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A Five-Region Hypothesis Test for 
Exposure-Disease Associations
Han-Yi Shih1 & Wen-Chung Lee1,2

Characterizing exposure-disease associations is a central issue in epidemiology, one which 
epidemiologists often approach by adopting the index of the odds ratio and presenting its point 
estimate, p-value and confidence interval. In this study, the parameter space of the odds ratio is 
partitioned into five mutually exclusive regions corresponding to ‘strong protective factor’, ‘weak 
protective factor’, ‘no association’, ‘weak risk factor’, and ‘strong risk factor’, respectively. The authors 
presented a suite of statistical methods tailored to such a five-region demarcation, including methods 
for hypothesis testing, confidence interval estimation and calculation of the sample size needed 
to obtain the desired level of statistical power. The authors show that the five-region methods can 
efficiently and informatively describe a putative exposure-disease association, including its presence 
or absence, as well as its direction and strength (if any association exists). Three published results were 
re-analyzed to demonstrate the methods. R code is provided for convenience as well. The five-region 
methods are recommended for routine use during the analysis of epidemiologic data.

Characterizing exposure-disease associations is a central issue in epidemiology. Epidemiologists often approach 
this issue by adopting the index of the odds ratio; presenting its point estimate, p-value and confidence interval; 
then declaring an exposure a risk factor for the disease if its odds ratio is statistically significantly greater than 1.0, 
or a protective factor if it is statistically significantly less than 1.01.

Identifying a risk or protective factor for the disease may not be enough. We may also want to determine the 
strength of such an exposure-disease association. For example, we may want to know whether the odds ratio 
is statistically significantly greater than 2.0, indicating a strong risk factor; or between 0.5 and 1.0, indicating a 
weak protective factor. Conventional hypothesis testing for the odds ratio is for determining whether it is 1.0 or 
not: {H0: OR = 1; H1: OR < 1 or OR > 1}, so can only be used to infer whether the exposure under study is a risk 
or protective factor for the disease. Further testing with regards to the cut-off points, such as {H0: OR ≥ 0.5; H1: 
OR < 0.5} or {H0: OR ≤ 2; H1: OR > 2}, incurs a multiple-testing penalty, and therefore, a power loss.

Goeman et al.2 proposed ‘three-sided testing’, a testing framework for simultaneous testing of ‘inferiority’, 
‘equivalence’ and ‘superiority’ in clinical trials. A cardinal feature of Goeman et al.’s method is that the three 
hypotheses can be simultaneously performed at a significance level of α, while the family-wise error rate remains 
within α. The approach was later adopted outside of clinical trial settings to compare two digital communication 
systems3. However, our intended, more informative characterization of an exposure-disease association requires 
partitioning the parameter space of the odds ratio into a total of five ‘regions’, which is more than the three ‘sides’ 
that Goeman et al.2 had considered.

In this paper, we expand the applicability of Goeman et al.’s three-sided methods2 to the five-region char-
acterization of exposure-disease associations. Our methods (including hypothesis testing, confidence interval 
estimation, and sample size calculation) are a reinterpretation of the results of the three-sided testing in terms of 
five regions. We will show that the ‘five-region methods’ are more statistically efficient than traditional methods 
in describing exposure-disease associations. Data from three published studies are re-analyzed to demonstrate 
the methods.

Methods
Five-Region Demarcation and the Partitioning Principle. Assuming that two cut-off points for the 
odds ratio are chosen: 0.5 and 2. (Proper choices of the cut-off points will be discussed later.) For the lower cut-
off point, OR < 0.5 indicates a strong protective factor, and 0.5 ≤ OR < 1 a weak protective factor. For the upper 
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cut-off point, OR > 2 indicates a strong risk factor, and 1 < OR ≤ 2 a weak risk factor. The parameter space of the 
odds ratio is thus partitioned into five regions: HI, HII, …, HV as shown below:
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Once the five regions have been demarcated, a putative exposure-disease association can be described succinctly 
and clearly, including its presence or absence, as well as its direction and strength (if any association exists). Five 
hypothesis tests are to be performed in total, with each checking whether the true odds ratio is within a particular 
region. The null hypothesis of test Hi is OR ∈Hi and the alternative hypothesis is OR ∈ Hi

c (the complement of Hi), 
for i = I, II, …, V.

Because the five regions are mutually exclusive, the true value of the odds ratio can lie in at most one of the 
regions, so that no two hypotheses can be simultaneously true. The ‘partitioning principle’4 thus applies here, dic-
tating that all five hypotheses can be simultaneously performed at a level of α, while still keeping the family-wise 
error rate within α. See Web Appendix 1 for a proof. Similarly, Shaffer5 pointed out that the correction factor for 
a Bonferroni multiple testing procedure is not the total number of hypotheses tested, but the maximum number 
of hypotheses that can simultaneously be true. And in our case, the correction factor is 1. In other words, there is 
no need for multiple testing correction.

Five-Region Hypothesis Tests. The above partitioning principle says nothing about the types of the tests 
(two-sided, one-sided, etc). For each hypothesis, any test can therefore be used as long as each of the five tests 
keeps its respective type I error rate within α. Here, we propose to test HI with an α-level right-sided test ({H0: 
OR < 0.5; H1: OR ≥ 0.5}), HII with one α/2-level left-sided test ({H0: OR ≥ 0.5; H1: OR < 0.5}) and one α/2-level 
right-sided test ({H0: OR < 1; H1: OR ≥ 1}) simultaneously; HIII with an α-level two-sided test ({H0: OR = 1; H1: 
OR ≠1}), HIV with one α/2-level left-sided test ({H0: OR > 1; H1: OR ≤ 1}) and one α/2-level right-sided test 
({H0: OR ≤ 2; H1: OR > 2}) simultaneously; and HV with an α-level left-sided test ({H0: OR > 2; H1: OR ≤ 2}), 
respectively.

Assuming normality for the log odds ratio, the ‘five-region test’ is detailed below:
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where OR is an estimate of the odds ratio, SE is the standard error of logOR, and Zx is the x’th quantile of the 
standard normal distribution. As explained earlier, such a five-region test should keep the family-wise error rate 
within α.

Note that the ‘two α/2-level one-sided tests simultaneously’ that we used here for HII and HIV are very dif-
ferent from Schuirmann’s procedure for equivalence6. For the HII test, the null hypothesis (0.5 ≤ OR < 1) is to 
be rejected if either of the two null hypotheses (OR ≥ 0.5 and OR < 1, respectively) of the ‘α/2’-level one-sided 
tests is rejected. Similarly, for the HIV test, the null hypothesis (1 < OR ≤ 2) is to be rejected if either of the two 
null hypotheses (OR > 1 and OR ≤ 2, respectively) of the ‘α/2’-level one-sided tests is rejected. By contrast, in 
Schuirmann’s procedure, the null hypothesis (nonequivalence) is to be rejected only if both null hypotheses (infe-
riority and superiority, respectively) of the ‘α’-level one-sided tests are rejected.

Five-Region P-Values. Alternatively, one can calculate the ‘five-region p-values’:

http://1


www.nature.com/scientificreports/

3Scientific RepoRts | 7: 5131  | DOI:10.1038/s41598-017-05301-4

φ

φ φ

φ

φ φ

φ











= −





− . 




= ×











− . 




−
















= ×








−


















= ×
















−





− 










=





− 






 



 



p 1 logOR log0 5
SE

,

p 2 min logOR log0 5
SE

, 1 logOR
SE

,

p 2 1
logOR

SE
,

p 2 min logOR
SE

, 1 logOR log2
SE

,

p logOR log2
SE

,
(3)

I

II

III

IV

V

where φ(·) is the cumulative distribution function of the standard normal distribution. One then rejects any 
hypothesis with a corresponding p-value less than or equal to α.

Web Appendix 2 shows that for any i in {I, II, …, V}, the pi in (3) corresponds to the Hi test in (2), that is, an Hi 
will be rejected in (2) if and only if its pi ≤ α in (3).

Possible Conclusions in a Five-Region Test. If none of the five hypotheses are rejected, a five-region test 
is inconclusive (represented by the small dark-shaded area in Fig. 1). Otherwise, a conclusion can be made with 
inferences on the direction and/or the strength of the exposure-disease association; a total of 9 different conclu-
sions (see Fig. 1) are possible in a five-region test, namely, the study exposure is one of the followings:

•	 (SP) a strong protective factor (the upper left non-shaded corner), if four hypotheses, HII, HIII, HIV, and HV, 
are rejected;

•	 (WP) a weak protective factor (the middle left non-shaded area), if four hypotheses, HI, HIII, HIV, and HV, are 
rejected;

•	 (P) a protective factor without strength information (the non-shaded area nestled between the upper left 
non-shaded corner and the middle left non-shaded area), if three hypotheses, HIII, HIV, and HV, are rejected;

•	 (WR) a weak risk factor (the middle right non-shaded area), if four hypotheses, HI, HII, HIII, and HV, are 
rejected;

•	 (SR) a strong risk factor (the upper right non-shaded corner), if four hypotheses, HI, HII, HIII, and HIV, are 
rejected;

•	 (R) a risk factor without strength information (the non-shaded area nestled between the middle right non-
shaded area and the upper right non-shaded corner), if three hypotheses, HI, HII, and HIII, are rejected;

•	 (NSR) not a strong risk factor (the left lightly-shaded area), if one hypothesis, HV, is rejected;
•	 (NSP) not a strong protective factor (the right lightly-shaded area), if one hypothesis, HI, is rejected;
•	 (NS) not a strong factor, risk or protective (the middle lightly-shaded area), if two hypotheses, HI and HV, are 

rejected.

Figure 1. The nine possible conclusions of the five-region test (a strong protective factor: the upper left non-
shaded corner; a weak protective factor: the middle left non-shaded area; a protective factor without strength 
information: the non-shaded area nestled between the upper left non-shaded corner and the middle left non-
shaded area; a weak risk factor: the middle right non-shaded area; a strong risk factor: the upper right non-
shaded corner; a risk factor without strength information: the non-shaded area nestled between the middle 
right non-shaded area and the upper right non-shaded corner; not a strong risk factor: the left lightly-shaded 
area; not a strong protective factor: the right lightly-shaded area; not a strong factor, risk or protective: the 
middle lightly-shaded area).
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Note that not all of the total 25 = 32 testing results (a total of five hypotheses tested, each with two possibilities: 
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By comparison, if a classical hypothesis test ({H0: OR = 1; H1: OR < 1 or OR > 1}) leads to any conclusion at 
all (i.e., can reject the null hypothesis), it only provides directional information about whether exposure is a pro-
tective or a risk factor (represented by the non-shaded region to the left or to the right in Fig. 1: ‘SP+WP+P’ and 
‘WR+SR+R’, respectively). When the standard error is relatively small (such as in a study with a relatively large 
sample size), a five-region test can provide directional information as well as strength information (the upper 4 
non-shaded areas in Fig. 1: ‘SP’, ‘WP’, ‘WR’, and ‘SR’, respectively, each requiring the rejections of a total of four 
hypotheses), while a classical test can only determine the direction. At the other extreme where the standard error 
is very large (a very small study), a five-region test may still conclusively rule out some remote possibilities for 
study exposure (represented in the 3 lightly-shaded areas in Fig. 1: ‘NSR’, ‘NSP’, and ‘NS’, respectively), such as 
that it is not a strong risk factor (HV rejected), not a strong protective factor (HI rejected), or not a strong factor, 
risk or protective (both HI and HV rejected); at the same α level, the classical test leads to none conclusion at all.

Web Appendix 3 presents a function written in R 3.1.2 software (R Foundation for Statistical Computing, 
Vienna, Austria) code. Input an odds ratio estimate, a standard error, a significance level, and two cut-off points 
as the arguments of the function, and the function will output the five p-values and the testing results of the 
five-region test.

Five-Region Confidence Intervals. The well-known duality between confidence intervals and hypothesis 
tests dictates that an α-level test is to be performed for each and every possible value of the odds ratio, and the 
resulting non-rejected values constitute a (1−α) confidence interval for the odds ratio.

Here, we propose using an α-level right-sided test for an odd ratio in HI, an α-level two-sided test for an odds 
ratio in {HII, HIII, HIV}, and an α-level left-sided test for an odds ratio in HV. This is essentially Goeman et al.’s 
three-sided testing2 (treating HI as inferiority, {HII, HIII, HIV} as equivalence, and HV as superiority). Therefore, 
the resulting ‘five-region confidence interval’ is also identical mathematically to Goeman et al.’s three-sided con-
fidence interval2.

However, our use of the confidence interval is different from Goeman et al.’s. Here, we explicitly check each 
and every one of the five regions, and reject a region if and only if none of its points fall within the confidence 
interval. Readers can verify that such use of the confidence interval leads to exactly the same conclusion of a 
five-region test in the previous section. For an example, see the solid lines (representing the five-region confi-
dence intervals, or equivalently, Goeman et al.’s three-sided confidence intervals) and the attached conclusions 
in a five-region test.

Using the same principle that a region is rejected if none of its point fall within the confidence interval, a clas-
sical confidence interval can also be used to determine a five-region conclusion (e.g., see the dashed lines and the 
attached conclusions in Fig. 2). Figure 2 compares the two approaches (marked ‘*’, if the conclusions are differ-
ent). The upper panel in Fig. 2 shows the results for = .OR 0 67. When the sample size is small (SE = 0.60, n ≈ 50), 
the classical confidence interval cannot lead to a conclusion but the five-region confidence interval (or equiva-
lently, the three-sided confidence interval) can rule out the possibility that the exposure is a strong risk factor. 
With a larger sample size (SE = 0.18, n ≈ 500), the classical confidence interval can only infer a protective factor 
but the five-region confidence interval (or the three-sided confidence interval, if used to determine a five-region 
conclusion) can further conclude that its protective effect is weak. The middle panel in Fig. 2 shows the results 
for = .OR 1 00. With a moderate sample size (SE = 0.42, n ≈ 100), the classical confidence interval cannot reach 
a conclusion but the five-region confidence interval (or equivalently, the three-sided confidence interval) can rule 
out a strong factor (either risk or protective). The lower panel in Fig. 2 shows the results for = .OR 1 50. When 
the sample size is small (SE = 0.60, n ≈ 50), the classical confidence interval cannot reach any conclusions but the 
five-region confidence interval (or equivalently, the three-sided confidence interval) can rule out a strong protec-
tive factor. With a larger sample size (SE = 0.18, n ≈ 500), the classical confidence interval can only infer a risk 
factor but the five-region confidence interval (or the three-sided confidence interval, if used to determine a 
five-region conclusion) can further conclude that it is only a weak one.

Sample Size Calculations. As pointed out earlier, when a five-region test (and its equivalent, a five-region 
confidence interval, or a three-sided confidence interval used to determine a five-region conclusion) does reach 
a conclusion it can lead to one of 9 different conclusions. Here we calculate the required sample size to reach a 
target power of 80% at α = 0.05 for each conclusion. (The ‘power’ of a five-region test for a specified conclusion is 
defined as the probability that the test leads to that specified conclusion or a more precise one.) We performed a 
total of 100,000 Monte-Carlo simulations to approximate the power for a given sample size and used the bisection 
method to calculate the sample size needed to reach the target power. For comparison, we used the same method 
to calculate the sample size needed for a classical confidence interval when used to make a five-region conclusion. 
Web Appendix 4 presents the R function used.

Figures 3 and 4 present the sample sizes (total numbers of subjects) needed for a case-control study with an 
equal number of cases and controls, conducted in a population with an exposure prevalence of 0.4. To have the 
required power to reach conclusions for a protective factor, a risk factor, a strong protective factor, and a strong 
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risk factor, respectively (the upper 4 panels in Fig. 3), the required sample sizes are the same for the two methods. 
For the other 5 conclusions of not a strong risk factor (the lower left panel in Fig. 3), not a strong protective factor 
(the lower right panel in Fig. 3), a weak protective factor (the left panel in Fig. 4), not a strong factor (the middle 
panel in Fig. 4), and a weak risk factor (the right panel in Fig. 4), respectively, the required sample sizes for the 
five-region method (solid lines) are smaller than those of the traditional method (dashed lines).

Figures 3 and 4 also show that the required sample size increases for more precise conclusions as expected. For 
example, when OR = 1.5, the required sample sizes of the five-region test are 70 (for ruling out a strong protective 
factor), 642 (for declaring a risk factor), 985 (for ruling out a strong factor), and 1059 (for declaring a weak risk 
factor), respectively. As another example, when OR = 2.5, the required sample sizes are 32 (for ruling out a strong 
protective factor), 134 (for declaring a risk factor), and 2198 (for declaring a strong risk factor), respectively.

As many researchers often do not have a very precise aim for their studies at the outset, calculating and com-
paring the required sample sizes for different conclusions and specific odds ratio values (such as the cases of 
OR = 1.5 and OR = 2.5 above, if such a priori information is available) or for all possible odds ratio values (such 
as in Figs 3 and 4, if the a priori information is lacking) should help researchers better plan their studies under 
time and cost constraints.

Examples of Real Data
Example 1. ‘Not a Strong Risk Factor’ vs. ‘Inconclusive’. Elbaz et al.7 recruited a total of 196 case-con-
trol pairs (matched by sex and age) to examine the association between Parkinson’s disease and preceding nonfa-
tal cancers. A conditional logistic regression was conducted for a matched-data analysis. Elbaz et al. reported an 
adjusted odds ratio of 0.22 [95% (classical) confidence interval: 0.03–2.24] for bladder cancer occurring before 
the onset of Parkinson’s disease. We calculated a standard error from the confidence interval presented (and 
likewise for the following two examples). The fact that the value 1 is within the classical confidence interval indi-
cates that the observed negative association between bladder cancer and Parkinson’s disease (OR = 0.22) is not 
statistically significant. The classical confidence interval itself is also inconclusive since it spans all five regions.

We then used the proposed method to reanalyze the data. The five-region test leads to a rejection (pV = 0.031) 
of the HV region (a strong risk factor). Similarly, the 95% five-region confidence interval is 0.03–2.00, excluding 
the HV region entirely. In this example, while neither the classical test nor the classical confidence interval is 

Figure 2. A comparison between the five-region confidence intervals (solid lines) and the classical confidence 
intervals (dashed lines).
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conclusive about risk of exposure, the five-region test (and the five-region confidence interval) at the same signif-
icance level of 0.05 can rule out the possibility that bladder cancer is a strong risk factor for Parkinson’s disease; it 
can only be one of the following four possibilities: a strong protective factor, a weak protective factor, no associa-
tion, or a weak risk factor.

Example 2. ‘Not a Strong Factor, Risk or Protective’ vs. ‘Inconclusive’. Parent et al.8 recruited a 
total of 94 melanoma cases and 512 controls to examine the association between night work and risk of cancer 
among men. Logistic regression was conducted adjusting for a number of potential confounders (age, ancestry, 
educational level, family income, respondent status, β-carotene, and sports and/or outdoor activities). Parent 
et al. reported an adjusted odds ratio of 1.04 [95% (classical) confidence interval: 0.49–2.22] for the association 
between night work and melanoma. The fact that the value 1 is within the classical confidence interval indicates 
that the association is not statistically significant. Again, the classical confidence interval itself, which spans all 
five regions, is also inconclusive.

Using the proposed method to reanalyze the data, the five-region test rejects HI (a strong protective factor) 
and HV (a strong risk factor) (pI = 0.029 and pV = 0.045, respectively). Similarly, the 95% five-region confidence 
interval is 0.50–2.00, excluding both the HI and HV regions. We see that while neither the classical test nor the 
classical confidence interval is conclusive about the risk of exposure, the five-region test (and the five-region 

Figure 3. Sample sizes needed for the various conclusions (solid lines: the five-region method; dashed lines: the 
classical method).



www.nature.com/scientificreports/

7Scientific RepoRts | 7: 5131  | DOI:10.1038/s41598-017-05301-4

confidence interval) at the same significance level of 0.05 can rule out the possibility that night work is a strong 
factor, risk or protective, for melanoma; it can only be one of the following three possibilities: a weak protective 
factor, no association, or a weak risk factor.

Example 3. ‘A Weak Risk Factor’ vs. ‘A Risk Factor without Strength Information’. Li et al.9 
recruited a total of 610 cases and 837 controls to examine the association between indoor air pollution from coal 
combustion and the risk of neural tube defects. Logistic regression was conducted adjusting for the matching 
variables (county of residence, season of conception, maternal ethnic group, and infant sex) and a number of 
other potential confounders (maternal age, education, multiparity, multiple births, history of pregnancy affected 
by birth defects, maternal influenza or fever, and passive smoking during the periconceptional period). Li et 
al. reported an adjusted odds ratio of 1.50 [95% (classical) confidence interval: 1.10–2.10] for the association 
between indoor air pollution from cooking and neural tube defects. The fact that the value 1 is not within the 
classical confidence interval indicates that the observed positive association between indoor air pollution from 
cooking and neural tube defects (OR = 1.50) is statistically significant. However, the classical confidence interval 
encompasses the HIV (weak risk factor) and the HV (strong risk factor) regions, so we cannot deduce the strength 
of this risk factor.

Using the proposed method to reanalyze the data, we find that except for the HIV region (weak risk factor), all 
other 4 regions (pI < 0.001, pII = 0.014, pIII = 0.014, and pV = 0.041, respectively) are rejected by the five-region 
test. The 95% five-region confidence interval is 1.10–2.00, which is fully embedded within the HIV region. In this 
example, the classical method can only label indoor air pollution from cooking as a risk factor for neural tube 
defects. But the five-region method at the same significance level of 0.05 can be more specific in stating that it is a 
weak risk factor with an odds ratio no greater than 2.

Discussion
The proposed five-region methods hinge on a proper demarcation of the five regions. For the odds ratio index 
used in this paper, the value ‘1’ was taken to be the center point, indicating no exposure-disease association. 
Therefore, we let a solitary {1} be a ‘region’ (HIII). We then chose two cut-off points, an upper cut-off (cupper > 1) 
and a lower one (clower < 1) which could have been values other than the ‘2’ and ‘0.5’ used in this paper, to mark the 
boundaries between strong and weak effects. We thus demarcated two regions (using cupper) for strong and weak 
risk factors (HV and HIV) to the right of the HIII region, and to the left of that we demarcated two regions (using 
clower) for strong and weak protective factors (HI and HII). Ideally, if we let clower = 1/cupper, then the testing frame-
work of the five-region test is completely symmetrical in the two directions of an exposure-disease association. By 

Figure 4. Sample sizes needed for the various conclusions (solid lines: the five-region method; dashed lines: the 
classical method).
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imposing symmetry, we avoid all appearance of prejudice on whether the study exposure is a risk or a protective 
factor. Also, note that the five-region demarcation should be done beforehand since a data-snooping demarcation 
will incur bias. The required sample sizes will be different with different demarcations of the five regions as well.

This paper uses the odds ratio index, which can be a crude odds ratio such as from a 2 × 2 table or an adjusted 
one such as from a logistic regression analysis. Liu et al.10 had previously also developed equivalence tests spe-
cifically for the odds ratio index. In fact, the five-region methods in this paper work for all indices, as long as a 
demarcation that respects the partitioning principle can be done.

In this paper, we invoked the normality assumption for the log odds ratio (large sample theory). For small 
sample sizes exact methods will be needed. One can calculate the four limits (one for the right one-sided, one 
for the left one-sided, and two for the two-sided) using the classical exact methods first. Next, a classical limit 
is adopted as one limit of the five-region confidence interval, if it matches the type of the test (one-sided or 
two-sided) that should be performed in the region it belongs to. We pick one (or both) cut-off point(s), as appro-
priate, for the limit(s), if the previous step cannot find one or more suitable limit. Finally, we examine the span 
of this exact five-region confidence interval to make conclusions for the exact five-region test. Here, the coverage 
probability of the exact five-region confidence interval is at least (1 − α) and the type I error rate of the exact 
five-region test is at most α. Web Appendix 5 provides the R code.

If a researcher opts for a more precise estimation, he/she will choose a method that produces a narrower con-
fidence interval. In most circumstances, a five-region confidence interval (and its mathematical equivalent, the 
three-sided confidence interval) is at least as narrow as a classical one (Fig. 2). Only when the standard error is 
very small (sample size is very large) and the odds ratio estimate is either very large (in HV) or very small (in HI), 
can a five-region/three-sided confidence interval be wider than a classical one (Web Appendix 6). From this, we 
see that the five-region/three-sided methods trade the precision of an odds ratio far away out in the open regions 
for a better resolution when it is closer to the center (for differentiating whether the exposure is a risk factor, a 
protective factor, or neither, if the three-sided confidence interval is used to determine a five-region conclusion) 
or the two cut-off points (for differentiating whether its effect is strong or weak); positioning the cupper and clower 
where an enhanced resolution is deemed most desirable is recommended. Finally, partitioning the parameter 
space of the (log) odds ratio can produce at most two open regions (where the precisions of the odds ratios can be 
traded off). The two open regions plus the remaining one closed region constitute a total of three ‘sides’, and thus 
no further performance improvement can be expected beyond Goeman et al.’s three-sided confidence interval2.

To characterize the association between an exposure and a disease, the current epidemiologic paradigm calls 
for a trio of inferential statistics to be presented for the odds ratio: a point estimate, a (classical) p-value, and a 
(classical) confidence interval, respectively. In this paper, we show that the five-region methods can describe a 
putative association more efficiently and informatively, including its presence or absence, as well as its direction 
and strength (if any association exists). The five-region methods are recommended for routine use during the 
analysis of epidemiologic data.
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