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Effect of over-consolidation and 
shear rate on the residual strength 
of soils of silty sand in the Three 
Gorges Reservoir
Deying Li1, Kunlong Yin1, Thomas Glade2 & Chin Leo3

Estimation of the residual strength of the soil on the landslide sliding surface is essential for analyzing 
reactivated landslides. This study investigated the influence of over-consolidation ratio (OCR) and 
shear rate on the residual strength of SM-type (silty sand) landslide soils in the Three Gorge Reservoir 
using ring shear tests under drained conditions. A series of ring shear tests were conducted to measure 
the drained residual strength under over-consolidation ratios of 1–12 and shear rates of 0.06–30.00 
mm/min. Test results showed that residual strengths of SM-type landslide soils were not affected 
significantly by the over-consolidation process. The effect of shear rate on residual strength did not 
exhibit a regular pattern at shear rates of 0.06–10.00 mm/min, and behaved negatively at a high 
shear rate of 30 mm/min. The reduction in residual strength at higher shear rates may be attributable 
to increases in the water content of the shear zone and the amount of finer particles, due to particle 
breakage and/or larger grains being pushed from the shear zone.

More than 4200 landslides have been observed in the Three Gorges Reservoir area, with consequent loss of life 
and negative economic impacts1. Reactivated landslides represent a very important landslide type in the area. A 
number of reactivated landslides such as Qianjiangping landslide and Anlesi landslide occurred in the Jurassic 
strata comprising a series of inter-bedded layers of mudstone, siltstone and sandstone2. A typical landslide geo-
logical section shows a sliding surface mostly on the contact between Jurassic bedrock and colluvial deposits3. In 
such cases, the shear strength of the landslide soil on the sliding surface is already reduced to a residual state due 
to repeated sliding and recession. This makes determining the residual strength very important in the analysis of 
a reactivated landslide.

The residual strengths of landslide soils in undrained and drained conditions have been investigated widely in 
recent years. For example, the shear-rate effect on residual strength, fluctuation of shear stress, excess pore-water 
pressure generation and dissipation, localized liquefaction, and shear-zone development processes have been 
studied using the ring-shear test4–8. In ring-shear tests, reconstituted samples of landslide soils, rather than intact 
samples, have been used extensively to measure shear strength, because it is very difficult to extract intact samples 
from natural slip surfaces and to determine the direction of field sliding. Reconstituted samples of cohesive land-
slide soils are allowed to overconsolidate and then are pre-sheared prior to the drained shearing test in order to 
reduce the testing time and to develop slickensides quickly in the test9. However, the effect of overconsolidation 
on residual strength of SM-type (silty sand) landslide soils may be complex because silty sand is a highly variable 
soil. Residual strength of SM-type landslide soils may be affected by the loading and unloading processes.

Several previous studies have considered the effects of loading and unloading normal stress on residual 
strength. Residual strength increased with increasing overconsolidation ratios (OCRs) for Pepper shale and 
Cucaracha shale10.The residual strength of natural soils was independent of stress history and the initial soil 
condition was not significant influence on residual strength11. A considerable reduction in the shear resistance 
of weathered granitic sand occurred proportional to the total normal stress and shear speed, with finer grains 
formed in the shear zone due to grain crushing6. The effects of artificial overconsolidationon the drained shear 
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behavior of high-plasticity clay soil and sandy-textured loess were investigated. No significant differences in resid-
ual strength were found under different overconsolidation ratios12.

In the literature, it has been reported that residual strength might or might not vary with different shear rates. 
Shear behavior during the residual state sheared at higher speeds might exhibit complex shear features. It has 
been shown that residual strength was not significantly influenced by variation in slower range shear rates, but 
that qualitative changes in the pattern of shear behavior occurred at rates > 100 mm/min13. A significant loss of 
strength (up to 60% of that for slow shear rates) at a shearing rate >100 mm/min in ring shear tests was found14.
The residual strength of granular materials was found to be independent of shearing rate15. Some researchers have 
found that residual strength of natural soils is positively dependent on shearing rate16–18.

Three types of variation of residual strength occur with increasing shear rate: (1) a positive rate effect—an 
increase in residual strength when sheared at higher speeds; (2) a negative rate effect—a decrease in residual 
strength with increasing shearing rate; and (3) a neutral rate effect—a constant residual strength irrespective of 
shearing rate19. Several hypotheses have been proposed in relation to the effect of shear rate on residual strength, 
such as the occurrence of excess pore-water pressure, increase in water content of the shear zone, frictional heat-
ing, liquefaction, mechanical fluidization, and changes to the shear mode and microstructure17–21. With regard to 
the case of the negative rate effect on residual strength, the drastic reduction in residual strength at fast shearing 
rates may be due to increased water content in the shear zone19. In specimens derived from mixed silica sand and 
bentonite, the shear model and the structure of the shear zone varied with shear rate22. Shearing might be con-
trolled mainly by the interactions of sand grains at low shear rates, but at higher shear rates shearing was thought 
to be controlled by the interactions of clay particles. Both an increase in clay and a reduction of the internal fric-
tion angle were found in tested samples compared with the original sample. Therefore, changes in shear strength 
were thought be due to changes in the geotechnical properties of the samples during shearing18. However, the 
behavior of residual strength for SM-type landslide soils at higher shearing rates and the mechanisms by which 
shearing rate affects residual strength are not fully understood.

A series of ring-shear tests was performed in the present study using artificially overconsolidated samples sub-
jected to different levels of consolidation stress to understand better the degree of variation in residual strength 
of SM-type landslide soil under various consolidation processes. Another concern addressed in the present study 
was the effect of shear rate on the residual strength of SM-type landslide soils loaded with the same consolidation 
stress. Samples of SM-type landslide soil were collected from a reactivated landslide site in the Three Gorges 
Reservoir area. The grain-size distribution of the soil samples and the quantities of minerals were examined prior 
to shearing. Then, a series of multistage ring shear tests were performed. Finally, possible mechanisms by which 
the over-consolidation ratio and the shearing rate influenced the shear stress-strength behavior were explored.

Samples and testing procedure
Ring shear apparatus. The static and cyclic ring-shear apparatus used in this work is shown in Fig. 1. The 
apparatus is suitable for high-precision ring-shear tests to measure shear strength at peak and residual states using 
a constant shear plane and unlimited shear displacement. The device could be operated either by a touch-sensitive 
keypad or by a PC with appropriate software. It had a high-resolution data acquisition system with high-quality 
transducers for measuring shear stress, normal stress, pore-water pressure, shear strain, and axial strain. The ring-
shear box system was constructed of stainless steel, including the upper and lower shear rings, porous ring plates, 
loading piston, and water receiver(for saturated conditions).

The interior of the ring shear box had an inner diameter of 100 mm, an outer diameter of 150 mm, and initial 
thicknesses of 30 mm, giving a shear-surface area of 98.17 cm2. The normal stress on the sample was maintained 
at a constant value during shearing, and the maximum vertical stress was 1000 kPa. The apparatus allowed for 
application of shear loads up to 10 kN, and vertical displacements up to25 mm. Tests could be run at constant 
velocity or at constant shear stress. A shear plane was imposed on the mid-height of the specimen by separation 
between an upper and lower portion of the shear chamber. Excess pore pressure is measured at the top of the 
sample (Fig. 2).

Physical properties. Test samples were obtained from the failure zones of the reactivated landslide known 
as Tangjiao landslide at Wanzhou, on the south bank of the Yangtze River in the Three Gorges Reservoir, 270 km 
west of the Three Gorges Dam. The Tangjiao landslide, is a large, reactivated landslide, with an area of 1.34 km2 
and an estimated volume of 2672.4 × 104m3. The landslide is rectangular in plan with a length of 1020 m and a 
width of 1300 m (Fig. 3). It extends between 135 and 327 m in elevation, facing the Yangtze River.

The samples were air-dried, sieved to exclude particles >2-mm diameter because the maximum particle size 
permitted in the test is limited to 10% of the initial specimen height9. The removed materials comprised 7.6% by 
weight of the original sample. Grain-size distributions were determined prior to the shearing tests using sieve 
and hydrometer analyses. The grain-size distribution of a tested sample showed that the proportions of clay (sub-
0.002 mm), silt (0.002–0.075 mm), and sand (0.075–2.000 mm) were 7.3%, 26.4%, and 66.3%, respectively23. The 
liquid limit was 31%. The sample was of predominantly sandy texture with a plasticity index of 7%.X-ray powder 
diffraction was used for quantitative analysis of the proportion of minerals of the sample. Results, (Table 1 and 
Fig. 4), indicated that quartz and albite were the principal granular minerals, accounting for 85.9% of the sample.

Testing procedure. Measurements of residual strength were performed using the ring shear apparatus. The 
ring shear test comprised three basic stages in general: sample preparation stage, consolidation stage, and shear-
ing stage9.

Sample preparation stage. An air-dried representative sample was lightly crushed using a ball mill, and 
passed through a 2-mm sieve. Reconstituted samples of the sub-2-mm soil fraction were then used to measure 
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the residual strength. De-aired water was added to the processed soil until water content close to the liquid limit 
was obtained. This was done in order to minimize the amount of air trapped during placement of the soil paste 
into the annular cavity9. The sample was then de-aired in a vacuum chamber with de-aired water for at least 24 h 
to ensure that it was fully saturated before the sample was placed in the shear box18. Samples were surrounded by 
water in the shear box during consolidation and shearing to prevent them from drying out.

Figure 1. The commercially available soil mechanics ring-shear apparatus used in the study.

Figure 2. The schematic of the ring shear device.
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Consolidation stage. The imposed consolidation stresses used in this study were 600, 500, and 400 kPa. The 
samples were gradually consolidated in the shear box to the desired consolidation stress (600, 500, or 400 kPa) 
until completion of primary consolidation was confirmed from the cessation of vertical displacement. Then a 
shear test to determine the residual strength was conducted at each of the normal stresses of 50, 100, and 200 kPa 
in an increasing load, multistage shear procedure. Each applied normal stress was held constant during shearing 
until a steady-state shear stress was obtained, then the normal stress was increased to the next value. For example, 
shearing was halted when the residual strength was reached at a normal stress of 50 kPa, and then the normal 
stress was increased to 100 kPa. The sample was then allowed to reconsolidate at 100 kPa before shearing was 
resumed. After this, the sample was sheared again until a new residual state was reached. This procedure was then 
repeated for the normal stress of 200 kPa.

Shearing stage. A series of shearing tests were performed to investigate the shear behavior of silty sand 
under various over-consolidation ratios and shear rates. Because of the restrictions of the ring-shear apparatus 
(i.e., pore pressure could not be controlled at fast shear rates), each sample was tested under drained condi-
tions. The residual strength under each application of normal stress was confirmed by the minimum shear stress 
achieved at steady state. The detailed shear procedure for the different tests is described below.

Figure 3. The site of Tangjiao landslide and the location of test samples obtained from the site. The two maps 
were created by Deying Li in ArcGIS 9.3 software (http://www.esri.com/). The photograph in this figure was 
taken by Deying Li using a drone.

Minerals Quartz Albite Illite Montmorillonite Orthoclase Calcite

Proportion 41.42 44.51 10.44 2.07 1.2 0.35

Table 1. Proportions of minerals.

Figure 4. X-ray analysis result.

http://www.esri.com/
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Effect of over-consolidation on residual strength: To create over-consolidation ratios of 12, 6, and 3, the 
test sample was first consolidated at 600 kPa. The sample was then unloaded to a normal stress of 50 kPa and 
allowed to reconsolidate before shearing. The residual strength at 50 kPa was obtained at a constant shear rate 
of 0.06 mm/min. Then, the procedure was repeated for normal stresses of 100 and 200 kPa. To create different 
over-consolidation ratios, the same procedure was applied to other samples consolidated to 500 and 400 kPa. 
Overconsolidation ratios of 10, 5, and 2.5 were created with the 500 kPa consolidation sample. Overconsolidation 
ratios of 8, 4, and 2 were created with the 400 kPa sample (Table 2). To compare all of the samples, the normally 
consolidated test series was also divided into three stress combinations of 50/50 kPa, 100/100 kPa, and 200/200 
kPa. The initial value of each stress combination represents the effective normal stress in the consolidation phase 
and the latter value reflects the normal stress in the shearing phase. An appropriate rate of shear was selected 
based on consolidation data to minimize shear-induced pore-water pressure changes. The choice depended on 
the estimated shear displacement at failure and total elapsed time to failure: the calculated shear rate was approx-
imately 0.06 mm/min. The sample was sheared at a slow constant shear rate of 0.06 mm/min to ensure the test 
remained under drained conditions.

Effect of shear rate on residual strength: To investigate the effects of shear rate on the residual strength of 
over-consolidated samples, a similar multistage ring-shear test procedure was performed at various shearing 
rates between 0.06 and 30.00 mm/min, but only at 600 kPa consolidation. For these tests, a defined peak in the 
measured shear resistance was observed at the normal stress of 50 kPa, followed by a gradual decrease in shear 
resistance to the residual strength. The recorded data showed that a shear displacement of >10 mm was required 
to reach the residual strength. A typical plot of the residual shear stress versus normal stress for the multistage 
ring-shear tests is displayed in Fig. 5.

Test results
Effect of over-consolidation on shear strength. Peak strength and fully softened strength. To distin-
guish the maximum shear strengths of the specimens under various consolidation conditions in this study, the 
maximum strength of the normally consolidated specimen was defined as the fully softened strength, and the 
maximum strength of the over-consolidated specimen was termed the peak strength24. Figure 5 shows the shear 
stress and shear displacement relationships of the normally consolidated and over-consolidated specimens sub-
jected to consolidation stresses of 600, 500, and 400 kPa. The normal stress of 50 kPa, peak strength was obviously 
larger after consolidation to 600 kPa than that after consolidationsto500 and 400 kPa. However, peak strength 
did not occur under normal stresses of 100 and 200 kPa because of the pre-existing shear surface from the first 
shearing under the normal stress of 50 kPa.

As mentioned above, a peak strength occurred only for the normal stress of 50 kPa. Therefore, only the shear 
characteristics of peak strength for a normal stress of 50 kPa, with different consolidation histories, are discussed 
in this article. The maximum friction coefficient increased lineally with increasing over-consolidation ratio. The 
maximum friction coefficient for the normally consolidated specimen increased sharply from 0.675 to 1.099 for 
an over-consolidation ratio 12 (the sample subjected to the consolidation stress of 600 kPa).The difference in 
the maximum friction coefficients between the normally consolidated and over-consolidated samples was much 
more prominent than between the overconsolidated samples with overconsolidation ratios of 8–12, as shown in 
Table 3.

Table 4 shows the horizontal displacements required to reach the maximum friction coefficient during shear-
ing. As shown in Fig. 5, the shear characteristics of the over-consolidated specimens are substantially different 
from those of the normally consolidated specimen because of the effect of overconsolidation. The maximum 
strength of the normally consolidated specimen was not obvious. The fully softened shear strength corresponded 
to the peak shear strength of a normally consolidated specimen. The fully softened friction coefficient was reached 
after a shear displacement of 8.24 mm. Compared with the shear displacements of the overconsolidated speci-
mens, it was found that the peak friction coefficient with the shortest shear displacement (2.02 mm) occurred for 
an overconsolidation ratio of 10 (Table 4). The two shear displacements to reach peak strength in overconsoli-
dation ratios 8 and 12 were 2.32 and 2.30 mm respectively. From these results, it is evident that the longest shear 
displacement required to reach maximum friction coefficient occurred for normal consolidation, and that the 
amount of shear displacement decreased sharply between an overconsolidation ratio of 1 to an overconsolidation 
ratio of 8. The shear displacement required to reach the peak strength remained almost constant in the overcon-
solidated samples.

Residual strength. The strength parameters at residual strength were estimated by Coulomb’s law of friction 
where cohesion was assumed to be zero, following the method described by Skempton13. The residual friction 
coefficient was defined as τ σ/r n. Table 5 compares residual friction coefficients under normal stresses of 50, 100 

Test Purpose
Consolidation stress 
(kPa)

Normal 
stress (kPa) OCR Shear rate (mm/min)

OCR 600(MC1), 500(MC2), 
400(MC3), NC(MC4) 50,100,200 12~1 0.06

Shearing rate 600 50,100,200 12,6,3 0.06(MC1), 0.6(MS2), 2(MS3), 
6(MS4), 10(MS5), 30(MS6)

Table 2. Multistage ring shear procedure. MC3 or MS2 indicates test sample number. NC indicates normal 
consolidation. OCR is overconsolidation ratio.
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and 200 kPa. The relationship between residual friction coefficient and overconsolidation ratio is shown in Fig. 6. 
The residual friction coefficient shows a difference of 0.195 between that for an overconsolidation ratio of 12 
(600/50 kPa) and that for 3 (600/200 kPa). The residual friction coefficient for an overconsolidation ratio of 6 was 
higher by 0.067 than that for an overconsolidation ratio of 3.The differences in residual friction coefficient were 

Figure 5. Shear characteristics of the normally consolidated and overconsolidated specimens, (a) normally 
consolidated sample, (b) the consolidation stress of 600 kPa, (c) the consolidation stress of 500 kPa, (d) the 
consolidation stress of 400 kPa.

Consolidation stress (kPa) 50 400 500 600

OCR 1 8 10 12

Maximum friction 
coefficient 0.675 0.926 0.941 1.099

Table 3. Maximum friction coefficient at different over-consolidation ratios (OCRs).

Consolidation stress (kPa) 50 400 500 600

OCR 1 8 10 12

Shear displacement (mm) 8.24 2.32 2.02 2.3

Table 4. Shear displacement required for maximum shear strength.

Normal 
stress (kPa)

Consolidation stress (kPa)

600 500 400 NC

50 0.740 0.647 0.707 0.658

100 0.612 0.589 0.586 0.568

200 0.545 0.553 0.512 0.521

Table 5. Residual friction coefficients.
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greater for different normal stresses. However, it can be seen that for the same normal stress of 100 kPa during 
shearing, a slight increase in residual strength occurred with increasing overconsolidation ratio, where the maxi-
mum recorded friction coefficient difference was 0.044.Under a normal stress of 50 kPa, a slight increase in resid-
ual strength also occurred with increasing over-consolidation ratio except at a ratio of 10, where the recorded 
maximum difference in residual friction coefficient was 0.082. For a normal stress of 200 kPa, there was no obvi-
ous tendency in residual strength with increasing overconsolidation ratio. For example, the residual friction coef-
ficient for an overconsolidation ratio of 2.5 was slightly higher (by 0.008) than for an overconsolidation ratio of 3. 
It was observed that when the specimen was subjected to the same normal stress during shearing, no significant 
difference in residual friction coefficient was found to be associated with the different consolidation processes. 
More than half of the test data in the presented data set show only an extremely small change in residual friction 
coefficient with overconsolidation, suggesting that the effect of overconsolidation on residual strength is not very 
significant.

The variations in maximum shear strength with overconsolidation were more prominent than those in resid-
ual strength. The process of loading and unloading appeared to have disturbed the internal particle structure of 
the high-silt/sand-content samples to cause differences in the peak strength. However, there are two viewpoints 
regarding the effects of the loading and unloading processes on residual strength: some researchers claim that 
residual strength is not affected by the initial soil condition11, 12, 25, whereas others believe that residual strength 
is influenced by structural differences10, 26. Comparison of residual friction coefficients at the same normal stress 
during shear shows residual strength was little affected by the overconsolidation process, where the maximum 
difference in residual friction coefficient between the normally consolidated and the overconsolidated speci-
mens was 0.082. The results suggest that artificial over-consolidation does not cause significant change in residual 
strength of silty sand. This conclusion that residual strength is not significantly influenced by overconsolidation is 
in agreement with the findings that residual strength is little affected by initial structure of soil11, 12, 27.

Effect of shear rate on residual strength. The multistage ring-shear test procedure was also performed 
to investigate the shear behavior of samples under various shear rates between 0.6 and 30 mm/min, for which 
the normal stresses of 50, 100, and 200 kPa were used during shearing. The shear displacement required from the 
start of the shear to achieve the residual condition was different under different shearing rates. For the normal 
stress of 50 kPa during shearing, it was found that the residual condition was achieved easily at a shearing rate of 
0.6 mm/min and that the required shear displacement was 52 mm. However, a greater shear displacement was 
required to reach the residual state as the shear rate increased from 2 to 30 mm/min. At a shear rate of 30 mm/
min, the shear displacement required to achieve the residual condition was as much as 2 m. The left side of Fig. 7 
shows the shear stress of the test samples during an initial shear displacement of 50 mm at a normal stress of 50 
kPa. The right side of Fig. 7 shows a 20 mm continuous segment of the residual friction coefficient curve selected 
from within the residual zone of the respective sample12. The shear rate of the 0.06 mm/min test is not included 
in Fig. 7 as it is shown in Fig. 5b.

Determination of residual strength. The value of residual strength under high shear rate was difficult 
to determine because of the obvious fluctuation of shear resistance in the shearing process from peak strength 
down to residual strength. A stable residual strength did not occur, even after the specimen was subjected to a 
shear displacement of 2 m. Moreover, some lower values of shear resistance occurred during the entire shearing 
process; e.g., at least five lower values of shear resistance occurred after the peak strength at 30 mm/min. For this 
study, the lowest shear resistance that was maintained at an approximately constant value over a certain period 
was selected as the residual strength.

Shear characteristics. For the study of the effect of shear rate on residual strength, the appropriate strength 
results for a shear rate of 0.06 mm/min were used in Fig. 8, which shows that the residual friction coefficient 

Figure 6. Residual friction coefficient at different overconsolidation ratios (OCRs).
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varied with shear rate between 0.06 and 30.00 mm/min at different over-consolidation ratios of 12, 6, and 3.For 
the normal stress of 50 kPa, the residual friction coefficients for overconsolidation ratio 12 were 0.373–0.790. The 
maximum residual friction coefficient corresponding to 0.790 was at a shear rate of 2.00 mm/min. The differences 
in residual friction coefficients ranged from 0.00 to 0.06, which was observed as the shear rate increased from 0.06 
to 10.00 mm/min. The residual friction coefficient at 0.06 mm/min was equal to that at 6 mm/min. However, as 
the shear rate was increased to 30 mm/min, the residual strength dropped sharply and the residual friction coef-
ficient reduced to 0.373. As the shear rate was increased from 10 to 30 mm/min, the residual friction coefficient 
for overconsolidation ratio 12 decreased by 49%. The variation in residual strength at shear rates of <10 mm/min 
was negligible compared with the difference at higher shear speed of 30 mm/min, and the effect of a high shear 
rate of 30 mm/min on residual strength was negative.

For overconsolidation ratio 6 under a normal stress of 100 kPa, the residual friction coefficients ranged from 
0.318 to 0.660. The differences in the coefficients at shear rates of 0.06–10.00 mm/min were within the range 
of 0.000–0.077. The maximum residual strength was noted at a shear rate of 0.6 mm/min. The residual friction 
coefficient at 0.6 mm/min again was equal to that at 6.0 mm/min. The minimum residual friction coefficient was 
0.318, which occurred at 30 mm/min. As the shear rate was increased from 10 to 30 mm/min, the residual friction 
coefficient decreased by 48%. The same phenomena of a sharp decrease in residual friction coefficient and signif-
icant negative change in residual strength occurred at higher speeds, although there was no obvious trend in the 
residual strength with increasing shear rate from 0.06–10.00 mm/min.

For overconsolidation ratio 3 under the normal stress of 200 kPa, the residual friction coefficients were within 
the range of 0.501–0.545 at shear rates of 0.06–10.00 mm/min. However, as the shear rate was increased to 30 
mm/min, the residual friction coefficient reduced to 0.297. As the shear rate was increased from 10 to 30 mm/
min, the residual friction coefficient decreased by 43%. It is evident that irrespective of the overconsolidation 
ratio, the residual strength decreased markedly at the high shear rate of 30 mm/min, and the shearing rate had a 

Figure 7. Shear characteristics of the samples at various shear rates at a normal stress of 50 kPa, (a) Initial state, 
and (b) 20 mm displacement at the residual state.

Figure 8. Relationship between residual friction coefficient and shear rate at different overconsolidation ratios 
(OCRs).
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negative effect on residual strength. A drastic loss in residual strength was observed at a shearing rate of 30 mm/
min. The soil that exhibited the negative effect had a low clay fraction (7.3%), which is similar to the finding of 
Tika et al. for soils with clay fractions ranging from 3% to 55%19.

Fluctuations of shear stress. Another phenomenon noted in the shear tests were fluctuations in measured 
shear stress during shearing28, 29. The amplitude of such fluctuations for landslide soil with sandy texture increased 
with increasing shear rate. The samples under a normal stress of 50 kPa during shearing were taken as examples 
to investigate the characteristics of the shear-stress fluctuations. The sample with the shearing rate of 30 mm/min 
exhibited high shear resistance of 63.7 kPa and showed strong variability after it had dropped to residual strength 
(Fig. 9). However, at the shearing rate of 0.6 mm/min, shear-stress fluctuations were negligible and a stable resid-
ual state was easily reached. During initial shearing displacement, the vertical deformation dilated because of the 
overconsolidation. Following the resultant displacement, the sample showed contractive behavior at a shear rate 
of 0.6 mm/min. Although the general tendency of the sample was contractive under the faster shear rate of 30 
mm/min, changes of dilation and contraction were always apparent in the shearing process. Thus, the reason for 
the fluctuation of shear stress was attributed to the variation in soil volume, where the dilation and contraction of 
the samples showed strong variability.

Discussion
Effect of pore-water pressure on residual strength. In the present study, although the ring-shear tests 
were carried out under drained conditions, it is possible that some excess pore-water pressure was generated dur-
ing the fast shearing. The monitored excess pore-water pressures under the normal stress of 50 kPa were taken as 
examples to investigate pore-water pressures for various shear rates. At a shearing rate of 0.06 mm/min, the excess 
pore-water pressure remained within a narrow range of 0.05 kPa and could be ignored. The maximum excess 
pore-water pressure was only 0.65 kPa, which occurred at the fast shear rate of 30 mm/min. All the recorded 
excess pore-water pressures developed when samples were sheared at various shear rates were less than 1 kPa 
(Fig. 10). Therefore, the effect of pore-water pressure on residual strength could be supposed negligible.

Figure 9. Fluctuations of shear stress and vertical displacement under a normal stress of 50 kPa, at (a) a shear 
rate of 0.6 mm/min and (b) 30 mm/min.

Figure 10. Fluctuation of excess pore-water pressure during shearing under a normal stress of 50 kPa.
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Effect of shear rate mechanism on residual strength. A number of mechanisms could explain the 
results obtained in this experimental study. Firstly, there is the question of whether excess pore pressure in the 
shear zone could account for the observed behavior. However, in the ring-shear tests, no significant fluctuations 
in pore pressure were observed and it was assumed that drained conditions existed at all times during shear. 
Similar results are found by Wang et al. 18, in ring-shear tests on dry and saturated landslide soils. Positive vertical 
displacement represents soil dilation and negative vertical displacement indicates soil compression in the curves 
of Fig. 9. The same trend of shear stress and vertical deformation occurred at the rate less than 10 mm/min was 
shown in Fig. 9a. However, there were significant fluctuation in shear stress and vertical deformation in the shear 
process from peak strength to the residual state at a shear rate of 30 mm/min, as shown in Fig. 9b. The recorded 
vertical displacement showed that fast shearing of 30 mm/min involved larger local dilation, even when the entire 
tendency was contractive, and that the lower shear strength corresponded to local dilation. This local dilation 
and loose structure may result in an increase in the void ratio and water content of the shear zone, which could 
increase the flow capacity of the soil19. This may be a factor in how rapid shearing affects the residual strength.

At a shear rate of 30 mm/min, there are significant fluctuations in shear stress even after 2 m of shear displace-
ment (Fig. 9b). Compared to the sample sheared at 0.06 mm/min, the sample was subjected to longer periods 
of shear displacement and grain crushing. In order to investigate particle breakage qualitatively, the shear-zone 
samples after the shear test were removed for the grain-size analysis. The grain-size distribution was determined 
using the laser diffraction method because the samples were too small to sieve30. The test result shows that the 
proportions of clay, silt, and sand after the fast shearing at 30 mm/min were 12.5%, 45.6%, and 41.9%, respec-
tively. Compared with the original sample, the shear-zone sample after shear testing was much finer. Therefore, 
it is more likely that the sample has increased proportions of finer particles and clay content because of particle 
breakage, but larger grains may also have been pushed from the shear zone5, 6, 31.

Depending on the proportion of platy particles, there are three possible modes of shearing: sliding, turbulent, 
and transitional19, 32. Generally, the turbulent shearing mode occurs in sandy soils because of the high proportion 
of rounded particles. Clay soils with a high proportion of platy, low-friction particles adopt the sliding mode. The 
structure of the shear zone and the adopted shear mode might vary with shearing rate32. Based on this inference, 
the turbulent shear mode might change into the transitional or sliding mode because of the increase in finer 
particles and clay content along the failure zone when a soil is subjected to high shear speed. The change of shear 
mode from turbulent to transitional or sliding may be another reason for the negative effect on residual strength.

Reactivated landslides. The laboratory test results show that residual strengths of landslide soils of silty 
sand texture are not significantly different whether the specimen is overconsolidated or normally consolidated. 
Therefore, using normally consolidated specimen to measure the drained residual strength of landslide soil in 
ring shear device is acceptable. The post-failure movement characteristics of reactivated landslides are generally 
affected by residual strength behavior of sliding surface. In landslide soil with negative rate effect, if a critical com-
bination of landslide displacement and velocity is induced during landslide instability or in limit equilibrium, the 
shear strength drops sharply, and the landslide accelerates to catastrophic failure and large landslide displacement 
may occur33. This is important in analyzing landslide dynamic characteristics and predicting future landslide 
movement.

Conclusions
The influences of both overconsolidation and shear rate on residual strength of sity sand soils were investigated 
using soil samples obtained from Tangjiao landslide in the Three Gorges Reservoir area. The residual strength 
was obtained from multistage ring-shear tests conducted under drained conditions. These tests were performed 
for each sample under normal stresses of 50, 100, and 200 kPa during shearing. To investigate the effect of loading 
and unloading normal stress on residual strength, consolidation stresses of 600, 500, and 400 kPa were chosen to 
create different overconsolidation ratios and for comparison with normally consolidated samples. It was found 
that residual strength was relatively unaffected by overconsolidation.

The effect of shear rate on the residual strength for different overconsolidation ratios was also investigated by 
increasing the shear rate between 0.06 and 30.00 mm/min. The relationship between residual strength and shear 
rate did not exhibit a regular pattern at shear rates of < 10 mm/min. However, for samples subjected to the same 
loading and unloading processes, the shear-rate effect on residual strength was negative with increase of shear 
rate from 10 to 30 mm/min. The complex shear-rate effect on residual strength might not be influenced solely by 
an increase in water content in the shear zone, but also by changes of structure in the shear zone and transitions 
in the shear mode.
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