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Endothelial Hey2 deletion reduces 
endothelial-to-mesenchymal 
transition and mitigates radiation 
proctitis in mice
Elodie Mintet1, Jérémy Lavigne1, Vincent Paget1, Georges Tarlet1, Valérie Buard1, Olivier 
Guipaud1, Jean-Christophe Sabourin2, Maria-Luisa Iruela-Arispe3, Fabien Milliat1 & Agnès 
François1

The current study evaluated the role of Hey2 transcription factor in radiation-induced endothelial-
to-mesenchymal transition (EndoMT) and its impact on radiation-induced tissue damage in 
mice. Phenotypic modifications of irradiated, Hey2 siRNA- and Hey2 vector plasmid-transfected 
human umbilical vein endothelial cells (HUVECs) resembling EndoMT were monitored by qPCR, 
immunocytochemistry and western blots. Subsequently, in mice, a Cre-LoxP strategy for inactivation 
of Hey2 specifically in the endothelium was used to study the biological consequences. Total body 
irradiation and radiation proctitis were monitored to investigate the impact of conditional Hey2 
deletion on intestinal stem cells and microvascular compartment radiosensitivity, EndoMT and 
rectal damage severity. We found that EndoMT occurs in irradiated HUVECs with concomitant Hey2 
mRNA and protein increase. While Hey2 silencing has no effect on radiation-induced EndoMT in vitro, 
Hey2 overexpression is sufficient to induce phenotypic conversion of endothelial cells. In mice, the 
conditional deletion of Hey2 reduces EndoMT frequency and the severity of rectal tissue damage. 
Our data indicate that the reduction in mucosal damage occurs through decline in stem/clonogenic 
epithelial cell loss mediated by microvascular protection. EndoMT is involved in radiation proctitis and 
this study demonstrates that a strategy based on the reduction of EndoMT mitigates intestinal tissue 
damage.

About half of cancer patients undergo radiation therapy as part of their cancer treatment. Even though great 
advances have been made in treatment delivery techniques, allowing for better tumor targeting and sparing large 
volumes of healthy tissue, radiation exposure of significant volumes of normal intestine and rectum persists, lim-
iting the chances of cancer cure and impacting on the patient’s quality of life post-treatment. Patients treated for 
abdominal-pelvic tumors may experience what is referred to as “pelvic radiation disease”1. Acute radiation dam-
age is mainly due to the death of a significant proportion of epithelial stem cells and to compromised regeneration 
of differentiated epithelium, leading to mucosal ulceration and vascular compartment cell death and activation, 
which is responsible for a severe inflammatory reaction. The clinical consequences of acute damage concern 60 
to 80% of patients and are expressed as abdominal pain and diarrhea. The acute phase can be followed by adverse 
tissue scarring resulting in gut fibrosis, with important associated morbidity such as dysmotility and malabsorp-
tion, but also fistulae and perforations of the most severe grades. Late adverse effects may occur from 3 months to 
several years following the end of radiation therapy and generally concern 5 to 10% of patients. Overall, external 
irradiation can be considered as a pro-inflammatory stimulus and the response of normal digestive tissue to 
ionizing radiation exposure is characterized by acute inflammation progressively evolving though chronic inflam-
mation/excessive scarring2. Vascular abnormalities are consistently observed in injured healthy tissues of patients 
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undergoing radiation therapy for cancer treatment, and endothelial injury has been described as a crucial event 
in the initiation and progression of radiation side effects in normal tissues3. Irradiated endothelial cells undergo 
apoptosis or may acquire a long-lasting procoagulant and antifibrinolytic phenotype with sustained immune cell 
recruitment, which participates in the development of tissue damage.

It has been known for several years now that adult cells retain a plastic capacity, as illustrated by the ability 
of epithelial and endothelial cells to undergo phenotypic conversion to mesenchymal-like cells via the processes 
of epithelial-to-mesenchymal transition (EMT) and endothelial-to-mesenchymal transition (EndoMT), respec-
tively. During EndoMT, endothelial cells lose their endothelial markers (e.g. VE-cadherin, vWF, VCAM-1) and 
progressively gain expression of mesenchymal markers (e.g. α-SMA, SM22-α), while becoming motile. EndoMT 
was first discovered as a mechanism responsible for cardiac septation and formation of cardiac cushions and 
valves during embryogenesis4. EndoMT was also soon implicated in several systemic diseases, such as fibrod-
ysplasia ossificans progressiva5 and systemic sclerosis6, and participates in tumor progression as an inducer of 
carcinoma-associated fibroblasts7. As for EMT, EndoMT can be subdivided into three main biological settings, 
namely organ development, tissue regeneration and scarring, and cancer progression and metastasis8. Data con-
cerning EndoMT and tissue regeneration and scarring are relatively recent, and cells doubly positive for endothe-
lial and mesenchymal markers, suggesting EndoMT, have been found in various contexts of tissue inflammation 
and fibrosis following different types of insult in the lung, heart and kidney9–13. Data concerning the putative 
role of EndoMT in gut damage are sparse, perhaps because it is complicated to obtain severe intestinal fibrosis in 
preclinical rodent models. Nevertheless, Rieder et al.14 identified EndoMT as a potential participant in human gut 
inflammation and in a preclinical model of colonic fibrosis in mice, demonstrating both in vitro and in vivo that 
inflammatory signals in the gut are able to trigger phenotypic conversion of endothelial cells to mesenchymal-like 
cells. We recently showed in a preclinical model of radiation proctitis in Tie2-GFP mice that radiation-induced 
tissue inflammation and scarring offer environmental conditions in favor of EndoMT, and that EndoMT is also 
present in human radiation proctitis15. Our next objective was to determine a putative pathway implicated in 
radiation-induced EndoMT and tissue damage, to offer new possibilities concerning the management of radia-
tion injury to the gastrointestinal tract.

Previous mechanistic studies have highlighted the TGFβ and Notch signaling pathways as promoting 
EndoMT16, 17. The canonical Notch pathway is highly conserved in vertebrates and is essential in embryonic devel-
opment, organogenesis and vascular remodeling in adults18. The role of Notch in EndoMT was first highlighted 
by Noseda et al., who demonstrated that overexpression of intracellular fragments Notch1IC and Notch4IC and 
of the ligand Jagged1 is sufficient to induce EndoMT in adult human macrovascular and microvascular cells19. 
Moreover, Notch overexpression in the endothelial compartment using a transgenic mouse model is associated 
with excessive endocardiac EndoMT, myocardial enlargement and the formation of hyperplastic valves, con-
firming the role of the Notch signaling pathway in EndoMT17. When activated, the Notch pathway carries out 
transactivation of target genes including transcriptional repressors of the Hes, Hers or Hey (hairy/enhancer of 
split-related with YRPW motif) genes20. Members of the Hers/Hey family are identified as the main effectors of 
the Notch pathway during development. Among Notch targets and together with Hey1, Hey2 has been implicated 
in embryogenesis, and Hey2 deficiency in mice displays defects in cardiovascular development21. Several studies 
have demonstrated the role of Hey2 in cardiac valve formation and especially in the EMT of endocardiac cells22. 
Whereas the role of the Notch target gene Hey2 in physiological EndoMT has been demonstrated, there are few 
studies on the putative role of Hey2 in stress-induced EndoMT23, 24.

Here we report that irradiation is a stimulus sufficient to induce EndoMT in vitro in human umbilical vein 
endothelial cells (HUVECs), associated with increased Hey2 mRNA and protein expression. Moreover, Hey2 
overexpression is sufficient to induce phenotypic conversion of HUVECs to mesenchymal-like cells. Finally, 
conditional deletion of Hey2 in the endothelium in mice reduces EndoMT frequency and the severity of 
radiation-induced acute proctitis. Using a model of total body irradiation, we showed that Hey2 deletion in the 
endothelium reduced the number of apoptotic cells in the small intestinal stem cell compartment and increased 
surviving crypts. Immunostaining of plasmalemmal vesicle-associated protein suggests that Hey2 deletion may 
protect the endothelium, and consequently the epithelial stem cell compartment, from radiation damage. We thus 
propose reducing EndoMT as a possible strategy to mitigate radiation-induced damage to normal digestive tissue.

Results
Irradiation induces the endothelial-to-mesenchymal transition in HUVECs. The response of 
endothelial cells to radiation exposure is characterized by cell death and long-lasting phenotypic changes referred 
to as radiation-induced “activated” phenotype. To investigate whether these radiation-induced changes in the 
endothelial cell phenotype include EndoMT features, 90% confluent HUVECs were exposed to 0-, 2-, 10- or 
20-Gy irradiation and monitored from day 4 to day 10 after exposure. We show that ionizing radiation induces a 
phenotypic conversion of HUVECs that resembles EndoMT. EndoMT is illustrated by heat map representation 
of expression levels of 34 different genes previously used to monitor EndoMT in human intestinal microvascular 
endothelial cells15 and related to endothelial or mesenchymal phenotypes and molecules involved in the EndoMT 
process 7 days after single doses of 2, 10 or 20 Gy exposure (Fig. 1a). Clustering occurs for 0, 2 and 10–20 Gy irra-
diated HUVECs. Given that 10 and 20 Gy irradiated cells clustered together, we decided to pursue the experiments 
on 10 Gy irradiated cells, to obtain satisfying phenotypic conversion without excessive cell death due to radiation 
exposure. The results show changes in expression levels of genes coding for proteins recognized as witnesses or 
inducers of the EndoMT process, such as increased α-SMA, SM-22α or TGF-β2, decreased vWF and VCAM1, or 
decreased Tie1 expression (Fig. 1b), whose deficiency has been shown to induce EndoMT25. Radiation-induced 
fold changes of several genes are dose-dependent (Supplementary Fig. 1). The global phenotypic switch at the 
mRNA level is conserved when cells are exposed to fractionated irradiation (20 Gy administered as 2 Gy daily x10, 
with a weekend break) as shown in Table 1. Radiation-induced changes in mRNA expression were confirmed at 
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Figure 1. Irradiation induces phenotypic conversion of endothelial cells resembling EndoMT. (a) HUVECs 
were exposed to a single dose of 0, 2, 10 or 20 Gy and 34 genes related to the endothelial or mesenchymal 
phenotype and to the EndoMT process were measured by qPCR 7 days after radiation exposure. Hierarchical 
clustering shows different profiles of gene expression levels between control and irradiated cells. (b) Values of 
up- or down-regulation of expression of several endothelial and mesenchymal markers in irradiated HUVECs, 
7 days after 10 Gy radiation exposure. (c) Confirmation of radiation-induced gene expression modifications 
at the protein level by western blot. Data are representative of three independent experiments performed in 
triplicate. *p < 0.05; **p < 0.01; ***p < 0.001.

Gene (protein)
20 Gy single dose 
Day 7

20 Gy fractionated 
dose Day 7 post-last 
fraction

ACTA2 (alpha-SMA) 5.64 ± 0.85** 2.45 ± 0.22**

HEY2 9.57 ± 0.43*** 2.64 ± 0.53*

SERPINE 1 (PAI-1) 1.77 ± 0.06*** 1.98 ± 0.24*

TAGLN (SM22-alpha) 24.42 ± 2.36*** 14.72 ± 1.65**

TGFbeta 2 1.77 ± 019* 2.39 ± 0.27*

TNC 4.32 ± 0.05 348.00 ± 17.79***

VTN 5.70 ± 0.9** 6.62 ± 0.35***

TIE1 0.42 ± 0.06*** 0.50 ± 0.05**

TIE2 0.87 ± 0.04* 0.53 ± 0.05**

vWF 0.26 ± 0.03** 1.29 ± 0.10

Table 1. Gene expression profiles marking EndoMT in HUVECs after single dose or fractionated radiation 
exposure. HUVECs were exposed to 20 Gy administered in a single fractionated dose using 2 Gy per day/5 days 
a week with weekend break. Data are representative of 3 experiments for the single dose and one experiment 
for the fractionated dose, both done in triplicate and expressed as means ± sem. *p < 0.05; **p < 0.01; 
***p < 0.001.
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the protein level, with increased expression of mesenchymal markers SM-22α and α-SMA and reduced protein 
levels of the endothelial markers VCAM-1 and vWF, thus confirming EndoMT (Fig. 1c). To visualize phenotypic 
conversion of irradiated endothelial cells, we performed co-immunostaining of vWF and α-SMA (Fig. 2a). While 
control cells showed consistent vWF immunoreactivity (red), the irradiated cell population, 7 days after 10 Gy 
exposure, appeared heterogeneous, with sub-populations of vWF+ (red), α-SMA+ (green) and vWF+/α-SMA+ 
cells (yellow merging signal). Finally, VE-cadherin immunostaining revealed alterations in its distribution, with 
the appearance of cytoplasmic staining, a feature of EndoMT26.

Figure 2. About 40% of HUVECs undergo phenotypic conversion. (a) Phenotypic characterization of 10 Gy-
irradiated endothelial cells undergoing EndoMT by double immunostaining of vWF (red) and alpha-SMA 
(green) showing a yellow merging signal, which evidences co-expression of endothelial and mesenchymal 
markers of EndoMT. VE-Cadherin disorganization is also recognized as a feature of the EndoMT process. 
Representative images of 3 independent experiments. Original magnification x400. (b to c) Flow cytometry 
quantification of EndoMT by double immunostaining of vWF (FITC) and alpha-SMA (Alexa 647). Cut-offs 
for positive staining of both in control cells were defined at control day 7 (b) as below 2% (b, quarter Q2), 
showing co-expression marking EndoMT in around 44% of HUVECs on 10 Gy day 7 (c, quarter Q2). Median 
values of fluorescence peaks for each sample and both antibodies are given in the table (d). Data represent one 
representative experiment among three independent experiments.
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About 40% of HUVECs undergo phenotypic conversion to mesenchymal-like cells. Information 
on the proportion of cells undergoing EndoMT in the different published models is often missing, and may 
depend on the stimulus applied to induce phenotypic conversion. Given that not all cells exhibit phenotypic 
conversion, as illustrated by immunostaining experiments, flow cytometry was used to corroborate immunocy-
tochemistry experiments, but also to estimate more precisely the percentage of α-SMA+ cells in the total HUVEC 
population. Prior to this, isotype controls were used to check the specificity of the staining, showing and testifying 
to the absence of interference or false-positive overlap signals (Supplementary Fig. 2). After exclusion of dead 
cells and debris from the analysis (Supplementary Fig. 3a and b), both FSC/SSC bi-parametric representation 
(Supplementary Fig. 3c–e) and FSC histogram representation (Supplementary Fig. 3f) clearly showed a shift of 
the size of the whole cell population in irradiated HUVECs compared with controls. A size cut-off of “small cells” 
versus “big cells” around 5% was determined for gated events in control cells in order to discriminate small cells 
from big cells. Seven days after 10 Gy irradiation, the proportion of big cells was 20%, 4 times more than the per-
centage observed in non-irradiated HUVECs.

Regarding α-SMA/vWF bi-parametric analyses, we used for the whole living cell population an α-SMA+/
vWF+ cut-off below 2% for non-irradiated HUVECs (Fig. 2b, left panel, square Q2), this proportion of SMA+/
vWF+ living cells representing around 44% for irradiated HUVECs (Fig. 2c, left panel, square Q2), showing that 
whereas α-SMA expression is virtually absent in control cells, around 44% of irradiated cells express α-SMA. 
Based on the cell size cut-off, α-SMA/vWF bi-parametric analysis was performed on small cells and big cells 
both for non-irradiated HUVECs (Fig. 2b, right panel) and for 10 Gy irradiated HUVECs (Fig. 2c, right panel). 
Globally, both small and big cells acquire α-SMA expression, big cells exhibiting, however, higher α-SMA stain-
ing than small ones, suggesting that EndoMT may be associated with an increase in cell size after radiation 
exposure. All these data confirm that radiation exposure of confluent HUVECs induces 7 days post-exposure 
changes in cell shape and mesenchymal marker expression, occurring in about 40% of the cell population at this 
time point.

The endothelial-to-mesenchymal transition is associated with Hey2 overexpression in irradi-
ated HUVECs. EndoMT was initially discovered as an essential mechanism for heart development, with an 
important role played by the Notch pathway in primitive cardiac tube septation and the formation of cardiac 
valves19. Hairy and Enhancer of Split (HES)-related genes together with YRPW motif (Hey) genes (Hey1, Hey2 
and HeyL) are the main target genes of the canonical Notch signaling pathway. Inactivation of Hey2 results in 
severe embryonic defects in heart development, whereas deficiency in Hey1 alone does not27. Based on biblio-
graphic data, Hey2 was included in the set of genes related to EndoMT we chose for mRNA expression meas-
urements and Hey2 appeared as an up-regulated gene in the hierarchical clustering (Fig. 1a). In accordance with 
previous studies relating to Hey2 and EndoMT in embryonic development, we demonstrated that EndoMT 
induced by exogenous stress is also associated with Hey2 mRNA and protein overexpression, as confirmed by 
western blot and immunostaining (Fig. 3). Radiation-induced Hey2 mRNA overexpression is dose-dependent 
(Supplementary Fig. 4a), maintained over time until at least 10 days post-exposure and independent of culture 
plastic coating. Conversely, Hey1 expression level is decreased by radiation exposure (Supplementary Fig. 4b).

Hey2 overexpression using expression vector transfection in HUVECs is sufficient to induce 
EndoMT. When we observed that radiation-induced phenotypic conversion of HUVECs was associ-
ated with Hey2 overexpression, we decided to test the ability of Hey2 siRNA to influence radiation-induced 
EndoMT in vitro. HUVECs were transfected with Hey2 siRNA to inhibit Hey2 mRNA expression and exposed 
to 10 Gy irradiation. Despite marked reduction in mRNA expression levels in transfected cells even after irra-
diation (>90%), Hey2 inhibition had no effect on radiation-induced α-SMA and TGFβ2 overexpression or on 
Tie1 down-regulation (Supplementary Fig. 5). SM22-α expression was significantly reduced and expression of 
VCAM-1 and of vWF returned to control values in the presence of Hey2 siRNA, but also in the presence of 
non-targeting siRNA, probably reflecting a transfection-related effect. Overall, these results show that increased 
Hey2 expression levels in vitro are dispensable for radiation-induced EndoMT.

We next decided to investigate if Hey2 by itself was able to induce EndoMT in vitro. Cell transfection with 
Hey2 plasmid expression vector induced EndoMT (Fig. 4a). Transfected cells acquired a typical spindle-shaped 
morphology, and showed decreased vWF and increased SM22-α immunoreactivity. Finally, irradiated cells exhib-
ited partial loss of intercellular junctions, as illustrated by p120-catenin immunostaining, a feature of phenotypic 
conversion of endothelial cells to mesenchymal-like cells. Figure 4b shows the mRNA expression levels of several 
genes measured in Hey2 plasmid-transfected cells compared with empty plasmid-transfected cells. Hey2 overex-
pression in HUVECs was associated with increase in SM22-α and TGFβ2 expression and reduced expression of 
Tie1 and vWF, as observed after radiation exposure. Conversely, and as opposed to radiation-induced EndoMT, 
expression of VCAM-1 and α-SMA was unchanged. These data show that overexpression of Hey2 is sufficient 
to induce phenotypic conversion of HUVECs to a mesenchymal-like phenotype, albeit with some differences 
compared with radiation-induced EndoMT.

Human radiation proctitis is associated with increased Hey2 immunoreactivity in injured tis-
sues. Radiation exposure offers microenvironment conditions favoring EndoMT, such as cell apoptosis, oxi-
dative stress, barrier rupture, tissue inflammation, fibrosis and hypoxia, as demonstrated in vitro or in different 
models of trauma14, 28–30. We previously showed that EndoMT was present in human radiation proctitis, especially 
in severely injured/inflamed tissues15. Normal rectal tissue immunostaining revealed a general nuclear expres-
sion of Hey2 in all cell types including epithelial and endothelial cells. Pathological tissue showed invasion of 
Hey2-positive immune cells and a possible increase in endothelial cells of nuclear immunoreactivity for Hey2 in 
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several submucosal vessels (Fig. 5). Nevertheless, these results should be interpreted cautiously, given that a lot of 
submucosal vessels in damaged tissues showed only slight Hey2 staining.

Conditional deletion of Hey2 in the endothelium reduces endothelial-to-mesenchymal transi-
tion frequency associated with preclinical acute radiation proctitis. The Notch signaling pathway 
and its main downstream target gene Hey2 have been implicated in the EndoMT process during cardiac devel-
opment and in endothelial cells in vitro8, but to our knowledge there are currently few findings regarding the 
role of Hey2 in stress-induced EndoMT. Following in vitro observations of overexpression of Hey2 mRNA and 
protein in irradiated endothelial cells, we decided to inactivate Hey2 specifically in the endothelial compartment 
using the Cre-LoxP strategy, to avoid defects in cardiac development associated with Hey2 knock-out21. To do 
this, we crossbred Hey2flx/flx mice with VE-CadCre+/+ mice to obtain Hey2flx/flx/Ve-CadCre−/− mice as controls 
(Hey2flx/flx) and Hey2flx/flx/Ve-CadCre+/− mice (Hey2KOendo) in which Hey2 expression is inactivated specifically 
in the endothelial compartment (Supplementary Fig. 6). Both were submitted to 22 Gy colorectal irradiation. 
The first step was to investigate whether Hey2 deletion in endothelial cells lessened radiation-induced EndoMT 
in our preclinical model of radiation proctitis. Co-immunostaining of vWF and α-SMA evidenced transitioning 
endothelial cells in irradiated tissues by the co-expression of both markers (Fig. 6a). EndoMT occurred in the 
submucosal as well as in the mucosal vessels, as already observed in this model15. Both Hey2flx/flx and Hey2KOendo 
mice exhibited EndoMT, albeit with a reduced percentage of mice exhibiting EndoMT in the Hey2KOendo group 
(Fig. 6b), demonstrating that Hey2 deletion in endothelial cells is an effective strategy to reduce the frequency of 
radiation-induced EndoMT in digestive tissues.

Reducing EndoMT frequency impacts the severity of acute and late preclinical radiation proctitis.  
Exposure of mouse rectum to a single 22 Gy dose of ionizing radiation resulted in severe acute (14 days) mucosal 
damage, with crypt rarefaction, severe mucosal inflammation and ulceration. Ulceration is defined as the total 
loss of bordering epithelium. Ulceration is a sign of severity because the absence of bordering epithelium exposes 
underlying tissues to luminal contents and favors severe intestinal transmural inflammation. The 14-day time 

Figure 3. Radiation-induced EndoMT in HUVECs occurs together with Hey2 overexpression. (a) Hey2 mRNA 
levels in irradiated HUVECs were assessed by qPCR 7 days after 10 Gy exposure. (b) Western blotting for Hey2 
protein expression in irradiated HUVECs, 7 days after radiation exposure to 10 Gy. (c) Hey2 immunostaining in 
HUVECs 7 days after 10 Gy exposure. Data are representative of three independent experiments performed in 
triplicate. ***p < 0.001.
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point in this model is also characterized by reactive hyperproliferation of surviving crypts, demonstrating high 
cell density and often multilobed glands that sometimes resemble adenocarcinoma (Fig. 7a). Glandular hyperpla-
sia, as opposed to epithelial ulceration, is a sign of tissue scarring. Epithelial cell production by hyperplastic crypts 
to recover the bordering epithelium is a crucial step in repair of injured intestinal tissue. To evaluate the severity 
of radiation damage in both Hey2flx/flx and Hey2KOendo mice, we measured the percentage of total lesions con-
cerned with complete loss of bordering epithelium and the number of simple and multilobed glandular hyperpla-
sias. Acute tissue protection in Hey2KOendo mice was characterized by a lower percentage of mucosa concerned 
with bordering epithelial loss and more multilobed glandular hyperplasias (Fig. 7b), suggesting reduced acute 
tissue damage.

Exposure of the rectum to high single doses of ionizing radiation is known to generate late effects with a 
strong consequential component, i.e. the severity of late damage is highly influenced by the severity of acute 
injury. Given that Hey2 deletion in the endothelial compartment lessened acute radiation proctitis, we aimed 
to determine whether this has an impact on late rectal injury. Late damage was characterized by mucosal ulcer 
healing, but also by persistent severe epithelial atypia, crypt hyperplasia, mucosal collagen deposition and mod-
erate vascular dystrophy. HES staining in Fig. 8a shows visibly reduced severity 7–8 weeks post-irradiation in 
Hey2KOendo compared with Hey2flx/flx mice, but the Radiation Injury Score (RIS, Fig. 8b) failed to reach statistical 
significance. The RIS consists of several parameters related to all intestinal wall compartments, thus minimizing 
the impact of mucosal damage score on the total score applied. We investigated more precisely late mucosal dam-
age by measuring the percentage of total lesions affecting healthy bordering epithelium (well-oriented/elongated 
columnar cells with basal nucleus) and those indicating atypical epithelium (cuboidal epithelial cells with cen-
tered nucleus, pictures in Fig. 8c). These measurements were done using HES staining and p120-catenin immu-
nofluorescent staining. Hey2KOendo mice showed a lower percentage of total lesions affecting cuboidal/atypical 
epithelium than Hey2flx/flx mice (Fig. 8c). These data may indicate lessened severity of late radiation proctitis in 
Hey2KOendo mice.

Figure 4. Hey 2 overexpression is sufficient to induce phenotypic conversion of endothelial cells to a 
mesenchymal phenotype. HUVECs were transfected with pCMV6-HEY2-Myc-DDK plasmid expression 
vector or with pCMV6-AC-HA-His as a control. Three days after transfection, some cells were spindle-shaped, 
lost their vWF expression while acquiring alpha-sma and SM22-alpha expression, and lost some intercellular 
connections via p120 catenin. Optical observation x400; immunostaining: bar = 50 µm, except for SM22-α 
bar = 100 µm. (b) mRNA expression levels measured by qPCR in Hey2 expression plasmid-transfected 
HUVECs compared with HUVECs transfected with empty plasmid (retrieved to 1, bar), 72 h after cell 
transfection. *p < 0.05; ***p < 0.001. Data are representative of two independent experiments performed in 
triplicate, and values are the mean ± sem.
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Conditional deletion of Hey2 in the endothelium protects the intestinal stem cell compartment 
from radiation damage. Total body irradiation is a model frequently used to investigate the role of several 
agents in the regenerative capacity of the small intestinal stem cell compartment31. We saw that Hey2 endothe-
lial deletion reduced acute mucosal ulceration. Ulceration is defined as the loss of bordering epithelium, due to 
radiation-induced insult to/sterilization of the stem/progenitor crypt compartment and compromised epithelial 
regeneration. To assess intestinal crypt response to ionizing radiation, we exposed Hey2flx/flx and Hey2KOendo 
mice to 12 Gy total body irradiation and monitored small intestinal stem cell apoptosis (24 h post-exposure) and 
the number of surviving crypts at 3 days, indirectly reflecting the number of surviving stem cells. TUNEL/p120 
catenin double immunostaining revealed radiation-induced cell apoptosis in the stem and transit/amplifying 
compartments as exemplified by pictures obtained in control and 12 Gy total body-irradiated Hey2flx/flx mice 
(Fig. 9a). The number of TUNEL-positive cells per crypt was significantly reduced in Hey2KOendo mice compared 
with Hey2flx/flx mice (Fig. 9a), suggesting intestinal crypt compartment protection by conditional Hey2 deletion 
in the endothelium. The severity of intestinal radiation damage may be further evaluated by counting the surviv-
ing crypts. Three to four days post-irradiation, the number of crypt-like foci of surviving epithelial cells can be 
counted on histological/HES-stained tissue sections based on their morphological appearance, i.e. no base dila-
tation and presenting at least 10 well-stained epithelial cells and one Paneth cell. The number of surviving crypts 
at 3 days post-exposure was significantly higher in Hey2KOendo mice than in Hey2flx/flx mice (Fig. 9b), confirming 
the epithelial protection afforded by the conditional deletion of Hey2 in endothelial cells.

The next question was how an endothelial-specific Hey2 deletion influences intestinal stem compartment 
response to radiation exposure. Our hypothesis was that protection of crypt cells in Hey2KOendo mice occurred via 
protection of endothelial cells from radiation damage. Endothelial protection, and especially reduced endothelial 
apoptosis, has been shown to protect small intestinal crypts from radiation damage. Radiation-induced apopto-
sis of endothelial cells has been observed in the chorion of small intestinal villi. Probably because the mucosal 

Figure 5. Hey2 immunoreactivity in the endothelial compartment is increased in human radiation proctitis. 
Hey2 immunostaining was performed in human rectal tissues (pictures of mucosa and submucosa are 
presented) following pre-operative radiation therapy for rectal adenocarcinoma at a total dose of 45 Gy. Surgical 
resection occurred 5–7 weeks after radiation therapy taking rectal tissue within the irradiation field near the 
tumor bed (pathological tissue) and in margins (normal tissue) outside the irradiation field. Insert: submucosal 
vessel magnification detailing Hey2 immunoreactivity in endothelial cells. Original magnification x200.
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microvasculature is more difficult to observe, we were unable to see any radiation-induced endothelial apopto-
sis in irradiated rectum 5 h post-exposure. We then decided to use Plasmalemmal Vesicle-Associated Protein-1 
(PLVAP/PV-1) immunostaining. PLVAP is a transmembrane protein associated with the caveolae of fenestrated 
microvascular endothelia. PLVAP up-regulation is a marker of endothelial barrier disruption and endothelial 
activation, and is often used to monitor the state of the blood-brain barrier32. PLVAP immunostaining was per-
formed in 22 Gy irradiated rectal tissues 2 and 7/8 weeks post-exposure, showing no difference from unirradiated 
tissues in which PLVAP immunostaining was virtually absent. We hypothesized that earlier time points following 
radiation exposure may be more informative and performed PLVAP immunostaining 24 h and 3 days after 12 Gy 
total body irradiation in rectal and small intestinal tissues. Whereas there was again no PLVAP positive signal 
at 24 h, the 3-day time point was characterized by a marked increase in PLVAP immunoreactivity (Fig. 9c). The 
number of PLVAP-positive spots was thus quantified in both mouse strains on small intestinal tissue sections 
to allow easier observation of microvascularization than in rectal sections. Conditional Hey2 deletion lessened 
the number of PLVAP-positive spots in small intestinal tissue sections (Fig. 9c), suggesting reduced endothelial 
barrier disruption in Hey2KOendo mice.

Discussion
The response of normal digestive tissue to radiation exposure is characterized by inflammation and fibro-
sis, a context known favor EndoMT. We recently demonstrated that EndoMT participates in tissue injury in 
radiation-induced proctitis in Tie2-GFP mice and is present in human radiation proctitis following rectal cancer 
treatment by radiation therapy15. This earlier report, however, did not provide information about possible mech-
anisms and molecular targets implicated in radiation-induced EndoMT. The present study demonstrates that 
Hey2, a transcriptional repressor and Notch pathway target, is implicated in radiation-induced EndoMT, and 
that its conditional deletion in the endothelial compartment efficiently reduces EndoMT and consequently the 
severity of tissue damage in our preclinical model of radiation-induced proctitis. This is the first report demon-
strating that EndoMT may represent an interesting strategy to mitigate radiation-induced damage to healthy 
digestive tissues.

Adult endothelial cells possess plastic properties allowing phenotypic conversion to mesenchymal cells via 
different induction methods. The response of endothelial cells to radiation exposure is characterized by cell 

Figure 6. Conditional Hey2 knock-out in the endothelium reduces EndoMT frequency in injured colorectum. 
Hey2flx/flx and Hey2KOendo mice were exposed to 22 Gy in the colorectal area. (a) Representative pictures of 
vWF/α-sma co-immunostaining showing no merging signal in unirradiated tissues, and EndoMT figures 
(yellow merging signal marking co-expression) observed by confocal microscopy in the mucosa as well as 
in the submucosa of 22 Gy irradiated tissues. Co-expression was observed in both mouse strains. Original 
magnification x400. (b) Hey2 conditional deletion in the endothelium reduced the percentage of mice 
concerned with EndoMT 14 days after radiation injury. Hey2flx/flx n = 6; Hey2KOendo n = 7.
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death, but also by the acquisition of a long-lasting activated phenotype responsible for now well-described 
radiation-induced vascular dysfunction. The endothelial compartment is present in normal tissues as well as in 
tumors, and advances in the radiobiology of endothelial cells may be determinant in understanding how tumors 
and healthy tissues respond to radiation therapy3, 33. EndoMT has been shown to belong to the various pheno-
typic changes observed after radiation exposure of endothelial cells, and was previously demonstrated in irradi-
ated human aortic endothelial cells30, human pulmonary endothelial cells29 and human intestinal microvascular 
endothelial cells (HIMECs)15. Here we made the choice to use HUVECs as an in vitro model to explore possible 
candidate genes involved in radiation-induced EndoMT that may represent interesting molecular targets. The use 
of HUVECs is, of course, questionable, given that we had the opportunity to use HIMECs. Our objective in the 
present study was to obtain the more representative gene expression profile in primary cells obtained from a pool 
of patients rather that extracted from a particular one, and to work with less precious and easily transfectable cells. 
The ability of HUVECs to undergo phenotypic conversion to mesenchymal cells has been demonstrated using 
various stimuli34, 35 and here we show that ionizing radiation is another stimulus able to induce EndoMT in these 
human macrovascular cells, with a gene expression profile resembling the one obtained in irradiated HIMECs15. 
In vivo as well as in vitro, it is known that not all endothelial cells undergo EndoMT. In vivo, there are percentage 
estimates concerning the number of mesenchymal cells of endothelial origin in several models10, 12, 13, but the 
number of endothelial cells undergoing EndoMT within the vasculature in vivo remains unknown, even in vitro 
in the different situations published hitherto. In the present study we demonstrate that transitioning endothelial 
cells 7 days after radiation exposure to 10 Gy represent around 40% of total confluent HUVECs. However, we 
do not know if this percentage represents what happens in vivo. Finally, we observed that EndoMT especially 
concerned “big cells”, i.e. probably irradiated cells becoming senescent, with a characteristic increase in cell size36. 
Further work is needed to establish whether radiation-induced EndoMT shares common features with cellular 
senescence.

Study of gene expression revealed a marked and very reproducible increase in Hey2 expression levels, and 
we made the choice to investigate the role of Hey2 in radiation-induced EndoMT. Hey2 is a Notch pathway 
target acting directly as a transcriptional repressor and may activate some target genes by indirect mechanisms. 
The link between Notch and Hey2 is not exclusive, since Notch1−/− mice still express Hey2 and transcription of 
Hey2 can be stimulated via the BMP9/Alk1 pathway independently of Notch activation in HUVECs21, 37. Data 

Figure 7. Conditional Hey2 deletion in the endothelium mitigates radiation-induced acute tissue damage. 
(a) HES staining of control colorectum and irradiated colorectum of Hey2flx/flx and Hey2KOendo mice 14 days 
post-exposure. Original magnification x40. (b) The percentage of total lesions demonstrating loss of bordering 
epithelium (ulceration) and multilobed and simple glandular reactive epithelial hyperplasias were counted 
for each mouse over a total injured area length between 4 and 9 mm 14 days post-injury. Hey2flx/flx n = 6; 
Hey2KOendo n = 7.
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demonstrating the role of Hey2 in stress-induced EndoMT or even EMT are sparse and the present study is the 
first to show that Hey2 overexpression is sufficient to induce EndoMT in HUVECs, decreasing expression of vWF 
and Tie1 and increasing expression of SM22-α and TGFβ2. The absence of increase in α-SMA expression may 
be due to study timing. Nevertheless, this is not troublesome considering that the precise phenotype obtained in 
endothelial cells undergoing EndoMT may vary depending on the stimulus applied. This is well demonstrated 
by the literature, in which transitioning cells often have very different expression profiles. Unlike the majority 
of stimuli applied to endothelial cells to induce EndoMT in published studies, such as cytokines14, glucose34 or 
oxidative stress38, radiation exposure generates a highly complex cell response with cytokine secretion, oxidative 
stress or again cell death and senescence. This complexity may explain why transfection of HUVECs with Hey2 
siRNA before irradiation failed to rescue EndoMT progression, suggesting the involvement of multiple cellular 
pathways.

Because transfection by itself may have deleterious effects and does not represent what happens in vivo, we 
decided to investigate the involvement of Hey2 in radiation-induced EndoMT in our preclinical model of radia-
tion proctitis in mice. Given that Hey2 knock-out is associated with severe cardiac defects, we used the Cre-LoxP 
strategy to inactivate Hey2 specifically in the endothelial compartment. The specificity of endothelium recom-
bination events in intestinal tissue was checked using ROSA26 reporter mice crossed with Ve-Cad-Cre mice in 
previous studies15. We used a preclinical model of high-dose localized exposure to the rectum to mimic the severe 

Figure 8. Acute injury mitigation by conditional deletion of Hey2 reduces the severity of late epithelial damage. 
(a) HES staining of control and irradiated rectal tissues 7–8 weeks following localized radiation exposure to 
22 Gy showing radiation damage observed in Hey2flx/flx and Hey2KOendo mice. (b) A semi-quantitative radiation 
injury score was assigned to irradiated tissues from both strains. Original magnification x40. (c) the percentage 
of bordering epithelium with cuboidal epithelial cells marking epithelial damage was measured on each 
HES- and p120 catenin-stained (pictures) tissue section. Original magnification x400. Hey2flx/flx mice n = 9; 
Hey2KOendo mice n = 12. *p < 0.05.
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mucosal ulceration that may be encountered in rectal tissues of patients treated with radiation therapy. This 
model does not fit with the majority of radiation fractionation schedules used in humans until now, but the evo-
lution of radiation therapy techniques, such as Stereotactic Body Radiation Therapy (SBRT) using ablative doses 
per fraction in the treatment of prostate tumors, makes this preclinical approach pertinent to the investigation of 
the possible mechanisms of radiation side effects in such a context.

In this study we show that conditional deletion of Hey2 in the endothelial compartment reduces EndoMT 
frequency and the severity of radiation proctitis. This enabled us to overcome a barrier to our understanding of 
the role of EndoMT in radiation proctitis compared with our previous work15, demonstrating here that reducing 
EndoMT has a direct impact on tissue damage severity, as demonstrated in mouse models of cardiac fibrosis or 
obstructive nephropathy10, 39. Reduced tissue damage in Hey2KOendo mice in the present study was expressed as 
lessened mucosal ulceration. Ulceration results from compromised epithelial regeneration and damage to the 
gastrointestinal tract after radiation exposure and has been shown to result from the destruction of radiosensitive 
compartments such as crypt/stem and clonogenic epithelial cells and microvascular endothelium31, 40. We thus first 
explored radiation effects on the epithelial stem compartment and observed that Hey2 deletion in the endothelium 
preserved crypt function, which may explain reduced ulceration by more efficient epithelial cell production.

Figure 9. Conditional Hey2 deletion in the endothelium protects epithelial stem cells and endothelial 
compartments from radiation damage. (a) Hey2flx/flx and Hey2KOendo mice were exposed to 12 Gy total body 
irradiation (TBI) and TUNEL/p120-catenin co-immunostaining was performed 24 h post-irradiation to 
monitor apoptosis of crypt epithelial cells. The number of apoptotic crypt cells was determined in the small 
intestine in a total of 50 crypts per slide. (b) HES staining of small intestine tissue was performed 3 days after 
total body irradiation. Surviving crypts were identified as surviving irradiation based on their histological 
appearance, i.e. undilated and with at least 10 well-stained epithelial cells and 1 Paneth cell. Surviving crypts 
were counted over a total tissue length between 1900 and 2600 µm and related to 1000 µm in both Hey2flx/

flx (n = 6) and Hey2KOendo mice (n = 3). **p < 0.01; ***p < 0.001. Bar = 100 µm. (c) Plasmalemmal Vesicle-
Associated Protein-1 (PLVAP, red) immunostaining of small intestine tissue three days post-12 Gy TBI. 
Bar = 50 µm. PLVAP immunoreactivity was rare in control tissues, but increased dramatically after irradiation. 
The number of PLVAP-positive spots was thus quantified in 5 different fields per slide in irradiated small 
intestine in both strains. Hey2flx/flx n = 4; Hey2KOendo n = 3. *p < 0.05.
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We currently do not know how conditional deletion of Hey2 in the endothelium protects the epithelial com-
partment. One hypothesis is preservation of microvascular endothelial integrity. To investigate the condition of 
the microvascular endothelium, we used PLVAP or PV-1 immunostaining. PLVAP belongs to the caveolae and 
diaphragmed fenestrae structures of fenestrae endothelia, which finely tune endothelial permeability41. In vivo, 
PLVAP expression has been correlated with disruption of the blood-brain barrier and with microvascular leakage 
in diabetic retinopathy32, 42. We confirm here that PLVAP is expressed in gut microvascularization and show for the 
first time that PLVAP immunoreactivity increases in digestive tissues following radiation exposure, which is known 
to induce vascular leakage3, suggesting that PLVAP may be a marker of radiation-induced microvascular damage. 
The number of PLVAP-positive spots in Hey2KOendo mice was significantly reduced, suggesting that Hey2 deletion 
may protect the endothelium from radiation damage, preserving the clonogenic/stem epithelial cell compartment.

Finally, intestinal tissue exposure to high doses of ionizing radiation is known to generate late damage with 
a strong consequential component, i.e. the severity of chronic damage depends on the severity and duration 
of the acute phase43. In the present study, reducing the severity of the acute phase had beneficial effects on late 
damage, as already demonstrated with other acute therapeutic strategies, including strategies targeting epithe-
lial protection44. One should, however, remain cautious regarding Hey2 inhibition. Hey2 belongs to the most 
prominent Notch target genes and dysregulation of Notch signaling occurs in several inherited syndromes and 
in cancer45, in the maintenance of proliferating crypt cells in the intestine46 and in the process of angiogenesis 
necessary throughout lifetime47. In endothelial cells, Hey2 is dependent on Notch1, but other signaling path-
ways are involved in Hey gene expression, and crosstalk between Notch, TGF-beta and BMP signaling has been 
demonstrated37, 47. Given that both TGF-beta and BMP may be implicated in tissue scarring and fibrosis, further 
studies will be necessary to investigate possible negative consequences of Hey2 deletion in different cell types, 
with particular emphasis on these three pathways.

In conclusion, the present work demonstrates that a strategy of gene deletion only in the endothelium is 
sufficient to mitigate radiation-induced proctitis in our preclinical model, confirming the cornerstone role of 
the endothelium in damage to healthy tissues. We also highlighted that Hey2 is involved in radiation-induced 
EndoMT and that Hey2 invalidation reduces EndoMT and tissue damage. The present work demonstrates for the 
very first time that a strategy based on the reduction of EndoMT, via Hey2 inhibition but also in principle via other 
molecular components of EndoMT, offers protection to radiosensitive endothelial and epithelial compartments 
and mitigates intestinal tissue damage. These interesting results warrant further studies of radiation-induced 
EndoMT and may offer new perspectives in the understanding of the radiation response of healthy tissues and 
obviously of tumors in the management of the effectiveness and associated side effects of radiation therapy.

Methods
Cell line. Primary HUVECs (C2519A pooled) were from Lonza (Verviers, Belgium) and grown at 37 °C with 
5% CO2 in EBM-2 MV medium (Lonza).

Cell transfection. Hey2 expression plasmid: 80% confluent HUVECs were transfected with pCMV6- 
HEY2-Myc-DDK plasmid expression vector (Clinisciences, Nanterre, France) using FuGENE (Roche 
Diagnostics, Meylan, France) as transfection reagent. pCMV6-AC-HA-His (Empty vector, Clinisciences) was 
used as control. Three days after transfection, cells were fixed for immunolabeling or treated for RNA or pro-
tein extraction. Hey2 siRNA: 60% confluent HUVECs were transfected with ON-TARGET plus human Hey2 
siRNA and ON-TARGET control pool siRNA NT as a control, using DharmaFECT 1 as transfection reagent, 
as indicated by the manufacturer (GE Healthcare Dharmacon, Lafayette, CO, USA). Cells were irradiated 48 h 
post-transfection and harvested for mRNA extraction 7 days post-irradiation.

Cell immunofluorescence. Seven days after 0 or 10 Gy irradiation, cells were rinsed in PBS and fixed in 4% 
paraformaldehyde at room temperature for 10 min. After permeabilization (0.1% Triton X100, 10 min) and blocking 
with 2% bovine serum albumin (1 h), primary antibodies were incubated for 1 h at room temperature: polyclonal rab-
bit anti-human von Willebrand factor (vWF, Dako, Les Ulis, France), monoclonal mouse anti-human alpha-smooth 
muscle actin, clone 1A4 (α-SMA, Dako), polyclonal goat anti-human smooth muscle 22-alpha (SM22-α), rabbit 
polyclonal anti-Hey2 and rabbit polyclonal anti-VE-cadherin antibodies (Abcam, Paris, France). Cells were incu-
bated with corresponding secondary antibodies (Alexa Fluor®-conjugated antibodies, Life Technologies, Saint 
Aubin, France) for 1 h at room temperature. For double immunostaining of vWF and alpha-SMA, primary anti-
bodies were incubated together, and after rinsing the corresponding secondary antibodies were added. Slides were 
mounted in Vectashield mounting medium with DAPI (Eurobio/Abcys, Courtaboeuf, France).

p120-Catenin/F-actin co-immunostaining was performed as follows: cells were rinsed, fixed, permeabi-
lized and primary rabbit monoclonal anti-p120 catenin antibody (Abcam) was added and incubated for 1 h at 
room temperature. Corresponding secondary antibody (Alexa Fluor®-conjugated antibody, Life Technologies) 
was added for 1 h at room temperature. After rinsing, the CytoPainter F-actin Staining Kit – Red Fluorescence 
(Abcam) was used according to the manufacturer’s instructions. Slides were mounted in Vectashield mounting 
medium without DAPI (Eurobio/Abcys).

Flow cytometry. Seven days after 10 Gy irradiation, control and irradiated HUVECs were washed, trypsin-
ized and then 1 × 106 cells were resuspended, fixed and permeabilized in 250 µL using BD Cytofix/Cytoperm™ 
Kit. After two rinses, cells were stained for 30 min at room temperature with α-SMA and vWF antibodies 
(Abcam). Labeled cells were centrifuged and each pellet was suspended in 500 μL of PBS containing 5% FBS. 
Multi-parametric analyses were performed on a BD FACSCanto™ II (3-laser, 4-2-2 configuration) for data 
recording and using FlowJo 7.6.5 software (FlowJo LLC). A first analysis was done on size (FSC: forward scatter)/
granulometry (SSC: side scatter) parameters, to collect fixed cells and to remove fragmented cells and debris 
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(Supplementary Fig. 2a and b). This first step allowed us to determine the gate where at least 5 × 104 events per 
replica were recorded. Then, upon these gated events (Supplementary Fig. 2c), the vWF signal was collected on 
the FITC channel (filters λem: 530/30 nm) after air-cooled 488 nm solid state (20-mW output) laser excitation, 
while the α-SMA signal was collected on the Alexa 647 channel (filters λem: 660/20 nm) after air-cooled 633 nm 
HeNe (17-mW output) laser excitation. The specificity of the staining was previously checked by using isotype 
controls, sheep IgG fluorescein (Abgent, Clinisciences) and rabbit IgG, monoclonal [EPR25A] (Abcam) for vWF 
and α-SMA, respectively (Supplementary Fig. 3).

Western blots. Cell total protein was extracted using RIPA buffer supplemented with phosphatase and pro-
tease inhibitors (Roche Diagnostics, Meylan, France). Protein concentration was determined using a BCA assay 
(Sigma Aldrich) and equal amounts of protein were resolved by SDS-PAGE. The blocked membrane was incu-
bated with primary antibodies overnight at 4 °C. Bands were detected by using a horseradish peroxidase second-
ary antibody and visualized with ECL Plus reagent (GE Healthcare, Buc, France). β-Tubulin was used as loading 
control (Santa Cruz Biotechnology, Heidelberg, Germany).

Quantitative real-time PCR. Total RNA was prepared with the total RNA isolation kit RNeasy Mini Kit 
(Qiagen, Valencia, CA). After quantification on a NanoDrop ND-1000 apparatus (NanoDrop Technologies, 
Rockland, DE), reverse transcription was performed with 1 µg RNA using a reverse transcription kit from Applied 
Biosystems (Courtaboeuf, France). Quantitative PCR was carried out on a 7900HT Fast-Real Time PCR sys-
tem (Applied Biosystems) using pre-developed TaqMan® Gene Expression assays (Applied Biosystems), with 
GAPDH as housekeeping gene. Relative mRNA was quantified using the ΔΔCT method. DataAssistTM soft-
ware (Life Technologies) was used to perform hierarchical clustering with global normalization and Pearson’s 
correlation.

Hey2 conditional null mice. To study the effects of Hey2 inactivation on radiation-induced EndoMT 
in vivo, mice possessing LoxP sites on either side of exons 2 and 3 of the target gene Hey2 (Hey2flx/flx; Hey2tm1Eno / J;  
The Jackson Laboratory, Bar Harbor, USA) were bred with mice with Cre recombinase expression under the 
endothelial promoter VE-cadherin (VECad-Cre+/+ mice48),. The following mice were used for experiments: 
Hey2flx/flx/VECad-Cre−/− mice (named Hey2flx/flx) and Hey2flx/flx/VECad-Cre+/− mice (named Hey2KOendo, see 
Supplementary Fig. 6).

Mouse genotyping. Genomic tail DNA was extracted (KAPA mouse genotyping kit, Kapa Biosystem, USA) 
and amplified by PCR. Reverse and forward primers were provided by Life Technologies, France. Two primers were 
used: 5′-CTAGAGAGGACCTGGAGAGTTTAAG-3′ forward and 5′-CTGTGCCACCAGCCTTAAAACC-3′ 
reverse.

Irradiation. Cell irradiation (2, 10 or 20 Gy single doses) was performed at 90% cell confluence using a 137Cs 
source (IBL 637, CisBio, Saclay, France; dose rate 1 Gy.min−1). For fractionated irradiation, confluent cells were 
exposed to 2 Gy daily fractions, 5 days a week with a weekend break. Animal irradiation procedures: the protocol 
(P13-18) for animal use in this work was reviewed and approved by national ethics committee no. 81, animal 
facilities agreement number C92-032-01. For colorectal irradiation, mice were anesthetized (1.5% isoflurane), 
and a single dose of 22 Gy was delivered through a 1 × 0.8 cm window centered on the colorectal region, using 
the Elekta Synergy® Platform (Elekta S.A.S. France, Boulogne, France) delivering 4 MV X-rays at 2.6 Gy/min. For 
total body irradiation, mice were anesthetized with intraperitoneal injection of ketamine/xylazine and exposed 
to 4 MV X-rays at 2.6 Gy/min though a 30 × 30 cm window at a total dose of 12 Gy.

Tissue harvesting, histology and immunohistology. Two and 7/8 weeks after radiation exposure, 
colorectal tissues were removed, fixed in 4% paraformaldehyde and embedded in paraffin. Sections (5 µm) were 
stained with hematoxylin-eosin-saffron for routine histological examination.

Radiation Injury Score (RIS). RIS variables consisted of mucosal ulceration, epithelial atypia, thickening of the 
subserosa, vascular sclerosis, intestinal wall thickening, colitis cystica profunda and dystrophy of the muscularis 
propria (MP). Radiation injury was graded for each variable as null (0), slight (1), moderate (2) or severe (3). 
Dystrophy of the MP was graded as follows: 0: none; 1: dystrophy of a few muscular cell layers in contact with the 
submucosa; 2: dystrophy affecting less than 50% of the MP thickness; and 3: dystrophy affecting more than 50% 
of the MP thickness49.

Measurement of mucosal ulceration in acute samples. lengths of injured area and area affected by loss of border-
ing epithelium were measured using the Visiol@bTM2000 image analysis software (Biocom SA, Les Ulis, France), 
and data were expressed as percentages. The number of epithelial regeneration figures was counted on the entire 
damaged area (between 4 and 9 mm observable on tissue sections) and reported per mm. Multilobed glandular 
hyperplasia was defined as at least 2 crypt bases associated with a single crypt lumen.

Measurement of healthy and cuboidal epithelium in chronic samples. measurements were done on HES-stained 
sections, helped by specific epithelial cell staining with p120 catenin antibody using the Visiol@bTM2000 image 
analysis software (Biocom SA) on the total injured area and expressed as percentages. Healthy bordering epithe-
lium consisted of numerous columnar epithelial cells close to each other, presenting p120 catenin-stained junc-
tions and a basal nucleus. Cuboidal bordering epithelium consisted of cuboidal epithelial cells presenting diffuse 
p120 catenin staining and a centered nucleus.

http://2a
http://b
http://2c
http://3
http://6


www.nature.com/scientificreports/

1 5Scientific RepoRts | 7: 4933  | DOI:10.1038/s41598-017-05389-8

Counting surviving crypts 3 days after total body irradiation: Crypts surviving irradiation were identified 
based on histological appearance, i.e. undilated and possessing at least 10 well-stained epithelial cells and 1 
Paneth cell. Surviving crypts were counted using the Visiol@bTM2000 image analysis software (Biocom SA), over 
a total tissue length of between 1900 and 2600 µm and related to 1000 µm.

Immunofluorescence. longitudinal sections were deparaffinized/rehydrated, permeabilized in PBS-0.1% 
Triton X-100 and antigens were unmasked in citrate buffer pH = 9 (Dako). Sections were incubated with rabbit 
anti-alpha-sma antibody, rabbit polyclonal anti-p120 catenin or rat anti-PLVAP (Abcam) for 1 h at room tem-
perature. Samples were then incubated with the corresponding secondary Alexa Fluor®-conjugated antibody 
(Life Technologies). For immunofluorescent double labeling: sections were incubated with rabbit polyclonal 
antibody to alpha-sma (Abcam) followed by the corresponding secondary Alexa Fluor®-conjugated antibody 
(Life Technologies), and incubated with sheep polyclonal antibody to vWF/FITC-conjugated antibody (Dako). 
Sections were mounted in Vectashield mounting medium with DAPI (Eurobio/Abcys).

The number of PLVAP-positive spots was quantified on 5 different fields per slide for each animal using the 
Visiol@bTM2000 image analysis software (Biocom SA). Yellow merging signals following α-SMA/vWF double 
fluorescence marking EndoMT were monitored by confocal analyses in a Zeiss LSM 780 confocal imaging system 
(Zeiss France, Marly le Roi, France).

TUNEL staining was performed using the In situ Cell Death Detection Kit (Roche Applied Science) accord-
ing to the manufacturer’s instructions. After TUNEL staining, sections were incubated with rabbit monoclonal 
anti-p120 catenin antibody (Abcam) for 1 h at room temperature followed by the corresponding secondary anti-
body (Alexa Fluor®-conjugated antibodies, Life Technologies). Apoptotic epithelial cells were counted in about 
50 crypts per tissue section and data were reported as number of TUNEL-positive cells per crypt.

Human rectal tissues. Human tissues were obtained at the Department of Pathology, Gustave Roussy 
Institute (Villejuif, France) following institutional ethical guidelines and French Medical Research Council guide-
lines. Twenty-four patients treated for rectal adenocarcinoma with preoperative radiotherapy (45 Gy, fractions of 
2 or 1.8 Gy) underwent surgical resection of tumors 5 to 7 weeks post-treatment. Specimens of normal tissue were 
taken adjacent to the tumor (in the irradiation field) and distant from the tumor (outside the irradiation field), 
making each patient his or her own control. For each patient, an RIS was applied as already described15. In the 
present study, tissue specimens from 4 patients presenting a RIS >75/100 were chosen for Hey2 immunostaining.

Statistical analyses. Data are given as means ± SEM. Statistical analyses were performed by ANOVA, 
Student’s t-test or the Mann-Whitney rank sum test when appropriate, with a level of significance of p < 0.05.

References
 1. Hauer-Jensen, M., Denham, J. W. & Andreyev, H. J. Radiation enteropathy–pathogenesis, treatment and prevention. Nat Rev 

Gastroenterol Hepatol 11, 470–9 (2014).
 2. Bentzen, S. M. Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nat Rev Cancer 

6, 702–13 (2006).
 3. Milliat, F., Francois, A., Tamarat, R. & Benderitter, M. [Role of endothelium in radiation-induced normal tissue damages]. Ann 

Cardiol Angeiol (Paris) 57, 139–48 (2008).
 4. Liebner, S. et al. Beta-catenin is required for endothelial-mesenchymal transformation during heart cushion development in the 

mouse. J Cell Biol 166, 359–67 (2004).
 5. Medici, D. et al. Conversion of vascular endothelial cells into multipotent stem-like cells. Nat Med 16, 1400–6 (2010).
 6. Jimenez, S. A. Role of endothelial to mesenchymal transition in the pathogenesis of the vascular alterations in systemic sclerosis. 

ISRN Rheumatol 2013, 835948 (2013).
 7. Zeisberg, E. M., Potenta, S., Xie, L., Zeisberg, M. & Kalluri, R. Discovery of endothelial to mesenchymal transition as a source for 

carcinoma-associated fibroblasts. Cancer Res 67, 10123–8 (2007).
 8. Kalluri, R. & Weinberg, R. A. The basics of epithelial-mesenchymal transition. J Clin Invest 119, 1420–8 (2009).
 9. Arciniegas, E., Frid, M. G., Douglas, I. S. & Stenmark, K. R. Perspectives on endothelial-to-mesenchymal transition: potential 

contribution to vascular remodeling in chronic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 293, L1–8 (2007).
 10. Zeisberg, E. M. et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 13, 952–61 (2007).
 11. He, J., Xu, Y., Koya, D. & Kanasaki, K. Role of the endothelial-to-mesenchymal transition in renal fibrosis of chronic kidney disease. 

Clin Exp Nephrol 17, 488–97 (2013).
 12. Hashimoto, N. et al. Endothelial-mesenchymal transition in bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol 43, 

161–72 (2010).
 13. Zeisberg, E. M., Potenta, S. E., Sugimoto, H., Zeisberg, M. & Kalluri, R. Fibroblasts in kidney fibrosis emerge via endothelial-to-

mesenchymal transition. J Am Soc Nephrol 19, 2282–7 (2008).
 14. Rieder, F. et al. Inflammation-induced endothelial-to-mesenchymal transition: a novel mechanism of intestinal fibrosis. Am J Pathol 

179, 2660–73 (2011).
 15. Mintet, E. et al. Identification of Endothelial-to-Mesenchymal Transition as a Potential Participant in Radiation Proctitis. Am J 

Pathol (2015).
 16. Kokudo, T. et al. Snail is required for TGFbeta-induced endothelial-mesenchymal transition of embryonic stem cell-derived 

endothelial cells. J Cell Sci 121, 3317–24 (2008).
 17. Liu, J., Dong, F., Jeong, J., Masuda, T. & Lobe, C. G. Constitutively active Notch1 signaling promotes endothelialmesenchymal 

transition in a conditional transgenic mouse model. Int J Mol Med 34, 669–76 (2014).
 18. Lai, E. C. Notch signaling: control of cell communication and cell fate. Development 131, 965–73 (2004).
 19. Noseda, M. et al. Notch activation results in phenotypic and functional changes consistent with endothelial-to-mesenchymal 

transformation. Circ Res 94, 910–7 (2004).
 20. Mayeuf, A. & Relaix, F. [Notch pathway: from development to regeneration of skeletal muscle]. Med Sci (Paris) 27, 521–6 (2011).
 21. Fischer, A., Schumacher, N., Maier, M., Sendtner, M. & Gessler, M. The Notch target genes Hey1 and Hey2 are required for 

embryonic vascular development. Genes Dev 18, 901–11 (2004).
 22. Kokubo, H., Miyagawa-Tomita, S., Nakazawa, M., Saga, Y. & Johnson, R. L. Mouse hesr1 and hesr2 genes are redundantly required 

to mediate Notch signaling in the developing cardiovascular system. Dev Biol 278, 301–9 (2005).
 23. Fu, Y. et al. RUNX3 maintains the mesenchymal phenotype after termination of the Notch signal. J Biol Chem 286, 11803–13 (2011).



www.nature.com/scientificreports/

1 6Scientific RepoRts | 7: 4933  | DOI:10.1038/s41598-017-05389-8

 24. Gasperini, P. et al. Kaposi sarcoma herpesvirus promotes endothelial-to-mesenchymal transition through Notch-dependent 
signaling. Cancer Res 72, 1157–69 (2012).

 25. Garcia, J. et al. Tie1 deficiency induces endothelial-mesenchymal transition. EMBO Rep 13, 431–9 (2012).
 26. Arciniegas, E., Neves, Y. C. & Carrillo, L. M. Potential role for insulin-like growth factor II and vitronectin in the endothelial-

mesenchymal transition process. Differentiation 74, 277–92 (2006).
 27. Kokubo, H. et al. Targeted disruption of hesr2 results in atrioventricular valve anomalies that lead to heart dysfunction. Circ Res 95, 

540–7 (2004).
 28. Li, J. et al. Endothelial Cell Apoptosis Induces TGF-beta Signaling-Dependent Host Endothelial-Mesenchymal Transition to 

Promote Transplant Arteriosclerosis. Am J Transplant (2015).
 29. Choi, S. H. et al. A Hypoxia-Induced Vascular Endothelial-to-Mesenchymal Transition in Development of Radiation-Induced 

Pulmonary Fibrosis. Clin Cancer Res 21, 3716–26 (2015).
 30. Kim, M. et al. The effect of oxidized low-density lipoprotein (ox-LDL) on radiation-induced endothelial-to-mesenchymal transition. 

Int J Radiat Biol 89, 356–63 (2013).
 31. Potten, C. S. Radiation, the ideal cytotoxic agent for studying the cell biology of tissues such as the small intestine. Radiat Res 161, 

123–36 (2004).
 32. Shue, E. H. et al. Plasmalemmal vesicle associated protein-1 (PV-1) is a marker of blood-brain barrier disruption in rodent models. 

BMC Neurosci 9, 29 (2008).
 33. Supiot, S. & Paris, F. [Radiobiology dedicated to endothelium]. Cancer Radiother 16, 11–5 (2012).
 34. Chen, X.Y. et al. Inhibition of myocyte-specific enhancer factor 2A improved diabetic cardiac fibrosis partially by regulating 

endothelial-to-mesenchymal transition. Oncotarget (2016).
 35. Ying, R. et al. Hydrogen sulfide suppresses endoplasmic reticulum stress-induced endothelial-to-mesenchymal transition through 

Src pathway. Life Sci 144, 208–17 (2016).
 36. Suzuki, K. et al. Radiation-induced senescence-like growth arrest requires TP53 function but not telomere shortening. Radiat Res 

155, 248–253 (2001).
 37. Woltje, K., Jabs, M. & Fischer, A. Serum induces transcription of Hey1 and Hey2 genes by Alk1 but not Notch signaling in 

endothelial cells. PLoS One 10, e0120547 (2015).
 38. Montorfano, I. et al. Oxidative stress mediates the conversion of endothelial cells into myofibroblasts via a TGF-beta1 and TGF-

beta2-dependent pathway. Lab Invest 94, 1068–82 (2014).
 39. Deng, Y. et al. Blocking protein phosphatase 2A signaling prevents endothelial-to-mesenchymal transition and renal fibrosis: a 

peptide-based drug therapy. Sci Rep 6, 19821 (2016).
 40. Paris, F. et al. Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 293, 293–7 (2001).
 41. Stan, R. V., Kubitza, M. & Palade, G. E. PV-1 is a component of the fenestral and stomatal diaphragms in fenestrated endothelia. Proc 

Natl Acad Sci USA 96, 13203–7 (1999).
 42. Schlingemann, R. O., Hofman, P., Vrensen, G. F. & Blaauwgeers, H. G. Increased expression of endothelial antigen PAL-E in human 

diabetic retinopathy correlates with microvascular leakage. Diabetologia 42, 596–602 (1999).
 43. Dorr, W. & Hendry, J. H. Consequential late effects in normal tissues. Radiother Oncol 61, 223–31 (2001).
 44. Torres, S. et al. Glucagon-like peptide-2 improves both acute and late experimental radiation enteritis in the rat. Int J Radiat Oncol 

Biol Phys 69, 1563–71 (2007).
 45. Penton, A. L., Leonard, L. D. & Spinner, N. B. Notch signaling in human development and disease. Semin Cell Dev Biol 23, 450–7 (2012).
 46. Fre, S. et al. Notch signals control the fate of immature progenitor cells in the intestine. Nature 435, 964–8 (2005).
 47. Moya, I. M. et al. Stalk cell phenotype depends on integration of Notch and Smad1/5 signaling cascades. Dev Cell 22, 501–14 (2012).
 48. Alva, J. A. et al. VE-Cadherin-Cre-recombinase transgenic mouse: a tool for lineage analysis and gene deletion in endothelial cells. 

Dev Dyn 235, 759–67 (2006).
 49. Blirando, K. et al. Mast cells are an essential component of human radiation proctitis and contribute to experimental colorectal 

damage in mice. Am J Pathol 178, 640–51 (2011).

Acknowledgements
We thank the GSEA (Groupe de Soutien à l’Expérimentation Animale) of the IRSN for their excellent technical 
assistance with the breeding of mice. This work was supported by Electricité De France EDF (Groupe Gestion 
Projet Radioprotection) and the Institute for Radiological Protection and Nuclear Safety (ROSIRIS program).

Author Contributions
E.M., J.L., G.T. and V.B.: acquisition, analyses and interpretation of data. V.P.: acquisition, analyses and 
interpretation of data in flow cytometry, help writing the manuscript. J.C.S.: Material support (human tissues) and 
histopathological analysis of tissue sections. M.L.I.A.: Material support and critical review of the manuscript. O.G. 
and F.M.: Critical review of the manuscript. A.F.: Conception and design, acquisition/analyses/interpretation of 
data, writing of the manuscript, supervising the project.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-05389-8
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://dx.doi.org/10.1038/s41598-017-05389-8
http://creativecommons.org/licenses/by/4.0/

	Endothelial Hey2 deletion reduces endothelial-to-mesenchymal transition and mitigates radiation proctitis in mice
	Results
	Irradiation induces the endothelial-to-mesenchymal transition in HUVECs. 
	About 40% of HUVECs undergo phenotypic conversion to mesenchymal-like cells. 
	The endothelial-to-mesenchymal transition is associated with Hey2 overexpression in irradiated HUVECs. 
	Hey2 overexpression using expression vector transfection in HUVECs is sufficient to induce EndoMT. 
	Human radiation proctitis is associated with increased Hey2 immunoreactivity in injured tissues. 
	Conditional deletion of Hey2 in the endothelium reduces endothelial-to-mesenchymal transition frequency associated with pre ...
	Reducing EndoMT frequency impacts the severity of acute and late preclinical radiation proctitis. 
	Conditional deletion of Hey2 in the endothelium protects the intestinal stem cell compartment from radiation damage. 

	Discussion
	Methods
	Cell line. 
	Cell transfection. 
	Cell immunofluorescence. 
	Flow cytometry. 
	Western blots. 
	Quantitative real-time PCR. 
	Hey2 conditional null mice. 
	Mouse genotyping. 
	Irradiation. 
	Tissue harvesting, histology and immunohistology. 
	Radiation Injury Score (RIS). 
	Measurement of mucosal ulceration in acute samples. 
	Measurement of healthy and cuboidal epithelium in chronic samples. 
	Immunofluorescence. 

	Human rectal tissues. 
	Statistical analyses. 

	Acknowledgements
	Figure 1 Irradiation induces phenotypic conversion of endothelial cells resembling EndoMT.
	Figure 2 About 40% of HUVECs undergo phenotypic conversion.
	Figure 3 Radiation-induced EndoMT in HUVECs occurs together with Hey2 overexpression.
	Figure 4 Hey 2 overexpression is sufficient to induce phenotypic conversion of endothelial cells to a mesenchymal phenotype.
	Figure 5 Hey2 immunoreactivity in the endothelial compartment is increased in human radiation proctitis.
	Figure 6 Conditional Hey2 knock-out in the endothelium reduces EndoMT frequency in injured colorectum.
	Figure 7 Conditional Hey2 deletion in the endothelium mitigates radiation-induced acute tissue damage.
	Figure 8 Acute injury mitigation by conditional deletion of Hey2 reduces the severity of late epithelial damage.
	Figure 9 Conditional Hey2 deletion in the endothelium protects epithelial stem cells and endothelial compartments from radiation damage.
	Table 1 Gene expression profiles marking EndoMT in HUVECs after single dose or fractionated radiation exposure.




