruited along the duration of neoplasia. In the enrichment modules, 395 records of GO 
and 142 KEGG pathways (full tables can be seen in Tables S4 and S5) were verified through employment with 
Fisher exact testing and FDR18. Moreover, we annotated top-ranked 20 GO and KEGG pathways respectively 
without distinguishing biological process (BP), cell component (CC) and molecular function (MF) (Fig. 2a and 
b). It is obvious that the top three enriched biological processes contained extracellular matrix organization, small 
molecule metabolic process, cell adhesion (GO IDs: 0030198, 0044281, 0007155). Whereas, pathways in cancer, 
PI3K-Akt signaling pathway, metabolic pathways (pathway IDs: 5200, 4151, 1100) were three most significantly 
concentrated pathways through which oncogenes silencing was switched on or off. Both GO and KEGG pathway 
enrichment analysis showed a peak distribution of DEGs in metabolic dysfunction. To some extent, this was 
consistent with previous consensus19 that tumor events, such as proliferation, metastasis and angiogenesis could 
be partially attributed to hypermetabolic activity of neoplasm. Besides, MAPK signaling pathway, pathways in 
cancer, and cell cycle (pathway IDs: 4010, 5200, 4110) acted as leading initiators mediating follow-up aberrant 

Figure 1. Profiles of differentially expressed genes and miRNAs in osteosarcoma cells. Data of both mRNA (a, 
left) and miRNA (b, right) were clustered using GCBI (P < 0.01). In total, 3856 DEGs and 250 DEmiRNAs were 
deprived comparing to control group (blue).
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pathway cascades through assessment of determination coefficient (Fig. 3a). Intensive pathways featured with 
more than 10 contribution degrees were formatted into Table 1.

Genes interplay and co-expression networks. To further explore and clarify realization of message 
or communication flow from member to member scattered at the crossing pathways, visualization and cluster 
analysis of hub genes were accomplished using cytoscape 3.4.0. We picked out 698 overlapped genes derived from 
GO and KEGG pathway analysis and applied them to genesignal (shown in Fig. S4) and co-expression network 
construction (Fig. 3b). As co-expression graphic illustrated, correlative genes positively or negatively interacted 
with their neighbors in a non-direction nested manner. According to MCODE20 analyzer, 19 subordinated nodes 
intimately clustered to creatine kinase, mitochondrial 2 (CKMT2), also known as SMTCK, which was indispen-
sible when maintaining rational energy metabolism. Thus, our colleague later validated hypothesis that CKMT2 
might as a key regulating factor participating in osteosarcomagenesis (data have not been published).

Targets prediction and miRNAs-targets interaction. MiRNAs, a group of well-known endoge-
nous non-coding RNA, usually act as transcription regulators during gene expression through binding to 
3′-untranslated region (3′-UTR) of target mRNAs. It is explicit that diversity of miRNAs resulted from length or 
alignment of seed region complicates regulatory models. Thus, further understanding net-association between 
miRNAs and mRNAs is extremely needed. By utilizing GCBI that integrating TargetScan21 and miRanda22 data-
bases, we mined out 250 DEmiRNAs with an up to down ratio at 161/89 (shown in Fig. 1b). Abiding by the 
base-pairing principle, there were 29227 genes found deposited in the target pools (TargetScan and miRanda). 
Conversely, 388 were substantially involved in GO enrichment (seen in Fig. S3) and 608 were mingled with 
DEmiRNAs regardless of exact binding pair bases. To delineate miRNAs-mRNAs axis vividly, we postulated 
index degrees which changed no less than 10 to be of significance in transcription function in our research and 
deeply screened impaction networks of selected 40 DEmiRNAs (shown in Table S1). Illustration of connective 
networks of miRNAs and corresponding targets were realized using cytoscape 3.4.0. In summary, 238 down-
stream genes were blocked and 181 targets found to be in an activated status (Fig. 4a and b). The results showed 
that either lower-expressed miR-29b-3p or over-presented miR-93-5p was hub miRNA possessing most signifi-
cant impact on gene transcription and even protein function implement.

Protein-protein interaction in OS cell lines. To study protein-protein interactive association of 
DEGs mediated by DEmiRs, we screened 35 typical DEmiRs (FC ≥ 10 compared to control) and integrated 
protein-protein interaction (PPI) network of under-manipulated target mRNAs by means of STRING 10.0. 
Neither six isolated nodes (has-miR-941, 127-3p, 487b-3p, 34a-3p, 493-3p, 654-3p) without microRNA-mRNA 
joint nor molecules that absent from function (GO or KEGG) participation was eliminated. Then emerged 43 
genes were employed to construct PPI network by using cytoscape 3.4.0 (Fig. 5a). Within shaped model, receptor 
nodes already have been verified or not, such as FOXO1, BMP, members of COL and ITG families were predicted 
to interact with members essential for pathway perturbation, among which some classical suppressive factors 
involved, like TP53, EGFR and MMP2.

Figure 2. Representative GO and KEGG pathways enrichment analysis of osteosarcoma. Significantly changed 
GO (a, left) and KEGG pathways (b, right) of predicted DEGs were illustrated. The left y-axis titled with −log10P 
and the right y-axis presented DEGs while the x-axis showed GO/KEGG category. The larger −log10P indicated 
a smaller P-value. −log10P: negative logarithm of the P value.
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Figure 3. Co-expression network analysis of osteosarcoma. Significantly coefficient KEGG pathway network 
(a, left) was visualized with augmented index degrees (circles from cyan to red). Co-expressed DEGs were 
integrated into networks using bioinformatics methodology (b, right). Positive/negative function among 
common genes (rectangles, blue) and even tightly clustered elements (purple and green) were displayed with 
different colors (red and black).

Pathway ID Pathway name Degree
Pathway 
feature

4010 MAPK signaling pathway 34 down|up

5200 Pathways in cancer 27 down|up

4110 Cell cycle 24 down|up

4210 Apoptosis 23 down|up

4115 p53 signaling pathway 17 down|up

4310 Wnt signaling pathway 16 up|down

4520 Adherens junction 15 down|up

4012 ErbB signaling pathway 14 down|up

4350 TGF-beta signaling 
pathway 13 down|up

4510 Focal adhesion 12 down|up

4060 Cytokine-cytokine 
receptor interaction 12 down|up

Table 1. Remarkably correlative pathways in functional enrichment.

Figure 4. Regulatory networks of onco-associated miRNAs in osteosarcoma cells. Functional models of up-
regulated miRNAs (a, left) and down-regulated miRNAs (b, right) were constructed, respectively. Up/down-
regulated miRNAs were exemplified with triangles or circles with red color whereas targeted genes showed with 
blue squares.
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Discussion
In this study, we firstly provided a systematical miRNAs-mRNAs functional model based on expression profiles 
of OS transcriptome. Distinctive to previous researches focusing on individual command element, we analyzed a 
large number of molecules and integrated them into a functional network via adopting a bioinformatic approach. 
This research is not only a promotion in revealing small non-coding RNA disorder hiding in oncogenesis, even 
chemoresistance, but also indispensable for clinical early-screening and targeted therapy exploitation23, though 
underveining disturbance mediated by genetic or microenvironment origin remains to be a challenge.

By microarray analysis, we firstly identified 3856 mRNAs and 250 miRNAs which significantly diverged in OS 
cells. POSTN, mainly involved in osteoblasts adhesion and differentiation24, 25, was found declined remarkably in 
OS subgroups comparing to normal sets. Nevertheless, what fascinated us was that expression of POSTN had been 
reported to remain at a high level in OS compared to osteochondroma and high content of POSTN intensely cor-
related with tumor angiogenesis and poor prognosis in the OS as well as high grade glioma in vivo17, 26, 27. The prob-
able reasons for this discrepancy might be inconsistent of sample type (cell lines versus specimens) and detection 
approaches (RNA microarray versus immunohistochemistry). Subsequently, the results of functional enrichment 
analysis demonstrated that metabolic pathway played an important role and a large number of cancer associated 
pathways were distinguished, including PI3K-Akt and MAPK signaling. There is a reason to believe that chemore-
sistance is relevant to metabolic abnormality as miR-221, −101, −22, −15528–31 have already been proved to partici-
pate in cisplatin and doxorubicin derived chemo-resistance as well as our investigation about SAHA to miR-182-5p 
and -708-5p in OS cells. Alternatively, activation of the PI3K-Akt pathway suppressed cell longevity through phos-
phorylation of FOXO members and balancing its activity with MAPK and NF-κB pathway intimately associated 
with tumors survival1. On the other hand, stimulation of MAPK signaling was confirmed to link with elevated EGFR 
phosphorylation and MMP-9 levels mediated by lowering miR-143 in OS32. Except those miRNAs-pathways5, 7, 33 
verified so far, newly discovered miRNAs expanded OS related miRNAs spectrum notably. Furthermore, modeling 
of miRNAs-mRNAs networks was achieved using a well-established tool to visualize intricate nodes connections 
(Fig. 4a and b). Despite not the most altered, miR-29b-3p and miR-93-5p were two core upstream elements targeting 
transcription proceeding of which miR-29b-3p induced OS depression had been affirmed to be with tumor-specific 
subcellular localization34 while the most significant miR-182-5p and miR-708-5p displayed relatively moderate and 
even lower contribution degrees. It seems that efficiency of miRNAs is not simply determined by the level of varia-
tion but relied on critical GO and pathways. In summary, 1181 linkages have been established in the current study, 
which has been a striking acceleration about non-coding unit mediated OS carcinogenesis.

Bioinformatics approach combining GCBI and cytoscape, an innovative pipeline distinguished from troublesome 
data processing to pattern display, facilitating dimensional molecular interaction and model analysis based on ante-
cedent data and improved algorithm multidisciplinary. It is insufficient that our present paper has just successfully 
explained the relationship between microRNAs and coding targets, and necessary to further supplement another 
non-coding factors, including long non-coding RNAs, circle RNAs mediated competitive mechanism. There is no doubt 
that combinational strategies through employing identification of group effect of non-coding RNAs-mRNAs-proteins 
even small inhibitors and drugs would be potent approaches and might bring a breakthrough.

Figure 5. Predicted protein-protein interaction (PPI) in osteosarcoma. Bioinformatics prediction of 
significantly involved proteins (green) in our experiment and essential proteins in databases (yellow).
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Methods
Data source. In the present paper, gene expression profile (accession: GSE70415) deposited in the Gene 
Expression Omnibus (GEO)35 (https://www.ncbi.nlm.nih.gov/geo/) was utilized. GSE70415 comprised a total 
of five OS samples (MG63, Saos, HOS, NY, Hu09) and a normal control (hMSC). Subset expression profiles of 
mRNAs (GSE70414) and miRNAs (GSE70367) were detected using Affymetrix Human Genome U133 Plus 2.0 
Array and Affymetrix Multispecies miRNA-3 Array (Inc. Santa Clara, CA, USA) based on platform GPL 570 and 
16384. Totally, 54675 genes and 25533 miRNAs were mined, respectively.

Differentially expressed genes and miRNAs-mRNAs analysis. To identify DEGs and DEmiRNAs 
between OS and hMSC cell lines, a web-based online tool GCBI (www.gcbi.com.cn/gclib/html/index) was uti-
lized. Entries qualification and calibration were then achieved by taking standard Median Polish algorithm16. 
Only probe signals with p-values < 0.01, false discovery rate (FDR) < 0.01 and absolute value of fold change 
(FC) > 2 were considered to be statistically differential. Genesignal and co-expression network were further con-
structed based on contribution degrees according GCBI protocol (http://college.gcbi.com.cn/helpme).

Enrichment analysis and networks construction. For visualization, cytoscape 3.4.036 (http://www.
cytoscape.org/), an open source platform, was utilized to portray the relationship among target molecules. Gene 
Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis18 for 
DEGs was performed with GCBI mentioned above. DEGs and DEmiRNAs given previously were selected out to 
construct networks. Molecular Complex Detection (MCODE)20, based on vertex weighting by local neighbor-
hood density and outward traversal from a local dense seed to the isolate the dense regions, was employed to find 
molecular complexes.

Databases. To identify putative regulatory correlation within our work, some essential databases were con-
centrated to explore the relevance of non-coding transcriptome to proteomics. STRING10.037 (http://string-db.
org/) was implemented to supervise protein-protein interactions with. MiRNAs which associated with onco-
genesis were further filtered according to osteosarcoma5 (http://osteosarcoma-db.uni-muenster.de/) and 
oncomiRDB33 (http://bioinfo.au.tsinghua.edu.cn/member/jgu/oncomirdb/).
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