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Real-Time and Label-Free Chemical 
Sensor-on-a-chip using Monolithic 
Si-on-BaTiO3 Mid-Infrared 
waveguides
Tiening Jin1, Leigang Li1,2,4, Bruce Zhang1,4,5, Hao-Yu Greg Lin6, Haiyan Wang  4,5 & Pao Tai 
Lin1,2,3

Chip-scale chemical detection is demonstrated by using mid-Infrared (mid-IR) photonic circuits 
consisting of amorphous silicon (a-Si) waveguides on an epitaxial barium titanate (BaTiO3, BTO) thin 
film. The highly c-axis oriented BTO film was grown by the pulsed laser deposition (PLD) method 
and it exhibits a broad transparent window from λ = 2.5 μm up to 7 μm. The waveguide structure 
was fabricated by the complementary metal–oxide–semiconductor (CMOS) process and a sharp 
fundamental waveguide mode has been observed. By scanning the spectrum within the characteristic 
absorption regime, our mid-IR waveguide successfully perform label-free monitoring of various organic 
solvents. The real-time heptane detection is accomplished by measuring the intensity attenuation 
at λ = 3.0–3.2 μm, which is associated with -CH absorption. While for methanol detection, we track 
the -OH absorption at λ = 2.8–2.9 μm. Our monolithic Si-on-BTO waveguides establish a new sensor 
platform that enables integrated photonic device for label-free chemical detection.

Chemical sensors using integrated photonics have attracted significant attention, due to their potential for envi-
ronmental monitoring and high throughput screening for biomedical discovery1–5. Advanced technologies 
using absorbance, surface plasmon resonance (SPR), and fluorescence detection have been developed to achieve 
chip-scale optical sensing6–10. For instance, chemical sensors using optical micro-ring resonators with ppm-level 
detection have been demonstrated11–14. Meanwhile, SPR sensors using perfect absorbers or highly doped semi-
conductors are utilized for multispectral IR Spectroscopy and gas identification15–18. However, on-chip sensors 
capable of broadband mid-IR sensing have not yet been well developed19, 20. A mid-IR sensor is capable of pro-
viding label-free and real-time sensing applications because it overlaps with characteristic absorption bands of 
various organic and inorganic compounds21, 22. Prior studies utilized multilayer material platforms including 
Si-on-SiO2, Si-on-sapphire, and SiNx-on-SiO2, etc23–28. Though crystalline Si and amorphous SiNx are transparent 
up to λ = 8 μm, SiO2 becomes opaque after λ = 3.7 µm and sapphire after λ = 4.5 µm, which exclude those plat-
forms for mid-IR applications at longer wavelengths.

To overcome these challenges, we propose a monolithic a-Si on BTO platform for mid-IR integrated photonic 
devices and sensing applications because of following advantages. i. Both a-Si and BTO have a broad infrared 
transparent window up to λ = 7 μm, so a Si-on-BTO waveguide can be utilized to monitor characteristic absorp-
tion bands at longer wavelengths. ii. BTO has a lower refractive index n of 2.4 making it an ideal undercladding 
material for a Si waveguide with an index n of 3.5. The large difference of n between Si and the BTO ensures 
that the light is efficiently confined by the waveguide and consequently decreases the bending loss caused by 
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waveguide curvatures. iii. Unlike other ferroelectrics, such as LiNbO3, BTO has the potential to be integrated on 
a Si wafer through various thin film deposition technologies, such as PLD, molecular beam epitaxy (MBE), and 
chemical vapor deposition (CVD), which enables the integration between functional oxides and Si photonics29–33. 
iv. BTO has high chemical stability and mechanical hardness making it capable for biochemical and toxic sens-
ing under harsh environments. v. The restraint of the crystal lattice matching between the crystalline BTO layer 
and the upper Si device layer is relieved by the utilization of a-Si. For conventional silicon-on-insulator (SOI), 
it requires a crystalline Si film and involves sophisticated preparation processes, from oxygen ion beam implan-
tation and high-temperature annealing to exfoliation. Alternatively, the proposed a-Si waveguide layer can be 
directly deposited and then patterned on the epitaxial BTO layer though a standard CMOS process.

In this work, we demonstrate a mid-IR Si-on-BTO waveguide for label-free chemical sensing. The waveguide 
structures and the waveguide mode profiles were designed and calculated by the two-dimensional finite differ-
ence method (FDM). In parallel, we prepared the epitaxial BTO thin film on LaAlO3 (LAO) (001) substrates by 
PLD and then develop the a-Si ridge waveguide on the BTO film through CMOS process. The waveguide struc-
ture and the compositions of the Si-BTO-LAO multilayer were characterized by a scanning electron microscope 
(SEM) equipped with energy-dispersive X-ray spectroscopy (EDX). Meanwhile, the waveguide mode profiles 
were recorded and analyzed at λ = 2.5 μm–3.2 μm. Selected organic solvents, heptane and methanol, were tested 
to evaluate the detection capability of our waveguide sensors. Chemical detection was accomplished by correlat-
ing the waveguide spectral attenuation with the characteristic absorption of the test solvents.

Results and Discussion
The fabricated mid-IR sensing device was inspected by a SEM with EDX. Figure 1(a) and (b) are the top and the 
side SEM images of a 10 μm wide a-Si on BTO waveguide. The Si layer has a well-defined ridge profile without 
bends or distortions found on the edge. No cracks or indents on the BTO film surface indicates that ion damage 
has not been introduced on the BTO film during the etching process. The sharp waveguide edges reduce the 
waveguide propagation loss caused by light scattering, which is critical to achieve a high signal-to-noise ratio and 
high sensitivity during waveguide sensing. Meanwhile, the cross-sectional image in Fig. 1(c) displays a clearly 
resolved interface between the top a-Si waveguide and the under-cladding BTO layer that confirms the lattice 
matching requirement between the Si and the crystalline BTO film relieved by using amorphous Si. The material 
composition of the monolithic Si-on-BTO platform was characterized by EDX using the emission lines of Si 
Kα at 1.74 keV and Ba Lα at 4.47 keV. The EDX scanning provides elemental distributions of the Si, Ba, Ti, and 
Al that are associated with the a-Si waveguide, BTO cladding layer, and LAO substrates, respectively. From the 
cross-sectional EDX scanning shown in Fig. 1(d), the Si waveguide height is 1 μm and the BTO film thickness is 
0.5 μm, while the LAO substrate is present underneath the device layers.

Numerical simulations of waveguide modes were calculated by using the two-dimensional finite difference 
method (FDM). For waveguide sensing application, it is critical to evaluate the optical fields of waveguide modes 
since the sensitivity of a waveguide sensor is determined by the interaction between its evanescent field and the 
molecules close to the waveguide surface. The structure utilized in our mode calculation was obtained from the 
SEM measurement, where the a-Si ridge is 1 μm tall and 10 μm wide and the BTO layer underneath the Si is 0.5 μm 
thick. The refractive index of a-Si, BTO and LAO were 3.5, 2.4 and 2.0, respectively. A 12 μm × 6 μm light source 
was chosen to excite the waveguide mode since its size is comparable to 9 μm core diameter of the mid-IR fiber 
used in the experiment. The intensity profiles corresponding to the TE and TM waveguide modes at λ = 2.5 μm, 
2.85 μm, and 3.2 μm are depicted at Fig. 2(a). Fundamental modes with similar ellipsoid intensity distribution are 
clearly resolved in the Si layer over λ = 2.5 μm to λ = 3.2 μm, while the evanescent fields in the air (z > −0.5 µm) 
and inside the BTO layer (z < −1.5 µm) increase as the mid-IR shifts to longer wavelengths. In addition, stronger 
evanescent fields are found in the TM mode profile comparing to that of the TE mode. Meanwhile, both the TE 
and the TM modes have relatively weak evanescent fields along the y directions (y < −5 µm or y > 5 µm) because 
the a-Si waveguide structure has a high y/z aspect ratio of 10/1. To better analyze the mode properties, Fig. 2(b 
and c) display one dimensional TE and TM polarized intensity profiles along the z-axis. The relative intensities 
confined in each layer, air, Si, BTO, and LAO, were calculated at λ = 2.5 μm, 2.85 μm, and 3.2 μm and the results 
are summarized in Table 1. Both the TE and the TM modes expand their optical fields extensively into the upper 
air as well as the lower BTO layer. The relatively strong field found within the BTO layer is attributed to its high 
refractive index of nBTO = 2.4. Meanwhile, the optical intensity above the waveguide is found to be stronger for 
the TM mode comparing to that for the TE mode. For instance, at λ = 3.2 µm the TM mode has 10.10% intensity 
in the air that is 1.7 times higher than 6.01% for the TE mode. In addition, the evanescent fields increase as the 
wavelength increases from λ = 2.5 µm to 3.2 µm. These results indicate our waveguide sensor will exhibit a higher 
sensitivity when it operates with TM polarization light as well as at a longer wavelength. The preservation of the 
fundamental mode over a wide spectral range is another necessity to achieve high accuracy of waveguide sensing. 
An excitation of higher order modes will alter the mode profiles and vary the intensities of evanescent fields that 
consequently will lead to false signals upon spectrum scanning.

In our experiments, methanol and heptane were selected as the analytes to evaluate the performance of our 
waveguide sensors due to their strong characterstic absorptions existing in the mid-IR regime. A light source 
with the TM polarization was utilized since TM light reveals a stronger evanescent field that will attribute to 
higher sensitivity. The wavelength of the probe light was sequentially scanned between λ = 2.5 µm and 3.2 µm 
because this spectrum regime overlaps with the absorption bands caused by -OH and -CH functional group 
while Si-on-BTO is transparent. The waveguide mode images were recorded before and after dropping the chem-
ical analytes onto the waveguide surface. As shown in Fig. 3, without any chemicals present, a bright and sharp 
fundamental mode was observed through λ = 2.5 µm to 3.2 µm as expected from the simulation results. Upon 
dropping the heptane on the waveguide, the mode faded at λ = 3.0–3.2 µm due to the absorption caused by the 
-CH bond stretching. On the other hand, when methanol applies, drastic absorption appeared at λ = 2.8–2.9 µm 
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that corresponds to the absorption due to the -OH bond stretching. Hence, our mid-IR sensor reveals distinct 
spectral attenuations when exposed to different chemicals, and the measured absorption results agree well with 
the previous studies from FTIR characterization. After the chemicals evaporate, we found that the mode profiles 
recovered and their intensities arrived back at the same levels just as before chemicals were applied. Thus, our 
mid-IR sensor is not only capable of accurate chemical identification, but also reusable.

The real-time chemical detection was performed by reading the transient response of the mid-IR waveguide 
sensors. For heptane detection, the wavelength of the probe light was tuned to λ = 3.1 µm because it is within 
the -CH absorption band. The waveguide mode intensity upon adding the chemical is shown in Fig. 4(a). Before 
t = 20 s the intensity was strong since there was no presence of any analyte. When the heptane was dropped on 
the waveguide surface at t = 20 s, the intensity decreased dramatically because the analyte, heptane, fully covered 
the mid-IR waveguide and absorbed its evanescent light. The waveguide intensity remained low until t = 50 s and 
then it started to recover because the heptane gradually evaporated. Eventually at t = 110 s the intensity reached 
its original level due to the heptane being completely left from the waveguide surface. A similar transient response 
was observed during the methanol sensing test shown in Fig. 4(b). To track methanol, the light wavelength was 
shifted to 2.9 µm to match the characteristic -OH absorption. We found that the light intensity dropped at t = 25 s, 
which coincided with adding methanol onto the waveguide. After a while, the intensity recovered at t = 120 s 

Figure 1. SEM images of a 10 μm wide Si-on-BTO waveguide captured from (a) the top, (b) the side, and (c) the 
cross-section of the device. A clear waveguide surface, smooth Si-BTO interface, and sharp waveguide edges were 
observed. (d) EDX element line scanning determined the structure and the composition of each device layer.
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indicating the analyte evaporated from the waveguide surface. Our time-resolved characterization demon-
strates that the developed mid-IR sensor is suitable for in-situ monitoring of various chemical analytes with high 
accuracy.

In summary, we demonstrated monolithic Si-on-BTO waveguides for label-free and real-time chemical detec-
tion. The epitaxial BTO thin film was prepared by pulsed laser deposition and it exhibited a broad spectral trans-
parency from λ = 2.5 µm to 7 µm that enables our Si-on-BTO platform for mid-IR sensing application. SEM study 
revealed sharp waveguide side walls, as well as a smooth Si-BTO interface that reduced waveguide propagation 
loss, which is critical to achieve accurate chemical sensing. Heptane and methanol were then tested to exam 

Figure 2. (a) The optical fields of the mid-IR waveguide were calculated at λ = 2.50 µm, 2.85 µm, and 3.20 µm. 
Fundamental modes with similar ellipsoid intensity distributions were resolved in the Si layer in all three 
wavelengths. (b) and (c) are the calculated 1D intensity profiles of the TE modes and the TM modes, along the z 
axis, respectively.
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the performance of the mid-IR waveguide sensor. Upon spectral scanning the waveguide modes showed strong 
intensity attenuation at λ = 3.0 µm–3.2 µm for heptane detection and λ = 2.8 µm–2.9 µm for methanol detection, 
corresponding to the characteristic -CH and -OH absorption bands, respectively. Furthermore, from real-time 
measurements, our mid-IR waveguide sensor can achieve in-situ chemical detection within milliseconds. The 
Si-on-BTO mid-IR waveguides provides a unique CMOS-compatible platform for label-free and high-throughput 
chemical screening.

Methods
Device fabrication. Figure 5 illustrates the fabrication process of the Si-on-BTO waveguide sensor. The BTO 
films were deposited on single-crystal LAO (001) substrates by PLD at 10 Hz with a KrF excimer pulsed laser 
(Lambda Physik, λ = 248 nm). The substrate temperature was maintained at 700 °C and the O2 partial pressure 
was 40 mTorr during the deposition. After deposition, the film was annealed at 600 °C in 200 Torr O2 for 1 hour 
and then cooled down to room temperature. A 1 µm thick a-Si thin film was then deposited on the BTO film by 
the plasma-enhanced chemical vapor deposition (PECVD) process. The precursor gas for the a-Si deposition was 
SiH4, and the deposition temperature was 200 °C. Since the Si film is amorphous, the restraint of lattice matching 
between the Si film and the crystalline BTO film was relieved, which enables the formation of a smooth interface 
between the BTO and the Si layers. The structure of the sensor waveguide was defined through photolithography, 
where a 50 nm thick Cr mask was deposited on the a-Si/BTO/LAO sample by electron beam evaporation and fol-
lowed by the lift-off process. The waveguide structure was then transferred to the a-Si layer by reactive ion etching 

Polarization
Wavelength 
(µm)

Intensity distribution in each 
layer (%)

Air Si BTO LAO

TE

2.50 4.19 88.44 7.07 0.32

2.85 5.09 85.92 8.41 0.58

3.20 6.01 83.36 9.68 0.95

TM

2.50 6.93 81.82 10.61 0.64

2.85 8.49 77.53 12.76 1.22

3.20 10.10 73.10 14.77 2.07

Table 1. The intensity distribution of a Si-on-BTO waveguide, which consists of up-cladding air, a-Si 
waveguide, BTO undercladding, and LAO substrate. The distributions were calculated at two polarizations, TE 
and TM, and three different wavelengths of λ = 2.50 µm, 2.85 µm, and 3.20 µm.

Figure 3. The waveguide mode images were captured from λ = 2.5 µm to 3.2 µm with or without chemicals 
covering the waveguide. Fundamental modes were clearly observed over a broad spectral range. When heptane 
was presented, the mode disappeared at λ = 3.0 µm–3.2 µm corresponding to -CH absorption. For methanol, 
the mode vanished at λ = 2.8 µm–2.9 µm associating with -OH absorption. The mode intensities recovered 
when the analytes evaporated from the waveguide surface.
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(RIE). SF6 was used for selective Si etching, so that it did not react with the BTO film, and therefore prevented 
the BTO surface from becoming rough due to ion damage. It is vital to have sharp Si waveguide facets as well as a 
smooth BTO-Si interface to reduce the scattering loss caused by surface roughness. Previous studies that utilize 
HF solution for BTO etching have shown undesired rough waveguide surfaces and edges. Finally, the Cr mask 
and the organic residue on the device surface were removed by a ceric ammonium nitrate solution and followed 
by oxygen plasma ashing.

Optical and Sensing Characterization. To characterize the performance of our a-Si on BTO waveguides, 
a broad mid-IR test station was built and shown in Fig. 6. The light source is a pulsed laser with a wavelength 
tunable from λ = 2.4 μm to λ = 3.8 μm and the linewidth is of 3 cm−1. The laser has a pulse repetition rate of 
150 kHz, a pulse duration of 10 nano seconds, and an average power of 150 mW. Using a reflective lens, the probe 
light was first collimated into a fluoride fiber that has a 9 μm core and 125 μm cladding, and then butt coupled into 
the waveguide. The core of the mid-IR fiber was lined up with the smoothly cleaved front facet of the Si-on-BTO 
waveguide as shown in Fig. 6(b). The fine alignment between the optical fiber and the waveguide front facet was 

Figure 4. Real-time detection of (a) heptane and (b) methanol using mid-IR waveguide sensors at λ = 3.1 µm 
and 2.9 µm, respectively. The mode intensity decreased when the analytes were dropped on the waveguide 
surface and then recovered when the analyte evaporated.

Figure 5. The fabrication process of the mid-IR waveguide sensor using Si-on-BTO platform. The epitaxial 
BTO film was grown on a (001) LAO substrate by PLD and then followed by a-Si thin film deposition through 
PECVD. Using photolithography and lift-off, the waveguide structure was first defined by a Cr mask, and then 
transferred to the a-Si layer by RIE.
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monitored by an upper microscope equipped with a long working distance 10x objective lens. The mid-IR light 
emitted from the waveguide end facet was focused by a barium fluoride biconvex lens with a 25 mm focal length 
and then imaged by a 640 × 512 pixel InSb camera cooled by liquid nitrogen. In the chemical sensing tests, 1 mL 
solution was dropped from a syringe onto the Mid-IR waveguide sensor with 1 cm2 surface area to ensure that 
the solution covers the entire waveguide array. The organic solvents include heptane and methanol (≥99.9%, 
Sigma-Aldrich). The chemical mixtures were prepared by weight percentages. During sensing experiments the 
temperature was maintained at 25 °C.

References
 1. Fan, X. & White, I. M. Optofluidic microsystems for chemical and biological analysis. Nat. Photonics 5, 591–597 (2011).
 2. Lin, P. T. et al. Label-Free Glucose Sensing Using Chip-Scale Mid-Infrared Integrated Photonics. Adv. Optical Mater 4, 1755–1759 

(2016).
 3. Chandrasekaran, A. & Packirisamy, M. Integrated microfluidic biophotonic chip for laser induced fluorescence detection. Biomed. 

Microdevices 12, 923–933 (2010).
 4. Lin, P. T. et al. Integrated mid-infrared photonic circuits for label-free biochemical sensing. Proc. of SPIE 9824, 982403-1–982403-4 

(2016).
 5. Reddy, K. et al. Rapid, sensitive, and multiplexed on-chip optical sensors for micro-gas chromatography. Lab Chip 12, 901–905 

(2012).
 6. Monat, C., Domachuk, P. & Eggleton, B. J. Integrated optofluidics: A new river of light. Nat. Photonics 1, 106–114 (2007).
 7. Lee, K.-L. & Wei, P.-K. Enhancing Surface plasmon detection using ultrasmall nanoslits and a multispectral integration method. 

Small 6, 1900–1907 (2010).
 8. Prudenzano, F. et al. Design of an optical sensor array for hydrocarbon monitoring. Opt. Quantum Electron. 41, 55–68 (2009).
 9. Wu, H.-Y., Choi, C. J. & Cunningham, B. T. Sers: Plasmonic Nanogap-Enhanced Raman Scattering Using a Resonant Nanodome 

Array. Small 8, 2878–2885 (2012).
 10. Hu, Z. et al. Integrated microspectrometer for fluorescence based analysis in a microfluidic format. Lab Chip 12, 2850–2857 (2012).
 11. Yebo, N. A., Lommens, P., Hens, Z. & Baets, R. An integrated optic ethanol vapor sensor based on a silicon-on-insulator microring 

resonator coated with a porous ZnO film. Opt. Express 18, 11859–11866 (2010).
 12. Luchansky, M. S. & Bailey, R. C. High-Q Optical Sensors for Chemical and Biological Analysis. Anal. Chem. 84, 793–821 (2012).
 13. Nitkowski, A., Chen, L. & Lipson, M. Cavity-enhanced on-chip absorption spectroscopy using microring resonators. Opt. Express 

16, 11930–11936 (2008).
 14. Hu, J. et al. Cavity-enhanced IR absorption in planar chalcogenide glass microdisk resonators: experiment and analysis. J. Lightwave 

Technol. 27, 5240–5245 (2009).
 15. Chen, K., Adato, R. & Altug, H. Cavity-enhanced Dual-band perfect absorber for multispectral plasmon-enhanced infrared 

spectroscopy. ACS Nano 6, 7998–8006 (2012).
 16. Esteban, Ó. et al. Generation of surface plasmons at waveguide surfaces in the mid-infrared region. Plasmonics 7, 647–652 (2012).
 17. Chen, Y.-B. Development of mid-infrared surface plasmon resonance-based sensors with highly-doped silicon for biomedical and 

chemical applications. Opt. Express 27, 3130–3140 (2009).
 18. Herminjard, S. et al. Surface plasmon resonance sensor showing enhanced sensitivity for CO2 detection in the mid-infrared range. 

Opt. Express 17, 293–303 (2009).
 19. Bhargava, R. et al. Infrared Spectroscopic Imaging: The Next Generation. Appl. Spectrosc. 66, 1091–1120 (2012).
 20. Mével, R., Boettcher, P. A. & Shepherd, J. E. Absorption cross section at 3.39 μm of alkanes, aromatics and substituted hydrocarbons. 

Chem. Phys. Lett. 531, 22–27 (2012).
 21. Mukherjee, A. et al. Optically multiplexed multi-gas detection using quantum cascade laser photoacoustic spectroscopy. Appl. Opt. 

47, 4884–4887 (2008).
 22. Razzari, L. et al. CMOS-compatible integrated optical hyper-parametric oscillator. Nat. Photonics 4, 41–45 (2010).
 23. Milosević, M. M. et al. Silicon waveguides and devices for the mid-infrared. Appl. Phys. Lett. 101, 121105 (2012).
 24. Mashanovich, G. Z. et al. Low loss silicon waveguides for the midinfrared. Opt. Express 19, 7112–7119 (2011).
 25. Li, F. et al. Low propagation loss silicon-on-sapphire waveguides for the mid-infrared. Opt. Express 19, 15212–15220 (2011).
 26. Lin, P. T., Singh, V., Kimerling, L. C. & Agarwal, A. Planar silicon nitride mid-infrared devices. Appl. Phys. Lett. 102, 251121 (2013).
 27. Singh, V. et al. Mid-infrared materials and devices on a Si platform for optical sensing. Sci. Technol. Adv. Mater 15, 014603 (2014).

Figure 6. (a) Mid-IR test station to characterize the performance of our Si-on-BTO waveguide sensor. The 
probe light from a tunable pulsed laser (λ = 2.4 μm to 3.8 μm) was collimated into a mid-IR fiber using a 
reflective lens (RL) and then butt coupled into the waveguide. Meanwhile, the analytes was dropped onto the 
waveguide surface through a syringe. The mid-IR light emitted from the waveguide end facet were focused by 
a barium fluoride biconvex lens and then imaged by an InSb camera. (b) The core of the mid-IR fiber was lined 
up with the front facet of the Si waveguide. The fine alignment between the optical fiber and the waveguide was 
monitored by an upper microscope (MO).



www.nature.com/scientificreports/

8Scientific RepoRts | 7: 5836  | DOI:10.1038/s41598-017-05711-4

 28. Lin, P. T. et al. Low-Stress Silicon Nitride Platform for Mid-Infrared Broadband and Monolithically Integrated Microphotonics. Adv. 
Opt. Mater. 1, 732–739 (2013).

 29. Lin, P. T. et al. Investigation of the optical response of photonic crystal nanocavities in ferroelectric oxide thin film. J. Opt. 17, 105402 
(2015).

 30. Lin, P. T., Yi, F., Ho, S. T. & Wessels, B. W. Two-dimensional ferroelectric photonic crystal waveguides: simulation, fabrication, and 
optical characterization. J. Lightw 27, 4330–4337 (2009).

 31. Li, J., Lin, P. T. & Wessels, B. W. Polarization reversal and backswitching dynamics in epitaxial BaTiO3 thin films. J. Appl. Phys. 106, 
054113 (2009).

 32. Lin, P. T., Wessels, B. W., Jang, J. I. & Ketterson, J. B. Highly efficient broadband second harmonic generation using polydomain 
epitaxial barium titanate thin film waveguides. Appl. Phys. Lett. 92, 221103 (2008).

 33. Liu, Z., Lin, P. T., Wessels, B. W., Yi, F. & Ho, S. T. Nonlinear photonic crystal waveguide structures based on barium titanate thin 
films and their optical properties. Appl. Phys. Lett. 90, 201104 (2007).

Acknowledgements
The authors gratefully acknowledge funding support provided by Texas A&M University (TAMU) and the Texas 
A&M Engineering Experiment Station (TEES). The authors thank M Square Laser for equipment contribution. 
Device fabrication and characterization were performed at AggieFab and the Materials Characterization Facility 
(MCF) at Texas A&M University and the Center for Nanoscale Systems (CNS) at Harvard University. L.L. and 
H.W. acknowledge the support of the thin film growth effort from the U.S. National Science Foundation (DMR-
1643911).

Author Contributions
T.J. performed the sensing measurement and SEM/EDX characterization. L.L. and B.Z. grew BTO thin film and 
measured x-ray diffraction. H.-Y.G. grew a-Si thin film. H.W. and P.T.L. supervised the research and reviewed 
the manuscript.

Additional Information
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://creativecommons.org/licenses/by/4.0/

	Real-Time and Label-Free Chemical Sensor-on-a-chip using Monolithic Si-on-BaTiO3 Mid-Infrared waveguides
	Results and Discussion
	Methods
	Device fabrication. 
	Optical and Sensing Characterization. 

	Acknowledgements
	Figure 1 SEM images of a 10 μm wide Si-on-BTO waveguide captured from (a) the top, (b) the side, and (c) the cross-section of the device.
	Figure 2 (a) The optical fields of the mid-IR waveguide were calculated at λ = 2.
	Figure 3 The waveguide mode images were captured from λ = 2.
	Figure 4 Real-time detection of (a) heptane and (b) methanol using mid-IR waveguide sensors at λ = 3.
	Figure 5 The fabrication process of the mid-IR waveguide sensor using Si-on-BTO platform.
	Figure 6 (a) Mid-IR test station to characterize the performance of our Si-on-BTO waveguide sensor.
	Table 1 The intensity distribution of a Si-on-BTO waveguide, which consists of up-cladding air, a-Si waveguide, BTO undercladding, and LAO substrate.




