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The CINSARC signature as a 
prognostic marker for clinical 
outcome in multiple neoplasms
Tom Lesluyes1,2, Lucile Delespaul1,2, Jean-Michel Coindre2,3 & Frédéric Chibon1,3

We previously reported the CINSARC signature as a prognostic marker for metastatic events in soft 
tissue sarcomas, breast carcinomas and lymphomas through genomic instability, acting as a major 
factor for tumor aggressiveness. In this study, we used a published resource to investigate CINSARC 
enrichment in poor outcome-associated genes at pan-cancer level and in 39 cancer types. CINSARC 
outperformed more than 15,000 defined signatures (including cancer-related), being enriched in top-
ranked poor outcome-associated genes of 21 cancer types, widest coverage reached among all tested 
signatures. Independently, this signature demonstrated significant survival differences between 
risk-groups in 33 published studies, representing 17 tumor types. As a consequence, we propose 
the CINSARC prognostication as a general marker for tumor aggressiveness to optimize the clinical 
managements of patients.

From the first report of gene expression quantification method by Schena et al. in 19951, to RNA sequencing 
(RNA-seq), extensively used nowadays by international consortia to decipher transcriptomic abnormalities2, 3, 
gene expression has become an essential tool in cancer research. For two decades, microarrays provided much 
information, both at gene and transcript levels, on various oncogenic factors4–7. Following on, the next-generation 
sequencing (NGS) permitted sequencing of RNA fragments, to a single base-pair resolution, where RNA abun-
dance is directly related to the proportion of sequenced reads mapped to a given gene8. Moreover, dedicated 
RNA-seq algorithms allow obtaining genomic information such as point mutations, insertions/deletions, translo-
cations and genomic integrations from foreign organisms: well-known oncogenic and tumor progression mech-
anisms9–11. However, standard measurements are yet to be defined since numerous software exist for RNA-seq 
processing, including many different gene expression normalization methods12.

Such transcriptomic investigations generated a large amount of data. Consequently, databases were set up to 
standardize all information associated with expression matrices, notably: organism, platform identifier, normali-
zation, unit measurement and study-specific information (i.e. cell types, treatments, time series, sampling and cul-
ture conditions, etc.). Among the many available gene expression databases, the two most used are Gene Expression 
Omnibus from the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/geo)13  
and ArrayExpress from the European Bioinformatics Institute (http://www.ebi.ac.uk/arrayexpress)14. These 
resources, by gathering results from microarrays and RNA-seq experiments, provide an easy access to millions of 
cancer-related transcriptomic profiles (cell lines, primary tumors and metastases/relapses).

Since Golub et al. identified a specific gene set capable of distinguishing acute myeloid leukemia from acute 
lymphoblastic leukemia in the late 90s15, establishment of gene expression signature remains a key part of cancer 
research. This first study demonstrated the possibility to use gene expression as a new in silico classifier, whereas 
previous options were limited to clinical observations and immunohistochemistry experiments. Subsequently, 
multiple gene sets were defined, not only to differentiate entities, but also to try predicting disease evolution. 
Two publications in early 2000s demonstrated the usefulness of transcriptomic profile as a survival indicator 
in breast cancer by focusing on specific genes16, 17. Few years later, a two-gene expression ratio was found to be 
a good predictor of tamoxifen response for breast cancer18. Then, inferring chromosomal instability from gene 
expression has become a promising predictor of clinical outcome in various cancers19. To date, the prognostic 
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values of specific gene expression signatures have been demonstrated for breast cancer, lymphoma, leukemia, 
hepatocellular carcinoma, sarcoma, etc.20–24.

In 2010, we defined a set of 67 genes as a predictor for metastatic events in sarcomas with complex genetics24, 
with a better prognosis compared to the standard FNCLCC (Fédération Nationale des Centres de Lutte Contre le 
Cancer) grading system based on tumor differentiation, mitotic index and necrosis25. These genes were identi-
fied based on differential expression analyses with three different classifiers: FNCLCC grade, genomic alteration 
number and chromosomal instability signature19. Gene ontologies associated with these genes are mitosis and 
chromosome integrity pathways. This signature, called CINSARC (Complexity INdex in SARComas), was also 
informative in diffuse large B-cell lymphomas and breast carcinomas. We extended its application scope to sarco-
mas with simple genetics (harboring recurrent and specific genomic alteration): gastrointestinal stromal tumors 
and synovial sarcomas26, 27. Venet et al. demonstrated that randomly generated gene sets could be better predic-
tors compared to published signatures in breast cancers28. Based on this observation, we compared the prognostic 
value of CINSARC to 1000 equal-sized randomly generated gene sets on four independent sarcoma datasets. We 
reported that no randomly generated signature was a better predictor than CINSARC29.

Recently, Gentles et al. reported an extensive data-mining analysis and compiled their results into a new resource 
named PRECOG (PREdiction of Clinical Outcomes from Genomic profiles; https://precog.stanford.edu)30.  
They evaluated the prognostic value of 23,287 genes across 39 cancer types from 166 published expression data-
sets, approximately representing 18,000 tumors. Experiments were performed on genes associated with good 
outcome, particularly genes involved in the immune system with a particular interest for the CIBERSORT (Cell 
type Identification By Estimating Relative Subsets Of known RNA Transcripts) approach31. Gentles et al. also 
observed that prognostic genes are significantly more shared by different tumor types than expected by chance, 
either associated with good or poor outcome. This highlights the possibility of using a non-cancer-specific sig-
nature as an outcome predictor, consisting of genes sharing same expression patterns across several tumor types.

Since we previously demonstrated that CINSARC is a significant prognostic factor in multiple malignan-
cies, we analyzed the PRECOG resource and evaluated its prognostic ability in the available 39 cancer types. 
Furthermore, this signature has been compared to other gene sets defined by various methods (transcription 
factor regulated genes, cancer expression patterns, chromosomal positions, co-expression networks, specific 
immune processes, etc.). We address the following questions: is CINSARC a signature enriched in genes asso-
ciated with poor outcome in a pan-cancer overview? Could CINSARC be applied to multiple cancer-specific 
studies such that, with additional validations, this signature could be tested in prospective studies to optimize the 
clinical management of patients?

Results
Signature enrichments at pan-cancer level. To obtain an exhaustive set of gene expression signatures, 
we used the MSigDB (Molecular Signatures DataBase; v5.2), including 18,026 gene sets, and the GeneSigDB 
(Gene Signature DataBase; v4.0), including 2,951 human gene sets32, 33. CINSARC has already been included in 
GeneSigDB (named SARCOMA CHIBON10 67GENES GENOMECOMPLEXITYPREDICTOR), but lacks several 
genes (62 instead of 67). Consequently, we included the full signature named SARCOMA CHIBON10 67GENES 
GENOMECOMPLEXITYPREDICTOR CURATED. We performed the popular Gene Set Enrichment Analysis 
(GSEA) method to determine signature enrichments in genes significantly associated to poor outcome (see  
methods)34. As recommended by GSEA documentation, we removed signatures with less than 25 known genes 
in PRECOG database to avoid inflated scorings for very small gene sets. This filtered out 4,394 (24%) and 1,085 
(37%) signatures from MSigDB and GeneSigDB, respectively. Of note, BORA (formerly known as C13orf34) was 
not evaluated in PRECOG and is therefore missing in both full (curated) and reduced (62 genes) CINSARC.

In the database of 15,499 gene sets, 1,273 (8%) were significantly enriched in genes associated with poor prog-
nosis (family-wise error rate P < 0.05; Supplementary Table 1: sheet 1). Sorted by decreasing normalized enrich-
ment scores (NES; primary statistic for examining gene set enrichment results; see methods), reduced and full 
CINSARC ranked 9 and 17, respectively (Figs 1 and 2). In addition to a high NES, leading-edges metrics (exten-
sion of the NES results; see methods) showed high sensitivity (tags are 97% and 95%, ranked 4 and 11 for reduced 
and full CINSARC, respectively), low false-negative rate (lists are 2% and 3%, ranked 5 and 25 for reduced and 
full CINSARC, respectively) and high enrichment signal strength (signals are 99% and 98%, ranked 11 and 15 
for reduced and full CINSARC, respectively). All these four metrics combined (NES and the three leading-edge 
metrics), other signatures in the top 20 performed worst compared to CINSARC with a mean sensitivity of 76% 
(range: 65–97%), a mean false-negative rate of 7% (range: 2–13%) and a mean enrichment signal strength of 81% 
(range: 69–99%). Scored by the mean ranks of the four metrics, CINSARC obtained scores of 7.25 and 17, corre-
sponding to ranks 1 and 4 for reduced and full CINSARC, respectively (Fig. 2). Of note, the top 10 consisted of 
another breast cancer signature defined by Reyal et al. (ranked 3 with a score of 15.5)35. Other signatures in the 
top 10 were co-expression networks of the following genes: CCNA2, HMMR, CCNB2, CDC20, CDC2, CENPF 
and RRM2. Taken together, the top 10 enriched signatures are composed of a limited number of 92 genes strongly 
involved in mitosis and chromosome segregation pathways (P < 10−30; see methods). This result demonstrates 
that CINSARC is strongly enriched in genes associated with poor prognosis at pan-cancer level, with a high sen-
sitivity and low false-negative rate compared to other signatures.

Signature enrichments at cancer type level. In PRECOG, many cancer types have few 
outcome-associated genes (e.g. at Q < 0.05). Fifteen cancer types have no such genes and seven cancer types have 
from 1 to 9 such genes, for a total of 22 cancer types with less than 10 outcome-associated genes. We wondered 
how signature enrichments perform in cancer types with low versus high outcome-associated gene contents. We 
split the 39 cancer types into two subgroups using a threshold of 10 outcome-associated genes: 17 types have at 
least 10 such genes and 22 have less.
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In 10 out of the latter 22 types (45%), CINSARC (both full and reduced) was significantly enriched in 
top-ranked genes (though these genes are not significantly associated with poor prognosis), the widest type cov-
erage reached by all tested signatures (Supplementary Table 1: sheets 2 to 23). Two other cancer signatures per-
formed similar to CINSARC: BREAST REYAL08 72GENES and ROSTY CERVICAL CANCER PROLIFERATION 
CLUSTER. Furthermore, eight co-expression networks in MSigDB performed similar to CINSARC: CCNA2, 
CCNB2, CDC20, CENPF, MCM4, PCNA, RRM1 and RRM2. These 12 signatures are predominantly enriched 
in the same tumor types: adrenocortical cancer, medulloblastoma, gastric cancer, Burkitt’s lymphoma, liver 
cancer, primary liver cancer, melanoma, mesothelioma, pancreatic cancer and Ewing’s sarcoma. The lack of 
prognosis-associated genes in these 22 types is also measured by different indicators. They present less enriched 
signatures, less gene ontology enrichments and less protein-protein interactions (Wilcoxon rank sum tests are 
1.71 × 10−4, 1.03 × 10−2 and 7.28 × 10−5, respectively; Supplementary Figure 1; see methods) compared to the 17 
others (those with at least 10 outcome-associated genes).

In these 17 cancer types (with at least 10 outcome-associated genes), CINSARC (both full and reduced) was 
significantly enriched in top-ranked genes (significantly associated with poor prognosis) of 11 types (65%), the 
widest type coverage reached by all tested signatures (Supplementary Table 1: sheets 24 to 40). Several other 
signatures performed equally: BREAST THORNER09 217GENES, BREAST TROESTER06 134GENES UP 
DOXTREATED-HME-CC, BREAST TROESTER06 81GENES UP SHAM HME-CC, CAIRO HEPATOBLASTOMA 
CLASSES UP, GSE18893 TCONV VS TREG 24H TNF STIM UP, NAKAYAMA SOFT TISSUE TUMORS PCA2 
UP, RODRIGUES THYROID CARCINOMA POORLY DIFFERENTIATED UP, STEMCELL SHATS10 100GENES 
CONSENSUS STEMNESS RANKING, WHITEFORD PEDIATRIC CANCER MARKERS and ZHOU CELL 
CYCLE GENES IN IR RESPONSE 24HR. These 12 signatures are predominantly enriched in the same tumor 
types: bladder cancer, astrocytoma, glioma, neuroblastoma, breast cancer, germ cell tumor, Mantle cell lym-
phoma, multiple myeloma, lung adenocarcinoma, ovarian cancer and prostate cancer.

Considering the full set of 39 tumor types, CINSARC covers the largest possible spectrum of tested cancer 
types, being enriched in top-ranked genes of 21 types: adrenocortical cancer, medulloblastoma, gastric cancer, 
Burkitt’s lymphoma, liver cancer, primary liver cancer, melanoma, mesothelioma, pancreatic cancer, Ewing’s 
sarcoma, bladder cancer, astrocytoma, glioma, neuroblastoma, breast cancer, germ cell tumor, Mantle cell lym-
phoma, multiple myeloma, lung adenocarcinoma, ovarian cancer and prostate cancer. Aggregated into groups 
(brain, blood, head and neck and solid), no significant association was observed between CINSARC enrichments 
and cancer families. Other 18 types, without CINSARC enrichments, are: glioblastoma, colon cancer, acute mye-
loid leukemia, chronic lymphoid leukemia, diffuse large B-cell lymphoma, melanoma metastasis, meningioma, 
head and neck cancer, hypopharyngeal cancer, oesophageal cancer, oral squamous cell carcinoma, B-cell acute 
lymphoblastic leukemia, follicular lymphoma, kidney cancer, large cell carcinoma of the lung, squamous cell 
carcinoma of the lung, small cell lung cancer and osteosarcoma. As a consequence of these results, we pursued 
experiments by focusing on the CINSARC signature.

CINSARC prognostic value with survival analysis. Being enriched in genes associated with poor out-
come does not essentially make a signature a prognostic factor. This can be explained by the fact that collective 
information of each individual gene prognostic value may be different from the prognostic value given by a 
whole set of genes. Accordingly, we investigated whether CINSARC was associated with survival differences in 

Figure 1. Enrichment plots of the reduced (left) and full (right) CINSARC signatures. Genes are ranked 
according to their individual prognosis given in PRECOG (poor and good prognoses in the left and right sides, 
respectively), represented by red and blue segments. Across these segments, CINSARC genes are marked by 
vertical black lines. The enrichment score (green plot) corresponds to a running-sum statistics: for each gene, if 
part of the signature, a positive value is added and a negative one otherwise.
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studies used to build the PRECOG resource. To obtain a robust evaluation, we filtered out datasets with less than 
50 annotated cases, less than 25 CINSARC genes and <10% or >90% death rates. Accordingly, 83 datasets (out 
of 166; 50%) were investigated using the Kaplan-Meier estimator, covering 27 different cancer types. Since the 
investigated datasets did not permit generation of training-validation cohorts (median number of samples was 
111), we performed leave-one-out cross-validation as the classifier method.

A total of 33 datasets (40%) produced significant survival differences according to the CINSARC classification 
(Supplementary Table 2, Supplementary Figures 2 and 3). The 17 cancer types associated with these 33 datasets 

Figure 2. Pan-cancer overview of the top 20 signatures by several metrics (from top to bottom): normalized 
enrichment score, tag (sensitivity), list (false-negative rate), signal (enrichment strength) and the mean ranks 
of the previous metrics. Histograms are sorted to display best to worst ranks from top to bottom, respectively. 
CINSARC signatures are highlighted in black.
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are: neuroblastoma, breast cancer, Mantle cell lymphoma, diffuse large B-cell lymphoma, ovarian cancer, prostate 
cancer, acute myeloid leukemia, lung adenocarcinoma, bladder cancer, liver cancer, multiple myeloma, follicular 
lymphoma, colon cancer, squamous cell carcinoma of the lung, oral squamous cell carcinoma, chronic lymphoid 
leukemia and B-cell acute lymphoblastic leukemia. Importantly, cancer types where CINSARC was significantly 
enriched in top-ranked genes demonstrated higher proportion of significant survival differences (22 among 42 
datasets; 52%) compared to the others (11 among 41; 27%). Also, cancer types with at least 10 genes associated 
with poor prognosis demonstrated higher proportion of significant survival differences (25 among 56 datasets; 
45%) compared to the others (8 among 27; 30%).

Though no correlation has been measured between survival difference and microarray platform or the num-
ber of evaluated CINSARC genes, clear evidence of cohort size effect has been observed: the larger cohort, the 
higher survival difference (Wilcoxon rank sum test P = 1.7e-5). Among the 83 tested datasets, 46 contain at least 
100 tumors and CINSARC classification is significantly associated with the outcome in 26 of them (57%). There 
are 30 datasets with at least 150 tumors and CINSARC classification is significantly associated with the outcome 
in 19 of them (63%). At 200 tumors threshold, CINSARC classification is significantly associated with the out-
come in 11 out of 16 (69%) datasets.

In these 11 datasets, we wondered how would perform CINSARC if less tumors were taken into account. In 
fact, we previously reported CINSARC robustness as it was a clinical marker in independent sarcoma datasets29 
but we did not evaluate its robustness in term of cohort subsampling36. To firmly evaluate CINSARC robustness 
regarding cohort size, we investigated the 11 datasets with a least 200 tumors where CINSARC is a prognostic 
factor. For each dataset, we randomly generated 10,000 sub-cohorts at 75% and 50% of the total cohort size with 
similar death rates (±10%; Supplementary Figure 4). All of the 11 datasets demonstrate that better prognoses are 
obtained with 75% compared to 50% subsampling. In eight datasets, CINSARC still classify tumors according 
to their aggressiveness in most of random trials (>50% at P < 0.05). However, due to the decrease in statistical 
power, CINSARC mostly produces non-significant prognoses in three datasets (PMID: 17410195, 21720365 and 
17023574, cancer types are: B-cell acute lymphoblastic leukemia, multiple myeloma and ovarian tumors, respec-
tively). These results confirm that cohort sizes affect prognosis values and that, nonetheless, CINSARC is a robust 
signature as it remains a prognostic marker for tumor aggressiveness in subsampling analyses.

Discussion
Cancer gene expression signatures have been widely used as tools to classify tumors into specific subtypes, as a 
prognostic factor for clinical outcomes or as a predictive factor for treatment responses37. Using the GSEA algo-
rithm, we demonstrated that CINSARC, among 15,499 signatures established by various methods, is strongly 
enriched in prognostic genes at pan-cancer level, with high sensitivity (>95%) and low false-negative rate (<3%). 
At tumor-specific level, CINSARC covers the largest possible spectrum of tumor types among all tested cancer 
gene expression signatures (enriched in 21 cancers types among 39 tested). As it was not evaluated in PRECOG, 
we hypothesize that BORA gene would increase CINSARC prognostic value since it has been described as an 
important Aurora kinase A (AURKA) activator, required for centrosome maturation, spindle assembly and asym-
metric protein localization during mitosis38. Moreover, AURKA alone has been identified as a prognostic marker 
in gastrointestinal stromal tumors26. Originally, CINSARC is a metastatic marker to predict which sarcomas 
with complex genetics have high relapse risk (on average 50% at 5-year)24. The results we present demonstrate its 
usefulness as a generic tumor aggressiveness predictor since overall/disease-specific survivals were considered in 
PRECOG.

Importantly, several PRECOG factors could restrict signature prognostic values, CINSARC included, in the 
different cancer types. First: it is questionable that a single tumor dataset represents the classical cancer-specific 
transcriptomic profile and therefore another dataset could produce different results. Second: some studies com-
prise very high or very low (typically > 90% or < 10%, respectively) death rates which could be a limiting factor in 
PRECOG survival evaluation since cohorts are split by median gene expression. Third: several cancer types, due 
to microarray models used in the different studies, may lack important genes so prognostic values were limited to 
a restricted number of genes (i.e. GPL80: Affymetrix Hu6800, GPL91: Affymetrix HG-U95A, non-commercial: 
GPL257 and GPL3906, etc.). Fourth: it has been described that cohort size is a parameter affecting survival esti-
mation39. To bypass these limitations and confirm GSEA results, we performed survival analyses using CINSARC 
classification. Most datasets (>57%) with at least 100 samples presented a significantly survival difference 
whereas smaller datasets performed worst. This can be explained as statistical power depends on sample size so 
the larger dataset, the more statistical power. Moreover, the classification method (leave-one-out cross-validation) 
computes more robust gene expression patterns with large datasets. Finally, we assessed CINSARC robustness in 
terms of cohort subsampling and, previously reported, dataset independence29.

Of note, 483 signatures (out of 15,499; 3%) were investigated at pan-cancer level with unexpected small 
intersections (<90%) with known genes in PRECOG, corresponding to 10,004 unique genes not reported in 
PRECOG. A large proportion is punctual: 92% of them only appear in maximum two signatures. As for the recur-
ring genes (806), majority are uncharacterized and/or non-coding genes: 414 are genes predicted by open reading 
frame analyses, 92 are genes with unknown functions and unidentified orthologs, 60 are L and R ribosomal 
protein pseudogenes and 28 are long intergenic non-protein coding RNA. Considering the recurrent and curated 
genes, only 212 of them were not evaluated in PRECOG resource, suggesting high coverage of annotated genes.

We thus demonstrated that CINSARC is enriched in genes having a significant impact on tumor aggressive-
ness and that this signature can be used as a prognostic marker in multiple malignancies. This highlights the 
point that mitosis and chromosome segregations are two key pathways leading tumor aggressiveness through 
genomic instability, a well-known hallmark mechanism40. Part of the CINSARC signature, it has been observed 
that overexpression of several individual genes disrupts chromosomal segregation, generating genomic alter-
ations and tumors in mice (MAD2L2, BUB1, CCNB1, CCNB2 and ESPL1)41–44. A recent study highlighted an 
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aberrant persistence of several CINSARC proteins beyond mitosis in tetraploid versus diploid cells from sarcoma 
cell lines45. This was correlated to high motility (migration and invasion) capabilities measured in tetraploid ver-
sus diploid cells, whereas proliferation levels were similar. Though clear evidence of anaphase-promoting complex 
(APC) deficiency has to be established, a question arises about the impact of this protein persistence and the 
clinical prognostic interest of this signature.

Recently, we granted CINSARC a better clinical applicability with two major improvements46. First: the 
ability to perform RNA-seq rather than microarray technique, overcoming probe selection as probes can be 
transcript-specific and could not reflect full gene expression. Second: the ability to analyze FFPE (Formalin-Fixed, 
Paraffin-Embedded) tumor, daily material used by pathologists as opposed to frozen tissues previously required. 
As a consequence, two ongoing French and Europe-wide clinical trials will prospectively test the CINSARC sig-
nature in various sarcomas. Our results increase its application scope, demonstrating that this signature can 
be considered as a poor outcome predictor in multiple human malignancies. Finally, though it remains a very 
informative resource, we highlighted some limitations of PRECOG. Consequently, this study incites additional 
validations on other independent cancer-specific datasets.

Methods
Gene Set Enrichment Analysis (GSEA) usage. To evaluate the prognostic value of different gene 
sets as the collective information of individual genes, we used the GSEAPreranked tool from GSEA (Gene Set 
Enrichment Analysis; v2.2.3) algorithm34. The algorithm ranks genes based on the available PRECOG z-scores, 
which represents the significance of the association of a given gene to the prognosis of a given cancer type. All 
combined cancer types were summarized into meta-z-scores also available in PRECOG. Based on gene ranks, the 
algorithm computes a running-sum statistics to determine the enrichment score of each gene set. The enrichment 
scores are then normalized to take into account different gene set sizes, giving the normalized enrichment score 
(NES), and significance levels were determined with the family-wise error rate, a more conservative method than 
the false-discovery rate. Signatures with P < 0.05 (family-wise error rate) were considered significantly enriched.

Three leading-edges statistics are also computed. First: tag corresponds to the percentage of genes in a given 
signature hit before the maximum enrichment score is attained. By analogy, it represents the sensitivity since a 
high tag value indicates a higher proportion of the signature participating in the core enrichment. Second: list 
corresponds to the percentage of total genes before the maximum enrichment score. By analogy, it represents 
the false-negative rate (e.g. 1-specificity) since a low list value indicates a high gene set enrichment purity. Third: 
signal corresponds to the enrichment signal strength combining the two previous metrics. A high signal value 
indicates a top-ranked narrow enrichment.

Other statistical methods. Biological pathways were determined using GOseq (v1.26.0) package from 
Bioconductor on the top 200 genes ranked by decreasing meta-z-scores or z-scores47. P are given by the Wallenius 
noncentral hypergeometric distribution method and adjusted with Benjamini-Hochberg correction for multiple 
comparisons.

Protein-protein interactions were determined using expected/existing interaction ratios from STRINGdb 
(1.14.0) package from Bioconductor with database version 10 and score threshold set to 400 (removes 
low-confidence interactions) on the top 200 genes ranked by decreasing meta-z-scores or z-scores. The lower 
expected/existing interaction ratios, the higher are the number of protein-protein interactions48.

The leave-one-out cross-validation classification was performed as follows: each sample was categorized using 
the nearest centroid method according to outcomes and transcriptomic profiles of all other samples.

Survival analyses were measured using survival (v2.40-1) package with the Kaplan-Meier estimator, where 
significance levels are given by the log-rank test (P) and survival differences given by hazard ratios (HR).

Miscellaneous computations, filters, statistics and plots were performed with R (3.3.2).
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