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Thermometry of bosonic mixtures 
in Optical Lattices via Demixing
F. Lingua  1, B. Capogrosso-Sansone2, F. Minardi  3,4 & V. Penna1

Motivated by recent experiments and theoretical investigations on binary mixtures, we investigate 
the miscible-immiscible transition at finite temperature by means of Quantum Monte Carlo. Based on 
the observation that the segregated phase is strongly affected by temperature, we propose to use the 
degree of demixing for thermometry of a binary bosonic mixture trapped in an optical lattice. We show 
that the proposed method is especially sensitive at low temperatures, of the order of the tunnelling 
amplitude, and therefore is particularly suitable in the regime where quantum magnetism is expected.

Ultracold atoms in optical lattices are generally regarded as an almost ideal experimental setting to investigate 
many-body quantum physics in strongly correlated regimes1. However, next to undisputed strengths, atomic sys-
tems suffer from some notable limitations. Perhaps surprisingly if compared to condensed-matter counterparts, 
for strongly correlated quantum gases measuring fundamental parameters, such as temperature, is far from triv-
ial, a fact often encumbering the comparison between theoretical and experimental findings. The physical reason 
is that the primary thermometric quantity used in cold atoms experiments, namely the momentum distribution, 
in strongly correlated regimes is often dominated by quantum rather than thermal fluctuations, thereby becom-
ing quite insensitive to temperature variations. In recognition of its importance, thermometry for optical lattices 
have sparked numerous theoretical proposals and experiments2. Quite generally, two main approaches have been 
pursued for thermometry: through ancillary samples (or sample subsets) in a well-understood, e.g. weakly inter-
acting (WI), regime3–7; or by measuring in-situ local density fluctuations with high-resolution imaging8–13. Other 
proposed methods still await experimental demonstration14–16.

A new thermometric scheme. In this work, we propose a thermometry technique for ultracold quantum 
mixtures in optical lattices based on the demixing of two mutually repulsive components. Multi-components 
BECs have been created long ago17, 18, while recently seminal works in thermometry have been reported both 
with bosonic and fermionic samples. With a rubidium condensate, demixing between two spin components was 
induced by a magnetic field gradient and the width of the interface region was used to estimate the temperature3, 4.  
Recently, the spin waves, or ‘magnons’, in a spinor Rb condensate were used to reduce the entropy per particle to 
values as low as 0.02 kB

19, an order of magnitude below the values required for the onset of magnetic phases20. On 
the fermionic side, anti-ferromagnetic correlations have been detected by means of Bragg scattering21, and also, 
very recently, directly by means of single-site imaging22–24.

We analyze the effect of temperature fluctuations on a demixed phase of a mixture of two bosonic species 
trapped in an optical lattice with and without an external harmonic confinement. Demixing, i.e. the spatial sep-
aration of the two components, occurs when inter-species repulsion overcomes the intra-species one25–28. An 
important role is played by temperature fluctuations which compete with, and eventually destroy, demixing29. 
Here, we take advantage of this competition to propose a route for thermometry in ultracold mixtures: we employ 
a suitable global estimator of demixing which can readily be measured and used to determine the temperature.

We first consider the case of a moderately shallow optical lattice, where each species is superfluid. At suffi-
ciently weak interspecies interaction, this regime is interesting as the momentum distribution of either species 
allows an independent determination of the temperature30 to validate the currently proposed thermometry. In the 
case of a deeper optical lattice, thus a strongly-interacting (SI) regime31, we lack reliable temperature estimators 
other than the direct microscopic observation of particle-hole pairs. In this regime, our proposed thermometry 
proves a remarkably effective tool. Specifically, we show how the degree of demixing characterizing the spatial 
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distribution of trapped mixtures depends upon the temperature. In particular, demixing in low density regions is 
more susceptible to temperature fluctuations than in high density regions.

In this paper, we also probe the effect of temperature on spatial distribution, showing that temperature-induced 
changes in the shell-structure of the trapped density correspond to a dramatic signature in the boson interference 
patterns produced when the confining potential is turned off. Our results are based on large-scale path-integral 
quantum Monte Carlo simulations by a two-worm algorithm32.

The Model and the phase diagram. A mixture of two bosonic species trapped in a two-dimensional 
square optical lattice, is described by the two-component Bose-Hubbard (BH) model:

∑= + +H H H U n n
(1)a b ab

i
ai bi

where Uab is the inter-species repulsion, nai, nbi are the number operators at site i for species A and B respectively, 
and

∑ ∑ ∑ µ= − − −†H U n n t c c n
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where 〈ij〉 denotes to sum over nearest neighboring sites, c = a, b the bosonic species, ci ( †ci ) the annihilation (cre-
ation) operators satisfying =†c c[ , ] 1i i , Uc the intra-species repulsion, tc the hopping amplitude, and μci = μc 
(µ µ ω= − →rci c H i

2) the chemical potentials in the homogeneous (trapped) case. In this paper, for simplicity, we 
consider a model with twin species, namely, we set Ua = Ub = U, ta = tb = t and μa = μb = μ. The condition on the 
chemical potentials implies that Na = Nb, where Na and Nb are the total number of particles of species A and B, 
respectively. The ground-state phase diagram of a twin-species mixture at total integer filling features a demixed 
superfluid (dSF), or a demixed Mott-insulator (dMI), when the interspecies interaction becomes greater than the 
intraspecies repulsion, and a double-superfluid phase (2SF) or a supercounterflow (SCF) otherwise. This is illus-
trated in Fig. 1 where integer total filling factor n = 1 has been assumed.

Results
We first consider a homogeneous system of linear size L (in unit of the lattice step d which we set as our unit 
length) with periodic boundary conditions. We work at integer total filling factor considering both n = 1 and 
n = 2. This corresponds to the condition + =N N nLa b

2. Then we move to analyse a trapped system by introduc-
ing a harmonic trapping potential.

To study the effect of temperature fluctuations, we first focus on the transition 2SF-dSF since this can be 
observed for any choice of the filling factor29, while the transition from dMI-SCF requires an integer value of the 
filling factor.

We quantify demixing effects through the parameter
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Figure 1. Ground-state phase diagram of twin bosonic species at total filling n = 1, from ref. 29. Crosses 
indicate the parameters used here for simulations. The dSF (dMI) phase represents two spatially separated 
superfluids (Mott-Insulators). 2SF describes two mixed superfluids, and SCF is a global Mott-insulator phase 
where mobility is allowed as a superflow in the particle-hole channel.
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where the sum runs over the M = L2 lattice sites; evidently, Δ ranges from 0, if all sites are equally populated, to 
1, for complete demixing.

Homogeneous case. Figure 2 shows Δ as a function of temperature T and inter-species interactions Uab, 
at fixed U = 10t, for total filling n = 1 (upper panel) and n = 2 (lower panel). At lower temperatures, a step-like 
increase in the value of the demixing parameter Δ signals the onset of strong demixing in the system. As the 
temperature is increased, thermal fluctuations become more prominent and the mixing of the two components 
is restored even for Uab > U. We observe a pronounced dependence of Δ on temperature in the dSF phase, with 
a three order of magnitudes drop within a range of temperatures of the order of the tunneling energy t. On the 
contrary, in the 2SF phase, Δ is rather insensitive to the temperature, and it remains orders of magnitude smaller 
than in the dSF phase. As outlined below, the strong dependence of Δ on T displayed in the dSF phase motivates 
the basic idea of extracting the temperature from the measurement of the demixing parameter.

For total filling factor n = 2 (lower panel in Fig. 2), the larger energy penalty associated with the overlap 
between components leads to a more evident demixing29. Robustness against miscibility results in a stronger 
robustness against temperature fluctuations than at lower filling factors: notice the evident increase in tempera-
tures needed in order to destroy demixing for n = 2. In this sense, larger filling factors shift the operating range of 
the proposed thermometer towards higher temperatures. This behavior can be understood by observing that, for 
Uab > U, increasing the filling factor further inhibits the start of the mixing process of the two components. In this 
sense, the minimal mixing consists in displacing a single boson a (b) in the domain of components B (A). For 
n  =  2, the heuristic calculation of the free-energy cost for creating a double pair ab  gives 
∆ = − − −F U U n Tk L2( )( 1) ln( /4)ab B

4 . The mixing temperature is found to be = −k T U U L2( )/ln( /4)B ab
4 . 

For n = 1, the mixing process begins with the formation of a single pair ab and a hole. This entails 
∆ = −F U Tk Lln( /4)ab B

4  and =k T U L/ln( /4)B ab
4 . In both cases, using the parameter values of Fig. 2 gives 

kBT/t ~ 1 in agreement with numerical results. The dependence on the lattice size L reflects the finite-size charac-
ter of our model. The temperature at which the first pairs ab crop up is proportional to Uab, thus confirming the 
inhibition of the mixing effect for increasing Uab.

Trapped system. In order to consider a more general and realistic scenario, we relax the homogeneity 
assumption and study the system in a harmonic trap. The chemical potential of species c = a, b, transforms 
according to

µ µ ω= − →r (4)ci c H i
2 2

where ωH is the curvature of the harmonic trap and →ri  the position vector of lattice site i. This leads to a 
site-dependent filling factor ni. Generally, demixing is not affected by the presence of a harmonic potential as far 
as the condition Uab > U is satisfied. Demixing in the trap manifests itself through the occurrence of a sharp and 
straight boundary between the two species. This represents the minimum-energy configuration for a demixed 
system in a trap, as originally predicted for continuous systems25.

Weak Interaction. In the following, we present finite temperature results for the trapped case of WI mixtures. 
We find that a spatial shell structure arises at intermediate temperatures (see Fig. 3), in which a central demixed 
phase (dSF) is surrounded by a shell of mixed phase (2SF). In the first row of Fig. 3, it is well visible that the 
temperature-induced mixing effect first appears where the density is lower (that is in the outer shell) and in the 

Figure 2. Parameter Δ as a function of temperature T/t and interspecies interactions Uab/t, at U/t = 10. Total 
filling n = 1 (left panel) and n = 2 (right panel). Points show numerical results.



www.nature.com/scientificreports/

4Scientific RepoRts | 7: 5105  | DOI:10.1038/s41598-017-05353-6

proximity of the boundary separating the two species. Such an effect is due to the larger entropy associated with 
demixing in these regions. For sufficiently large temperatures we detected the presence of a third surrounding 
shell of a Normal-Fluid (NF) phase. As expected, the thickness of the NF shell increases for increasing tempera-
tures (see Supplementary information for details).

In Fig. 4 we show the behaviour of parameter Δ as a function of T/t for the trapped case. We have performed 
simulations for different number of atoms N, both in the WI (solid lines) and SI (black dashed line) regimes. In 
the WI regime with U/t = 10 and Uab/t = 15, besides confirming that a system with a higher number of bosons is 
more robust against temperature mixing, we notice that, over the considered range of temperature, the demixing 
parameter drops approximately one order of magnitude less than in the homogeneous case. Larger local densities 
at the center of the trap imply larger interactions energies thus reducing the boson mobility and their mixing 
degree.

In search of additional experimental signatures of the temperature-driven transition from the dSF to the 2SF 
phase, we computed the momentum distributions φ= ∑ − †n e c cc i j

i
i jk k

k r r
, ( )

2
,

( )i j 33 for species c = a, b. 
Distributions nc,k, integrated along one direction, are recorded by the time-of-flight images experimentally 
observed, provided that interactions have a negligible effect during the expansion. In the second row of Fig. 3 we 
plot the k-periodic part of momentum distribution, i.e. φ≡n nk k( ) ( )/c c k( )

2, for species B (due to the symmetry 
of the system the momentum distributions of species A show the same features). For increasing temperatures 
(right to left), we observe how the appearance of the spatial shell structure is accompanied by changes in the 
momentum distribution. When the “hard-wall” separating the demixed species is present, the phase coherence of 
each species is restricted to the portions of the lattice where the species is confined, and this produces the fringes 

Figure 3. Density maps (first row) of species A (green) and B (blue), and computed momentum distributions of 
species B (second row) for decreasing temperature (left to right). The mixture (U/t = 10, Uab/t = 15) is trapped in 
a harmonic potential of strength ωH/t = 0.03.

Figure 4. Δ parameter as a function of temperature in the trapped case. Solid lines: ω = .t/ 0 03H , =U t/ 10, 
=U t/ 15ab ; black dashed line: and ω = .t/ 0 12H , =U t/ 20, =U t/ 24ab .
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shown in the n k( )c  images of Fig. 3. Such fringes arise due to the interference of waves bouncing back from the 
“hard-wall” separating the demixed species.

Strong Interaction. After showing that parameter Δ is a convenient temperature indicator for WI mixtures, we 
move to consider the case of SI regimes. In Fig. 4 we plot the parameter Δ as a function of temperature for larger 
interactions, i.e. U/t = 20, Uab/t = 24, and ωH/t = 0.12. We find that Δ still decreases as the temperature increases. 
Due to the larger value of Uab/t, Δ drops by at least one order of magnitude less than in the WI case.

Spatial shell structures arise also in the SI regime (see Fig. 5). For the values U/t = 20, Uab/t = 24 considered in 
Fig. 5, the phase diagram of the homogeneous case predicts different quantum phases depending on the filling. In 
particular, at zero temperature and integer filling, the system is expected to be a dMI. In the trapped case, such a 
phase can be observed in the regions of integer filling (density maps at T/t = 0.25 and T/t = 0.06 in Fig. 5). The 
strong interaction and very low temperatures are responsible for the fragmented structure of these density maps 
whose metastable character is discussed in the Supplementary information. Furthermore, at higher temperatures 
(left columns in Fig. 5) in the outer regions, we find a mixed phase forming a thin shell with a n = 1 plateau, sug-
gesting the presence of a SCF phase in that region. The SCF at Uab > U is made accessible by temperature excita-
tions, since the energy separation between the dMI and the SCF is of the order of ~ − + −t U t U U U/ / ab ab

2 2 34, 35.

Experimental Realization
A mixture with ta = tb and Ua = Ub can be realized with 41K atoms in the two lowest hyperfine states 

= = =a F m1, 1  and = = =b F m1, 0  (it is understood that the hyperfine quantum numbers are used 
only as labels at high magnetic fields). In presence of a magnetic field B 675G0  the above mixture is predicted 
to feature a relatively narrow Feshbach resonance (δB = 0.15 G) between unlike states, while for like particles the 
scattering lengths are approximately constant across the narrow resonance and equal to each other 
(  a a a60a b 0)36. Therefore, with a magnetic field near B0 it is possible to tune Uab, with minimal changes in Ua 
and Ub. For a heteronuclear mixture of a = 41K and b = 87Rb in a square lattice, tunneling rates can be made nearly 
equal with an appropriate choice of the lattice step. For example, for a lattice step d = 380 nm, at lattice strengths 
such as 5 ≤ Ub/tb ≤ 30, we have 0.85 ≤ tb/ta ≤ 1.15 and the ratio Ub/Ua = 0.58 is constant.

The measurement of parameter Δ can be obtained directly from high resolution microscope images8–13. 
However, being a global observable, Δ does not require knowledge of the local densities and is also obtained by 
spectroscopic techniques. Indeed, the number of sites occupied by both species can be detected by driving tran-
sitions, sufficiently narrow in energy, towards excited states that can either be internal hyperfine states37 or exter-
nal motional states, such as states of excited lattice bands38. In practice, the task is eased in proximity of the 
interspecies Feshbach resonance enhancing Uab. For sake of concreteness, we focus on microwave (or radiofre-
quency) transitions between internal hyperfine states, and we assume that for excited atoms the interatomic inter-
actions are negligible with respect to Uab. Since Uab is the energy cost required for the formation of a pair AB on 
the same site, then microwave photons will drive transitions in all lattice sites with occupation numbers 

= n n m( , ) ( , )a b  or m( , ) if their frequency is shifted by ~− U mab  with respect to the bare hyperfine splitting. 
Thus, the number of atoms in the excited hyperfine state as a function of the microwave frequency shows several 
different peaks, each corresponding to a specific pair of occupation numbers,  m( , ) or m( , ). The area of the 
observed peaks yields the relative number of the lattice sites, f m( , ), with the given fillings. Once f m( , ) values 
are known for all pairs  m( , ), the demixing parameter is readily obtained as ∆ = ∑ − +  



f m m m( , )( ) /( )m( , )
2 2.

Finally, we briefly discuss the accuracy of our proposed technique. For ≡ − u U U tab , i.e. the regime 
where the above cited spectroscopy is to be performed, Δ decreases gently with T/t, enabling the use of the ther-
mometer in a continuous fashion. In this range, the value of Δ is weakly dependent on u, thus the uncertainty on 
u negligibly affects that on T/t. In addition, since the measured value for Δ allows to infer T/t values, to convert 
the temperatures in SI units (i.e. kelvin), we are bound to introduce a relative uncertainty δT/T = δt/t.

The parameters of the Hamiltonian are known with satisfactory precision: interaction strengths can be deter-
mined with relative uncertainty below 10−2, see e.g. ref. 39, and similarly the tunneling rates40. Such levels of 
uncertainty are certainly tolerable for measurements of temperatures in deep optical lattices.

Figure 5. Density maps (first row) and density profiles (second row) of species A (green) and B (blue), for 
decreasing temperature (left to right) in the SI regime: U/t = 20, Uab/t = 24 and trapping potential strength 
ωH/t = 0.12. Density profiles 〈nc〉 are computed along the horizontal axis through the center of the trap. The total 
density profile is also shown (black-solid line).
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For the sake of clarity, in Fig. 6, the right-panel of Fig. 2 is represented in a linear instead of logarithmic scale. 
This figure shows the contour-plot of Δ as a function of both T/t and Uab/t. One clearly sees how, for sufficiently 
large values of Uab/t, Δ exhibits a linear behaviour when T/t is varied in the interval [T1, T2] with ≈ .T 0 51  and 

≈T 22 . In Fig. 6 we also plot the critical boundary (red-dashed line) between the mixed and demixed phases 
predicted heuristically above ( = −k T U U L2( )/ ln( /4)B ab

4 ). We notice that the simulated boundary is very well 
reproduced by the heuristical formula.

Conclusions
We investigated temperature effects on the demixing of a binary mixture in both the homogenous and trapped 
case. Temperature fluctuations progressively destroy spatial separation between the two species with signatures 
visible also in the momentum distribution. Quite reasonably, higher fillings manifest stronger robustness against 
temperature-induced mixing. In both the weakly- and the strongly-interacting regime, the demixing parameter 
Δ is suppressed in a temperature range of the order of the tunneling energy. We therefore propose to use the 
experimentally measurable demixing parameter as a thermometer for strongly-correlated binary mixtures in 
the demixed phase. With the recent observations of anti-ferromagnetic correlations, reliable thermometry in 
optical lattices for strongly-interacting regimes is sorely needed to advance the field of ‘quantum magnetism’ with 
ultracold atoms.

Methods
The investigation presented above has been carried out by performing simulations by means of the two-worm 
algorithm quantum Monte Carlo32, 41, 42, a Path-Integral technique that works within the grand canonical ensem-
ble. It exploits the imaginary-time evolution to evaluate quantum-thermal expectation values of different physical 
quantities.

The worm algorithm. According to quantum statistical mechanics the expectation value of a physical 
observable is given by

∑ρ α ρ α= =
α

ˆ ˆ ˆ ˆ ˆO Tr O O( )
(5)

where Ô is the quantum-operator corresponding to the physical observable O, ρ = β−ˆ
ˆ

e /H  is the the density 
operator and = β− ˆ

Tr e( )H  the partition function. The parameter β = 1/T is the inverse temperature and is taken 
in unit of kB = 1. The density operator can be treated as unitary evolution operator in imaginary-time τ = i · t. This 
allows to estimate the expectation value of a generic observable Ô  as an unitary evolution in imaginary-time 
between τ = 0 and τ = β.

Within the interaction picture, the imaginary-time evolution operator takes the form ref. 42:

∫= ⋅β β τ τ− − −
β

ˆˆ ˆ ˆ
e e eT (6)H H V d( )0 0

where T̂ is the time-ordering operator, and τ = τ τ−ˆ ˆˆ ˆ
V e Ve( ) H H0 0 , while Ĥ0 and V̂  are the diagonal and off-diagonal 

part of Hamiltonian Ĥ, respectively. The time evolution operator σ = ∫ τ τ−
βˆˆ

ˆ
eT V d( )

0  in the interaction picture can 
be expressed in its iterative expansion form (the Matsubara time-evolution operator)

Figure 6. Contour-plot of Δ as a function of temperature T/t and interspecies interactions Uab/t, at U/t = 10. 
Total filling n = 2 and linear size of the lattice L = 24 (same data of Fig. 2, right panel). Red-dashed line shows 
critical boundary between the demixed and mixed phases computed theoretically through the relation 

= −k T U U L2( )/ln( /4)B ab
4 .
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∫σ σ σ= = + + +τ−
β
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where the n-th order term has the form
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The chain of operators τ τ τ− 

ˆ ˆ ˆV V V( ) ( ) ( )n n 1  describes the evolution of the system between τ = 0 and τ = β. By 
expanding the off-diagonal operator V̂  in an operator basis

∑=ˆ ˆV K
(9)l

l

such that K̂l are hermitian and their action on a Fock state of the system results in another state of the same Fock 
space 

α γ α γ= = ∈ .γ
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K K K k with, , , (10)l l l l

The n-th order term of the imaginary-time evolution operator can be rewritten in the form
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It is then possible to rewrite the trace (5) as
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where αΘ =α Ô  is the Fock state resulting from the action of operator Ô on the state α . The expectation value 
of the observable O is then computed as a sum of all the possible evolution in imaginary-time from all the possible 
initial state Θα  at τ = 0 to the corresponding definite final state |α〉 at τ = β. The chain of operators 

τ τ τ−−


ˆ ˆ ˆK K K( ) ( ) ( )l n l n l1 1n n 1 1
 defines the path in imaginary-time (i.e. worldline) from state Θα  to the state |α〉. Since 

the whole computation of   and the generation of all the possible paths would be computationally too costly, a 
Monte Carlo sampling is used to sample only those paths that contribute the most to the expectation value. The 
Monte Carlo algorithm generates at each Monte Carlo step a different configuration, and, via a Metropolis 
Method, accepts or rejects it with a probability that satisfies a proper detailed-balance equation41, 42.

The states of the system described by the two-species Hamiltonian (1) is the tensor product of the Fock states 
in the spatial mode representation of the two bosonic species

α α α= ⊗ = … ⊗ …n n n n n n (13)a b a a aM b b bM1 2 1 2

where |αa〉 and |αb〉 are the Fock states of species A and B respectively, and nci the i-site occupation number of 
species C = A, B.

The worm algorithm41, 42 works in an enlarged configuration space by introducing a disconnected worldline, 
the worm. This results in working in the grand-canonical ensemble, where particles can be added/removed to/
from the system. “Head” and “tail” of the worm destroy and create a particle in a given site i and imaginary time 
τ. They correspond to the annihilation operation ci(τ) and the creation operator τ

†cj( ) respectively. Consequently, 
when the worm is present in the cofiguration eq. 12 refers to the Green function: τ τ= +τ

ˆ †G i j c t c tT( , , ) ( ) ( )i j .
Through operators τK̂ ( )l m , head (ci(τ)), tail ( τ

†cj( )) the worm moves in space and imaginary time (jump, recon-
nection, shift in time …41, 42) thus generating new configurations. In our case, in order to explore the configura-
tion space of both the two bosonic species, we use two independent worms that act respectively on the Fock space 
of the two bosonic species32.

Estimation of Quantum-Correlators. To compute the momentum distributions and to check the super-
fluid/normal-fluid phase transition we estimated quantum-correlators of the form †c ci j . The computation of 
quantum-correlators †c ci j  through the 2-Worm-Algorithm is achieved by collecting statistics of the position of 
“head” and “tail” of the worm. Every time the “tail” ( †ci ) and the “head” (cj) of the worm of species C = A, B are 
found in position i and j respectively, the correlation-matrix element Mcij is increased (c = a, b). The 
quantum-correlators are then estimated as
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∝ .⟨ ⟩†c c M (14)i j cij

Simulation Setup. Each simulation is carried out by setting both the temperature and the number of parti-
cle. The worm-algorithm quantum Monte Carlo works within the picture of the grand canonical ensemble at 
finite temperature. The temperature is controlled through the inverse-temperature parameter β. The number of 
particles in the system is controlled via the chemical potentials μa = μb = μ. By carefully tuning the value of μ it is 
possible to control the total number of bosons in the lattice. However, controlling the number of particles of each 
species turns out to be challenging. This leads to population densities which varies during the Monte Carlo time. 
For example, what typically happens in the regime of the demixing effect is a depletion of one of the bosonic spe-
cies as the Monte Carlo time goes by ref. 27. This situation has to be avoided as in real experimental setup one is 
capable of controlling independently the number of bosons of each species with a finite precision. In order to 
avoid this problem and ensure the conservation of particle of each bosonic species during the simulation we 
restricted the Hilbert space of the grand canonical ensemble by introducing an upper bound in the quantum 
fluctuation of the number of particle of each species. This procedure allows us to keep balanced the populations 
of the two species ≈ ≈N N N /2a b .

Data Availability. The datasets generated during the current study are available from the corresponding 
author on reasonable request.
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