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Ultraviolet GaN Light-Emitting 
Diodes with Porous-AlGaN 
Reflectors
Feng-Hsu Fan1, Zun-Yao Syu1, Chia-Jung Wu1, Zhong-Jie Yang1, Bo-Song Huang1, Guan-Jhong 
Wang1, Yung-Sen Lin2, Hsiang Chen3, Chyuan Hauer Kao4 & Chia-Feng Lin1

A GaN/AlGaN ultraviolet light emitting diode (UV-LED) structure with a porous AlGaN reflector 
structure has been demonstrated. Inside the UV-LED, the n+-AlGaN/undoped-AlGaN stack structure 
was transformed into a porous-AlGaN/undoped-AlGaN stack structure through a doping-selective 
electrochemical etching process. The reflectivity of the porous AlGaN reflector was 93% at 374 nm with 
a stop-bandwidth of 35 nm. In an angle-dependent reflectance measurement, the central wavelength 
of the porous AlGaN reflector had blueshift phenomenon by increasing light-incident angle from 10° to 
50°. A cut-off wavelength was observed at 349 nm due to the material absorption of the porous-AlGaN/
u-AlGaN stack structure. In the treated UV-LED structure, the photoluminescence emission wavelength 
was measured at 362 nm with a 106° divergent angle covered by the porous-AlGaN reflector. The 
light output power of the treated UV-LED structure was higher than that of the non-treated UV-LED 
structure due to the high light reflectance on the embedded porous AlGaN reflector.

Gallium nitride (GaN) materials have been applied in optoelectronic devices such as light-emitting diodes 
(LEDs), laser diodes (LDs)1, and vertical cavity surface emitting lasers (VCSELs)2, 3. Ultraviolet LEDs (UV-LEDs) 
at 365 nm emission wavelength with potential to replace the conventional Hg lamp are currently used for curing, 
document verification, and plant growth. In addition, the epitaxial AlGaN/GaN stacks4, 5 and AlN/GaN stacks6, 7 
structures have been reported for the bottom distributed Bragg reflectors (DBRs) in GaN-based VCSEL devices. 
Large lattice mismatch and low refractive index difference in the stack structures are the challenges for the epitax-
ial DBR structures with long epitaxial growth time. To realize the high reflectivity with less pairs of stack struc-
ture, the air-gap/GaN DBR structures with large refractive index different have been fabricated through selectively 
anodized processes8–10 and thermal decomposition techniques11–13. However, the low mechanical strength and 
the tiny high reflective area of the air-gap/GaN DBR structure remain challenges for the photonic device fabri-
cation. Plawsky et al.14 reported the nanoporous material for the photonics through the evaporation-induced 
self-assembly process and oblique or glancing angle deposition. GaN epitaxial layers were grown on the Si sub-
strate with the embedded Y2O3/Si15, Gd2O3/Si16, AlN/GaN17, and AlN/AlGaN18 DBR structures. Berger et al.19 
reported the narrow-band distributed Bragg reflectors realized by GaN:Ge modulation-doped structure. The 
embedded distributed Bragg reflector20, 21, the high reflective tin-doped indium oxide/Ag nano-dots/Al-based 
reflectors22, the Ti3O5/Al2O3 DBR23, and the ITO/dielectric DBR24 were demonstrated to enhance the light extrac-
tion process in the UV-LED structures. Furthermore, nanoporous GaN materials with low effective refractive 
index have been proposed for the DBR structure applications25–27.

In this paper, a GaN/Al0.04GaN UV-LED structure with a porous Al0.085GaN reflector was fabricated through 
the selective electrochemical (EC) etching process. The Si-doped AlGaN/undoped-AlGaN stack structure inside 
the device was transformed into the porous-AlGaN/undoped-AlGaN stack structure functioning as an embedded 
reflector. The EC-treated porous AlGaN reflector with an 8.5% Al content didn’t absorb the electroluminescence 
(EL) emission light from the GaN/AlGaN active layer. The EL emission light at 361 nm from the GaN/AlGaN 
active layer could be reflected by the bottom porous-AlGaN reflector exempted from the light absorption of the 
bottom unintentionally doped GaN layer and GaN buffer layers. High light reflectance of the porous-AlGaN 
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reflector was formed at the bottom of the GaN/AlGaN active layer so that the light extraction efficiency could be 
improved. Moreover, optical properties of the UV-LED structure with and without porous-AlGaN reflector were 
analyzed in detail.

Results
The LED epitaxial layer consisted of a 30-nm-thick GaN buffer layer grown at 530 °C, a 2.0-µm-thick uninten-
tionally doped GaN layer (u-GaN, 1050 °C, 5 × 1016 cm−3), twelve pairs of n+-Al0.085GaN:Si/u-Al0.085GaN stack 
structure (n+-AlGaN, 1050 °C, 1 × 1019 cm−3), a 30 nm-thick undoped-Al0.04GaN layer (1050 °C), a 3.0-µm-thick 
n-Al0.04GaN layer (1050 °C, 2 × 1018 cm−3), ten pairs of GaN/Al0.04GaN (3 nm/12 nm) multiple-quantum wells 
(MQWs, 900 °C), a 30 nm-thick p-type Al0.04GaN:Mg layer (1050 °C, 1 × 1018 cm−3), and a 10 nm-thick p-type 
GaN:Mg layer (1050 °C, 2 × 1018 cm−3). The SiH4 source was used as a n-type doping source during the epitaxial 
growth of the n+-AlGaN layers with an high electron concentration about 1 × 1019 cm−3 so that the n+-AlGaN 
layers were transformed into the porous AlGaN layers in the porous reflector structure. The parallel wet etch-
ing channels on the UV-LED wafer were formed through a laser scribing (LS) process to reach the as-grown 
12-period n+-AlGaN/u-AlGaN stack structure by using a 355 nm pulse laser. The Si-heavily doped n+-AlGaN:Si 
layer was transformed into a porous AlGaN layer through the doping-selective electrochemical etching process 
in a 0.5 M nitride acid solution at a positive external bias voltage of 12 V28. After the EC-etching process, a high 
refractive index n-type AlGaN:Si layer was transformed into a low refractive index porous AlGaN layer. Then, 
a 200-nm-thick indium tin oxide (ITO) film was deposited on the mesa region functioning as a transparent 
conductive layer. The ITO layers on the p-type GaN:Mg layer were annealed in furnace at 600 °C for 20 min to 
improve the ohmic contact property. The dimension of the UV-LED device was 50 μm × 50 μm in size with ITO 
conductive layer. Then, the patterned Ti/Al (50 nm/200 nm) metal layers were deposited on the bottom n-type 
GaN:Si conductive layer for the n-type contact metal pad.

The OM images of the non-treated UV-LED and the EC-UV-LED were observed in Fig. 1(a) and (b). The flat 
and smooth surface was observed in the non-treated UV-LED as shown in Fig. 1(a). The n+-AlGaN/u-AlGaN 
stack structure embedded in the UV-LED structure was exposed in the etching solution through the laser scribing 
channels. After the EC etching process, a colorful image was observed on the surface of the EC-UV-LED struc-
ture as shown in Fig. 1(b) due to the light reflection from the porous-AlGaN reflector under the OM light. The 
electrochemical etching channels were defined through the laser scribing (LS) process. The parallel laser scribed 
lines were observed in Fig. 1(b). The electrochemical etching process were occurred from two sides of the LS lines 
and merged at the central LS defined regions. The etching fronts were perpendicular to the LS lines that defined as 
the lateral etching process. In Fig. 1(c), the top 3.24 μm-thick UV-LED structure and the bottom porous-AlGaN 
reflector were observed in the cross-sectional SEM micrograph. Twelve-pair porous-AlGaN/u-AlGaN stack struc-
ture consisted of a 40.8 nm-thick porous-AlGaN layer and a 37.7 nm-thick u-AlGaN layer as shown in Fig. 1(d). 
The n+-AlGaN:Si epitaxial layers were etched as the porous AlGaN layers in the porous-AlGaN/u-AlGaN stack 
structure. Moreover, the porous-AlGaN/undoped-AlGaN periodic structure was observed clearly due to the high 
Si-doping-selectively EC etching process on the n+-AlGaN:Si layers. The plan-view SEM images of the porous 
AlGaN reflector without the top LED structure is shown in Fig. 1(e). The laser scribing lines, the cleaved region, 
and the peeling-off region of the porous AlGaN reflector were observed as shown in Fig. 1(e). In Fig. 1(f), the 
smooth top surface of the u-AlGaN layer were observed without the EC-etching process. The porous AlGaN 
structures were viewed in the porous AlGaN reflector. The layer-by-layer structure was slightly separated due to 
the sample preparation for the SEM observation. After the EC-etching process, the pipe structures were observed 
at the n+-AlGaN layers and the direction of the pipe structure was along with the EC-etching direction. The 
embedded pipe structure was observed clearly through the top u-AlGaN layer with a smooth surface.

In Fig. 2, the micro-PL spectra of non-treated and treated LED structures were measured by using the 325 nm 
HeCd laser as the excited laser source through a 15× objective lens with a 10 μm-diameter laser spot. The laser 
power densities were varied from 0.38 kW/cm2 to 38 kW/cm2 for the power dependent PL measurement. The 
PL peak wavelengths were measured at 361 nm for the UV-LED structure and at 364 nm for the EC-UV-LED 
structure, respectively. The slight interference phenomenon of the PL spectrum was observed in the UV-LED 
structure between the top Air/GaN:Mg and the bottom GaN/Al2O3 flat interfaces. Strong light interference of 
the PL spectrum was observed in the EC-UV-LED structure compared with the non-treated UV-LED because of 
the cavity effect of the UV-LED structure above the porous-AlGaN reflector. This strong light interference of the 
EC-UV-LED structure implied the high reflectivity on the embedded porous-AlGaN reflector.

In Fig. 3(a), the angle-dependent PL spectra were measured from the regular PL setup with the 325 nm HeCd 
laser illuminated on the sample with a 45° incident angle and a 200 μm-diameter laser spot size (low laser excited 
power density). The laser spot size was reduced from 1 mm to 0.2 mm by using a diaphragm. In the UV-LED, the 
fringes in the angle-dependent PL spectra were observed clearly due to the light interference between the top air/
AlGaN and the bottom AlGaN/sapphire interfaces. The PL spectra was measured at the front-side of the flat LED 
wafer without chip process. In Fig. 3(a), the Fabry–Pérot (FP) interference line-patterns were observed in the 
UV-LED caused by the light interference at the top air/GaN:Mg and bottom GaN/sapphire interface. In Fig. 3(b), 
the PL far-field radiation pattern with low density interference phenomenon was observed in the EC-UV-LED 
structure. The broad band emission spectra with the interference phenomenon were observed in both of the LED 
structures. Moreover, The PL peak wavelength of the non-treated UV-LED was measured at 362.3 nm for the GaN 
active layer, 369.2 nm for the 3.0-µm-thick n-type AlGaN:Si layer, 428 nm for the GaN:Mg layer, and 562 nm for 
the yellow band emission peak, respectively, as shown in Fig. 3(c). By formation of the porous-AlGaN reflector 
below the GaN/AlGaN active layer, the PL emission intensity of the EC-UV-LED was enhanced compared with 
the non-treated UV-LED structure. Based on the interference phenomenon, the PL far-field radiation pattern 
could be used to calculate the detailed dimensions inside the UV-LED structure. Therefore, the thickness of 
the epitaxial layer could be computed as the value of 6.18 μm from the interference pattern. In the EC-UV-LED 
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structure, the thickness of the LED structure between the top air/GaN interface and the bottom porous-AlGaN 
reflector was about 3.24 μm, which was calculated from PL far-field radiation pattern. The reason of the reduc-
tion of the light optical path in the EC-UV-LED structure was the light confinement between the porous-AlGaN 
reflector and air. Normalized PL far-field radiation patterns of both of the LED structures were observed in 
Fig. 3(d). By formation of the embedded porous-AlGaN reflector, the divergent angle of the EC-UV-LED (at 
106°) was slightly reduced compared with the non-treated UV-LED structure (at 126°). The PL emission light 
from the GaN/AlGaN MQW active layer could be reflected by the embedded porous-AlGaN reflector so that the 
emission divergent angle could be slightly reduced.

The angle-dependent reflectance spectra of the UV reflector and the EC-UV LED with UV reflector were 
measured by varying the detected angles from 10° to 50°. In Fig. 4(a), the UV reflector was measured as the values 
of 374 nm for central wavelength and 35 nm for the band-width at 10° detected angle. When the detected angle 
increased to 50°, the UV reflector was measured at 361 nm for central wavelength and 14 nm for the band-width. 
The reflectance spectra of the non-treated DBR epitaxial structure, the non-treated UV-LED epitaxial structure, 
and the flat Al2O3 substrate were measured in Fig. 4, respectively. The reflectivity of the flat Al2O3 substrate was 
about 7.2%. This value was close to the theoretical value of 7.9% which the refractive index of the Al2O3 material 
was about 1.78. By increasing the light incident angle, the optical path difference (OPD) of the reflected light was 

Figure 1. OM images of the (a) UV-LED and (b) EC-UV-LED were observed. (c) The cross-sectional SEM 
micrograph of the EC-UV-LED structure was observed. (d) A 40.8nm-thick porous-AlGaN layer and 37.7nm-
thick u-AlGaN layer were measured in the 12-pair reflector structure. SEM images of the porous AlGaN 
reflector structure were observed at (e) the cleaved region and (f) the peeling region.
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reduced in the porous-AlGaN/u-AlGaN reflector. The central wavelength of the porous-reflector at large light 
incident angle (50°) was shifted to a shorter wavelength compared with it at small light incident angle (10°)29. 
The cut-off wavelength of the reflectance spectra was observed at 349 nm due to the material absorption of the 
n+-AlGaN/u-AlGaN stack structure with 8.5% Al content. At a detected angle of 10°, the peak reflectivity of 
the porous-AlGaN reflector was about 93% at 374 nm with 35 nm-width smooth stopband in the reflectance 
spectrum.

Figure 2. Power-dependent μ-PL spectra of the (a) UV-LED and (b) EC-UV-LED were measured at room 
temperature by varying the laser excited power density of the 325 nm HeCd laser.

Figure 3. PL emission spectra of (a) the UV-LED and (b) the EC-UV-LED were measured through the angle-
resolved PL measurements using a 325 nm diode laser as an excitation laser source. (c) The PL spectra of both of 
the LED structures were measured at normal direction (at 90°). (d) Normalized PL far-field radiation pattern of 
both of the LED structures were measured.
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In the EC-UV LED structure, a 3.24 μm-thick UV-LED epitaxial structure was grown on n+-AlGaN/u-AlGaN 
stack structure. After the EC etching process, the porous-AlGaN/u-AlGaN stack structure was formed below 
the UV-LED structure functioning as an embedded reflector. The angle-dependent reflectance spectra of the 
EC-UV LED structure were measured as shown in Fig. 4(b). In the EC-UV-LED structure, the light interference 
phenomenon was observed in the reflectance spectrum due to the light reflection between the top Air/GaN:Mg 
interface and the bottom AlGaN/porous-reflector interface. From the angle-dependent reflectance spectra, the 
cut-off wavelength of the EC-UV-LED was obtained at 360 nm due to the light absorption in the UV-LED struc-
ture above the porous-AlGaN reflector. The reflectivity of the porous-AlGaN reflector (93%, 374 nm) was higher 
than that of the EC-UV-LED structure (83%, 381 nm). The phenomenon was caused by the light absorption and 
the light reflection on the top UV-LED structure in the EC-UV-LED structure. In Fig. 4(b), high light reflec-
tance was achieved at 361 nm in the EC-UV-LED structure at different incident angles from 10° to 50°. The 
361 nm light emitted from the GaN/AlGaN MQW active layers could be reflected by the embedded reflector 
with the high reflectance which covered wide incident angles. From the far-field radiation measurement, the 
divergent angle of the EC-UV-LED was about 106° so that most part of the emission light could be reflected by 
the porous AlGaN-reflector at different incident angles. The PL emission intensity of the EC-UV-LED structure 
was enhanced compared with that of the non-treated UV-LED structure as shown in Fig. 3(c). After the EC 
etching process, the n+-AlGaN layers in the reflector structure were transformed into the porous-AlGaN layer. 
The effective refractive index of the bottom AlGaN layer (porous-AlGaN/u-AlGaN stack structure) was reduced 
and increased the light reflection. In Fig. 3(c), the high PL emission intensity of the EC-UV-LED beyond 400 nm 
wavelength was observed because the high emission intensity was caused by the light reflection and the light 
scattering on the bottom treated AlGaN layer.

The EL spectra of the two distinct LED structures were measured by varying the injection current from 1 mA 
to 20 mA, as shown in Fig. 5(a) for the UV-LED and in Fig. 5(b) for the EC-UV-LED, respectively. In Fig. 5(a), the 
EL emission wavelength of the non-treated UV-LED was observed at about 361.9 nm which had a high density of 
the FP interference in the EL emission spectrum. The embedded 12-period n+-AlGaN/u-AlGaN stack structure 
was etched as the porous-AlGaN/u-AlGaN stack structure on the sapphire substrate without the sapphire lifted 
off process. The porous size in the porous-AlGaN reflector was not uniform due to the wet chemical etching 
process. The reflectivity of the reflector was distributed uniformly on the treated region indicative of the effective 
refractive index of the porous-AlGaN distributed uniformly in the porous-AlGaN/u-AlGaN stack structure. With 
the formation of the porous reflector structure, the EL emission wavelengths of the EC-UV-LED were located at 
around 363.2 nm owing to the high light reflectance on the porous-AlGaN reflector. The central wavelength of 
porous-AlGaN reflector that enhanced the EL emission intensity at long emission wavelength region was meas-
ured at 374 nm with 35 nm line-width at 10° detected angle. The high reflectance spectrum of the porous-AlGaN 
reflector could cover the EL emission spectrum and enhance the light output power in the EC-UV-LED structure. 
The FP interference of the EL spectra were also detected in the EC-UV-LED structure due to the light reflection 
between the top air/GaN:Mg interface and the flat bottom AlGaN/porous-reflector interface.

In Fig. 6(a), the light output power and the EL emission wavelength of both LED structures were measured 
by varying the injection current. The EL emission intensity of the EC-UV-LED structure was stronger than that 
of the UV-LED structure. At 20 mA, the peak wavelengths of the EL spectra were measured at 361.9 nm for the 
UV-LED and 363.2 nm for the EC-UV-LED, respectively. In the EC-UV-LED structure, the peak EL emission 

Figure 4. Angle-dependent reflectance spectra of (a) the porous AlGaN reflector and (b) the EC-UV-LED 
structures were measured by varying the detected angles from 10° to 50°. The central wavelength and the band-
width at 10° and 50° detected angles were labeled. The reflectance spectra of the non-treated DBR epitaxial 
structure (DBR-epi), the non-treated UV-LED epitaxial structure (UV-LED epi), and the flat Al2O3 substrate 
were measured.
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wavelength had a slightly redshifted phenomenon caused by formation of the embedded porous-AlGaN reflector 
structure. Therefore, the light output power of the EC-UV-LED structure was enhanced because of the high light 
reflectance on the bottom porous reflector structure. In both devices, the current as a function of the operation 
voltage is shown in Fig. 6(b). The voltages at 0.1 mA (turn-on voltage)/20 mA operating current were measured 
at 3.0 V/9.4 V for the UV-LED and at 3.1 V/9.9 V for the EC-UV-LED, respectively. The turn-on voltages of both 
devices were almost the same at an operating current of 0.1 mA. At an operation current of 20 mA, the opera-
tion voltage of the EC-UV-LED was slightly higher than that of the UV-LED because the n+-AlGaN layers with 
lower conductivity were transformed into the porous–AlGaN layers with higher resistance in the EC-UV-LED 
structure.

Discussion
GaN/AlGaN ultraviolet light emitting diodes with the EC-treated porous-AlGaN reflectors were fabricated. 
The n+-AlGaN/undoped-AlGaN stack structure was transformed into the porous-AlGaN/u-AlGaN structure. 
Therefore, the reflectivity of the porous AlGaN reflector (93% at 374 nm) was higher than that of the EC-UV-LED 
(83% at 381 nm) with the top LED active layer. The cut-off wavelengths in the reflectance spectra were obtained 
at 349 nm for UV reflector and at 360 nm for EC-UV-LED structure related to the light absorption of the AlGaN 
and the GaN layers. The light output power of the EC-UV-LED structure was higher than that of the UV-LED 
structure because of the high light reflectance of the embedded porous-AlGaN reflector. The UV-LED structure 

Figure 5. The EL emission spectra of the (a) UV-LED and (b) EC-UV-LED were measured by varying the 
injection current at room temperature.

Figure 6. (a) Light output power and the peak wavelength of the EL spectra of both of the LED structures were 
measured. After the embedded reflector structure was formed, the EL emission peak wavelengths of the EC-UV 
LED were slightly redshifted compared with the non-treated UV-LED structure. (b) The I–V curves and the 
turn-on voltage of both devices are measured.
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with the high reflectance porous-AlGaN reflector has potential for the future high efficiency UV optoelectronic 
device applications.

Methods
Epitaxial growth. UV-LED structures were grown on a 2 in. optical-grade c-face (0001) sapphire substrate 
using a metal organic chemical vapor deposition system. Trimethylgallium (TMGa), trimethylaluminum (TMAl), 
and ammonia (NH3) were used as gallium (Ga), aluminum (Al), and nitrogen (N) sources material, respectively. 
Silane (SiH4) and biscyclopentadienyl magnesium (CP2Mg) were used as the n-type doping and p-type doping 
sources, respectively.

Electrochemical etch process. An external dc bias was fixed at a positive voltage of 12 V that was applied 
on the n-type AlGaN:Si layer surface as an anode contact without immersing in a 0.5 M nitride acid solution. 
A platinum (Pt) electrode was used as the cathode for the electrochemical etch process. The Si-heavily doped 
n+-AlGaN:Si layer was transformed into a porous AlGaN layer through the doping-selective electrochemical 
etching process. The electrochemical etching channels on the samples were defined through the laser scribing 
(LS) process. The parallel laser scribed lines were observed in Fig. 1(b). The electrochemical etching process was 
occurred from two sides of the LS lines and merged at the central mesa regions. The etching fronts were perpen-
dicular to the LS lines defined as the lateral etching process.

Optical characterization. The surface morphologies of the LED structures were detected by using optical 
microscopy (OM) and a field-emission scanning electron microscope (FE-SEM, JEOL 6700F). The photolumi-
nescence (PL) spectra of far-field radiation patterns and the electroluminescence (EL) spectra were measured by 
using monochromator (JOBIN YVON iHR550) with a TE-cooled charge-coupled device (CCD) detector. The 
light output power and the emission wavelength of both LED structures were measured at normal direction and 
analyzed through the monochromator.
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