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Activation of the mTOR signaling 
pathway is required for asthma 
onset
Yanli Zhang1, Ying Jing2, Junying Qiao1, Bin Luan1, Xiufang Wang1, Li Wang1 & Zhe Song1

The mTOR pathway has been implicated in immune functions; however, its role in asthma is not well 
understood. We found that patients experiencing an asthma attack, when compared with patients in 
asthma remission, showed significantly elevated serum mTOR pathway activation, increased Th17 
cells and IL-4, and decreased Treg cells and IFN-γ. In patients experiencing asthma, mTOR activation 
was positively correlated with the loss of Th17/Treg and Th1/Th2 balance. The role of mTOR in asthma 
was further confirmed using an ovalbumin-induced asthmatic mouse model. The mTOR pathway was 
activated in asthmatic mice, demonstrated by elevated levels of p-PI3K, p-Akt, p-mTOR, and p-p70S6k, 
and this activation was significantly reduced by treatment with budenoside or mTOR pathway 
inhibitors. Moreover, mTOR pathway inhibitor treatment reduced asthmatic markers and reversed 
the Th17/Treg and Th1/Th2 imbalances in asthmatic mice. Finally, different mTOR pathway inhibitor 
treatments have different inhibitory effects on signaling molecules in asthmatic mice. In summary, 
mTOR is activated during asthma onset and suppressed during asthma remission, and inhibiting the 
mTOR pathway in asthmatic mice alleviates asthmatic markers and restores the balances of Th17/Treg 
and Th1/Th2 cytokines. These data strongly suggest a critical requirement for mTOR pathway activation 
in asthma onset, suggesting potential targets for asthma treatments.

Asthma is a common chronic inflammatory disease of the airways and a severe health risk for children1. Seventy 
to eighty percent of asthma onset happens when children are 5 years old or younger, which, if not diagnosed or 
treated appropriately, will lead to airway remodeling and more severe health consequences. To date, despite the 
progress on asthma diagnosis and treatment, there are still limited treatment options2, 3. Therefore, it is critical to 
understand the molecular mechanisms of asthma onset and develop targeted therapy accordingly.

Loss of Th1/Th2 balance is believed to be a critical factor in asthma pathogenesis4. A Th1/Th2 imbalance can 
be triggered by changes in the levels of IFN-γ and IL-4 secreted by Th1 and Th2 cells, respectively4. Recent studies 
suggest that the loss of balance between Th17 and regulatory T cells (Treg) also occurs in asthma pathogenesis5. 
IL-17, secreted by activated Th17, regulates pulmonary inflammation in airway smooth muscle cells and fibro-
blasts6. Treg, differentiated from CD4+ T cells, mediate immune suppression by secreting TGF-β and IL-10. 
Elevated levels of Th17 cells have been shown in children with asthma, and the number of Th17 cells positively 
correlates with pulmonary function damage7. Further, the levels of IL-17, TGF-β, and IL-10 during asthma onset 
are good surrogates for the numbers of Th17 and Treg cells8.

mTOR, the mechanistic target of rapamycin (formerly the mammalian target of rapamycin), is a serine/thre-
onine kinase that is evolutionarily conserved9. It is a central regulator of cell metabolism, growth, proliferation, 
and survival. In mammals, PI3K is activated by certain stimuli or inflammation. Activated PI3K (p-PI3K) phos-
phorylates Akt, which then activates mTOR and its downstream effector ribosomal protein S6 kinase 1 (S6K1). 
Phosphorylated S6K1 (p-p70S6k) promotes protein translation and cell growth, with 100-fold greater efficiency 
in initiating protein translation than its inactive form10. Aberrant mTOR signaling is involved in many diseases, 
including cancer, cardiovascular disease, and diabetes9, 11. In atherosclerosis, mTOR activates macrophage prolif-
eration and promotes endothelial cell migration and foam cell formation12. Inhibiting mTOR signaling pathway 
has been shown to lead to suppression of macrophage autophagy and atherosclerosis13. mTOR also regulates lym-
phocyte cellular immunity by stimulating cytokine release from inflammatory cells14. In addition, systemic lupus 
erythematous was suppressed when patients were treated with the mTOR-inhibitor rapamycin15.
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Figure 1. Levels of mTOR, Th17 cells, Treg cells, and asthma-related cytokines in the serum of patients 
with asthma. The patients were categorized into four groups: the asthma attack group, asthma remission 
group, community-acquired pneumonia (pneumonia) group, and normal healthy group. The asthma group 
consisted of children with asthma who visited a doctor or were hospitalized from January 2014 to June 2014. 
The remission group comprised children who had experienced an asthma attack but were then treated with 
budenoside and were in asthma remission. The pneumonia group comprised children who were diagnosed 
with pneumonia in the same hospital in the same period. The healthy control group comprised normal healthy 
children who had a physical examination in the hospital in the same period. (a) The level of serum mTOR (pg/
mL), IL-17 (pg/mL), TGF-β (pg/mL), IL-10 (pg/mL), IL-4 (pg/mL), and IFN-γ (pg/mL) detected by ELISA in 
the control group, the pneumonia group, the asthma attack group, and the asthma remission group. The levels 
of mTOR, IL-17, and IL-4 in the serum of patients in the asthma attack group were significantly higher than 
that in the pneumonia and control groups, whereas these elevations were not observed in patients in asthma. 
Similarly, the levels of TGF-β, IL-10, and IFN-γ in the serum of patients in the asthma attack group were 
significantly lower than that in the pneumonia and control groups, whereas reduction of these cytokines was 
not observed in patients in asthma. (b) Flow cytometric analysis of Th17 cells (CD3+CD8−IL-17+) in peripheral 
blood mononuclear cells (PBMC) from patients in the control group, the pneumonia group, the asthma attack, 
and the asthma remission group. The data was presented as the percentage of all live cells. (c) Flow cytometric 
analysis of Treg cells (CD4+CD25high+CD127low) in PBMC from patients in the control group, the pneumonia 
group, the asthma attack, and the asthma remission group. (d) Levels of Th17 cells (CD3+CD8−IL-17+) and 
Treg cells (CD4+CD25high+CD127low) detected by flow cytometry in PBMC from patients in the control group, 
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Asthma, like atherosclerosis and systemic lupus erythematosus, is a disease with dysregulation of the immune 
system16–18. Thus, we hypothesize that mTOR signaling is also playing a role in asthma disease onset. PI3K/mTOR 
signaling is reported to be very important for the growth and proliferation of airway smooth muscles19, and 
blocking mTOR with rapamycin suppresses asthmatic airway remodeling20, 21. Further, the mTOR pathway has 
been reported to regulate the differentiation and activation of CD4+ T cell subsets, and treatment with rapamycin 
leads to T cell anergy22. Th2 and Th17 cells are differentiated from T cells, and this differentiation was blocked 
in mTOR knockout mice23. Therefore, we believe that the mTOR signaling pathway is tightly associated with the 
loss of balance between Th1 and Th2 cytokines and between Th17 and Treg cells in immune diseases. This study 
focused on the role of mTOR in asthma, whether asthma onset could be suppressed by selectively inhibiting 
mTOR signaling, and a comparison of the effects of inhibitors targeting different molecules in the pathway.

Inhibitors for the mTOR signaling pathway include: (1) mTOR inhibitors (rapamycin and analogs), (2) PI3K 
inhibitor (LY294002), (3) Akt inhibitor (triciribine), and (4) PI3K/mTOR dual inhibitor (NVP-BEZ235). Among 
these, the most well-studied inhibitor is rapamycin, which was first used as an antibiotic and later as an immuno-
suppressant. The antitumor activity of rapamycin is evidenced by increased apoptosis induced by rapamycin in 
many types of cancer cells24. In our study, we used the mTOR inhibitor rapamycin, the PI3K inhibitor LY294002, 
and the Akt inhibitor triciribine. By comparing the effects of these inhibitors, we can identify promising asthma 
treatment targets.

Results
To examine the correlation between mTOR signaling and asthma, we first compared the levels of mTOR acti-
vation in patients experiencing an asthma attack with those in remission, patients with community-acquired 
pneumonia, and healthy controls. As a result, the mTOR level, determined by ELISA assays, in the serum of 
patients in the asthma attack group (32.35 ± 14.29 pg/mL) was significantly higher than that in the pneumonia 
(12.34 ± 7.10 pg/mL) and control (8.73 ± 4.76 pg/mL) groups, whereas elevation of mTOR was not observed in 
patients in asthma remission (13.41 ± 7.09 pg/mL, Fig. 1a). This indicates that mTOR in patient serum was posi-
tively correlated with asthma disease status.

We then examined the correlation of mTOR activation with the loss of balance in Th1/Th2 and Th17/Treg 
cells. We first measured the levels of cytokines secreted by Th1, Th2, Th17, and Treg cells by ELISA. IL-17 and 
IL-4 were significantly higher in the asthma attack group than in the other three groups, whereas TGF-β, IL-10, 
and IFN-γ were significantly lower (Fig. 1a). There were no statistically significant differences in the levels of 
these cytokines among the remission, pneumonia, and control groups (Fig. 1a). The loss of Th17/Treg balance 
was then directly determined by measuring the numbers of Th17 and Treg cells in peripheral blood mononu-
clear cells (PBMC) using flow cytometry. Results showed that the number of Th17 cells (CD3+CD8−IL-17+) 
in the asthma attack group (2.13 ± 1.78%) was significantly more than that in the asthma remission group 
(1.67 ± 0.40%), pneumonia group (1.56 ± 0.42%), and control group (1.53 ± 0.56%), whereas the number of Treg 
cells (CD4+CD25high+CD127low) in the asthma attack group (3.29 ± 1.23%) was significantly less when compared 
to that in the three remaining groups (5.66 ± 1.65%, 5.86 ± 1.93%, and 6.47 ± 2.87% for the asthma remission, 
pneumonia, and control groups, respectively, Fig. 1b–d). There were no statistically significant differences in the 
number of Th17 or Treg cells between the remission, pneumonia, and control groups (Fig. 1b–d). The changes in 
Th17 and Treg cells, together with the increase in IL-17 levels and the decrease in TGF-β and IL-10 levels, indicate 
the loss of Th17/Treg balance. Similarly, changes in IL-4 and IFN-γ levels were consistent with the loss of Th1/Th2 
balance, which has been reported previously.

In patients experiencing an asthma attack, the levels of serum mTOR correlated positively with the number of 
Th17 cells (Fig. 2a) and negatively with the number of Treg cells (Fig. 2b). Consistent with this, the level of mTOR 
correlated positively with that of IL-17, but correlated negatively with those of TGF-β and IL-10 (Fig. 2c–e). These 
data suggest that the level of mTOR and loss of Th17/Treg balance are associated. Similarly, mTOR in patients 
experiencing asthma was associated with the loss of Th1/Th2 balance, as the level of mTOR in the serum of 
these patients correlated positively with the level of IL-4 (Fig. 2f) and negatively with the level of IFN-γ (Fig. 2g). 
There was no correlation between mTOR and any of these cytokines in the remission, pneumonia, or control 
groups (data not shown). These data suggest a strong association between mTOR activation and the loss of Th17/
Treg balance and Th1/Th2 balance in asthma. In the asthma remission phase, mTOR, Th17, Treg cells, and their 
cytokines were restored to similar levels as those in the controls, indicating that inflammation during asthma was 
suppressed in the asthma remission phase to a level similar to that of the controls.

mTOR pathway is activated in asthmatic mouse models. To further define the role of mTOR in 
asthma onset and to validate our observations in human specimens, we established an asthmatic mouse model 
by treating mice with ovalbumin (OVA)/aluminum, and alleviated their asthma by pre-treating the mice with 
budenoside. Three days into OVA stimulation, mice in the asthmatic group displayed restlessness, sneezing, and 
deep breathing, which stopped about 10 minutes after completing the 30-minute OVA stimulation. Five days into 
OVA stimulation, mice in the asthma group showed either a significant increase or decrease in physical activity, 
whereas mice in the control group behaved as they did before the experiment.

the pneumonia group, the asthma attack group, and the asthma remission group. Th17 and Treg cell percentages 
in total live cells were presented. The level of Th17 was significantly higher in asthma attack patients than the 
rest three groups, whereas the level of Treg was significantly lower in asthma attack patients than the rest three 
groups. All data was presented as means ± SD.*p < 0.05, **p < 0.01, ***p < 0.001.
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We first confirmed that the asthmatic mouse model was established by analyzing the pathological changes in 
normal control mice, asthmatic mice, and budenoside-treated mice. Hematoxylin and eosin (H&E) staining of 
lung tissues from the asthmatic mice demonstrated submucosal edema, mucous gland hyperplasia, and increased 
mucous secretion, accompanied by increased mucosal folds, visible epithelial fractures, epithelial cell shedding, 
mild bronchiole smooth muscle hypertrophy, as well as bronchial wall and basement membrane thickening and 
irregularities in its shape (Fig. 3a and b). H&E staining of lung tissue from asthmatic mice also showed exces-
sive infiltration of inflammatory cells (including eosinophils, neutrophils, and lymphocytes) into the bronchial 
submucosa, bronchial, and perivascular spaces (Fig. 4a). Elevated numbers of inflammatory cells in mouse bron-
choalveolar lavage fluid (BALF) were also observed in the asthmatic mice when compared to the other groups 
(Fig. 4b). Similar but milder pathological changes were observed in the lung tissue samples from mice in the 
budesonide intervention group, whereas none of these pathological changes was observed in the normal control 
group (Figs 3 and 4). Consistent with the H&E staining results, periodic acid-Schiff (PAS) staining of mouse lung 
tissues also showed more PAS-positive cells in the asthmatic group than in the control and budenoside treatment 
groups (Fig. 4c). Consistent with the observation of elevated serum mTOR in patients experiencing asthma, the 
asthmatic mice showed significantly enhanced serum mTOR levels (Fig. 3c). These results confirmed the activa-
tion of mTOR during asthma onset, demonstrated the establishment of the asthmatic mouse model, and indicated 
that asthma treatment with budenoside was effective.

We then used immunohistochemical (IHC) staining to examine activation of the mTOR pathway during 
asthma onset in the normal control, asthmatic, and budenoside-treated mice. Staining of mTOR signaling mol-
ecules was mainly concentrated around alveolar epithelial cells, as well as macrophages and neutrophils in the 
bronchioles (Fig. 5a). Consistent with the activation of mTOR in patients experiencing an asthma attack, we 
observed significantly higher levels of p-PI3K, p-Akt, p-mTOR, and p-p70S6k in asthmatic mice than in the 

Figure 2. Correlation of serum mTOR levels with the loss of Th17/Treg and Th1/Th2 balances in patients 
experiencing an asthma attack. The asthma patient group comprised children with asthma who visited a doctor 
or were hospitalized from January 2014 to June 2014. Serum was collected from the fasting venous blood of 
these patients, and mTOR as well as the cytokines were measured by ELISA. Peripheral blood mononuclear 
cells (PBMC) were isolated from the fasting venous blood of these patients, and Th17 and Treg were measured 
by flow cytometry. (a) Positive correlation between the amounts of serum mTOR (pg/mL) determined by 
ELISA and PBMC Th17 cells (%) determined by flow cytometry in patients experiencing an asthma attack. 
Correlation analysis performed with Pearson correlation, r = 0.960 and p < 0.001. (b) Negative correlation 
between the amounts of serum mTOR (pg/mL) determined by ELISA and PBMC Treg cells (%) determined 
by flow cytometry in patients experiencing an asthma attack. Correlation analysis performed with Pearson 
correlation, r = −0.932 and p < 0.001. (c) Positive correlation between the amounts of serum mTOR (pg/mL) 
and serum IL-17 (pg/mL) determined by ELISA in patients experiencing an asthma attack. Correlation analysis 
performed with Pearson correlation, r = 0.754 and p < 0.001. (d) Negative correlation between the amounts of 
serum mTOR (pg/mL) and serum TGF-β (pg/mL) determined by ELISA in patients experiencing an asthma 
attack, r = −0.740 and p < 0.05 by Pearson correlation analysis. (e) Negative correlation between the amounts 
of serum mTOR (pg/mL) and serum IL-10 (pg/mL), determined by ELISA in patients experiencing an asthma 
attack, r = −0.944 and p < 0.001 by Pearson correlation analysis. (f) Positive correlation between the amounts 
of serum mTOR (pg/mL) and serum IL-4 (pg/mL) determined by ELISA in patients experiencing an asthma 
attack, r = 0.855 and p < 0.001 by Pearson correlation analysis. (g) Negative correlation between the amounts 
of serum mTOR (pg/mL) and serum IFN-γ (pg/mL) determined by ELISA in patients experiencing an asthma 
attack, r = −0.762 and p < 0.001 by Pearson correlation analysis.
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control and budenoside treatment groups (Fig. 5a and b). No statistically significant difference in the activation of 
mTOR signaling molecules was observed between the control and budenoside-treated group (Fig. 5a and b). The 
elevated levels of mTOR in asthmatic mouse models, together with the observation of mTOR activation in asthma 
patients, suggests that the mTOR pathway is turned on during asthma disease onset.

Treatment with mTOR pathway inhibitors alleviated asthmatic markers in mice. To determine 
whether activation of mTOR is required for asthma onset, we examined whether mTOR pathway inhibitors 
could alleviate asthmatic markers in mice. In the intervention, OVA/aluminum-induced asthmatic mice were 
pre-treated with budenoside or mTOR pathway inhibitors LY294002, triciribine, or rapamycin. H&E staining 
of lung tissue from the asthmatic mice treated with mTOR inhibitors showed that asthmatic markers were less 
pronounced than those in untreated asthmatic mice. Pathological changes, including submucosal edema, mucous 
gland hyperplasia, increased mucous secretion, and increased mucosal folds were observed in mice treated with 
mTOR inhibitors, but were much milder than in mice that were untreated (Fig. 3a and b). Similarly, mTOR inhib-
itor treatment decreased epithelial fractures, epithelial cell shedding, bronchiole smooth muscle hypertrophy, as 
well as bronchial wall and basement membrane thickening and irregularities in its shape (Fig. 3a and b). Mice 
in the asthma group showed severe airway remodeling, which was improved with budenoside or mTOR path-
way inhibitor treatment (Fig. 3a). Mice in the asthma group displayed the highest smooth muscles hypertrophy, 

Figure 3. Pathological changes in the lung tissues of asthmatic mice and asthmatic mice treated with 
budenoside or mTOR pathway inhibitors. Mice were injected intraperitoneally with 0.2 mL ovalbumin 
(OVA)/aluminum hydroxide on days 1, 8, and 15, and then subjected to 2% OVA inhalation for 30 minutes 
of stimulation every other day, starting from day 22 for a total of 10 doses, to induce asthma onset. Asthma 
was established in the treatment groups using the same procedures, except with an additional 30 minutes of 
inhalation treatment with 1 mg (2 mL) budesonide (c) or intraperitoneal injection of rapamycin ((d) 3 mg/
kg), LY294002 ((e) 1 mg/kg), or triciribine ((f) 1 mg/kg) before stimulation. (a) H&E staining (upper) and PAS 
staining (lower) of mouse lung tissues from the control group, from the asthma group, and from asthmatic 
mice treated with budenoside, rapamycin, LY294002, or triciribine. All images were obtained at 200× 
magnification. The scale bar represents 80 μm. (b) Thickness of the airway smooth muscle (μm), airway wall 
(μm) and epithelial mucosa (μm) determined by H&E staining of tissues from mice in the control group, the 
asthma group, and the groups treated with budenoside, rapamycin, LY294002, or triciribine. The asthmatic mice 
demonstrated significantly higher levels of pathological changes than in the control and other treatment groups. 
(c) The levels of mTOR (pg/mL) in mouse sera from the control group, the asthma group, and the groups of 
asthmatic mice treated with budenoside, rapamycin, LY294002, or triciribine. The asthmatic mice demonstrated 
significantly higher levels of mTOR than in the control and other treatment groups. All data was presented as 
the mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001.
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thickest airway wall, and the most severe basement membrane thickening, which were all significantly improved 
with mTOR inhibitor treatment (Fig. 3a and b). Compared to the severe pathological changes in asthmatic mice, 
mice treated with mTOR inhibitors showed less infiltration of inflammatory cells into the bronchial submu-
cosa, bronchial, and perivascular spaces (Fig. 4a and b). Consistent with the pathological changes observed with 
H&E staining, PAS staining of mouse lung tissues indicated less PAS-positive cells in the budenoside-treated and 
mTOR inhibitor-treated mice than in the untreated asthmatic mice (Figs 3a and 4a). This significant improvement 

Figure 4. Inflammatory cells in mouse lung tissues and bronchoalveolar lavage fluid (BALF) after treatment 
with mTOR inhibitors. (a) The average number of inflammatory cells, namely eosinophils, neutrophils, and 
lymphocytes, determined by H&E staining, in the lung tissue from mice in the control group, the OVA-induced 
asthma group, and the OVA-induced asthmatic group that were treated with budenoside, rapamycin, LY294002, 
or triciribine. The asthmatic mice demonstrated significantly higher levels of inflammatory cells than in the 
control, budenoside treatment, and m-TOR pathway inhibitor treatment groups. (b) Ratio of inflammatory 
cells (eosinophils, neutrophils, and lymphocytes) in mouse BALF detected by flow cytometry in mice from the 
control group and the asthma group, and the asthmatic mice that were treated with budenoside, rapamycin, 
LY294002, or triciribine. The asthmatic mice demonstrated significantly higher levels of inflammatory cells than 
in the control, budenoside treatment, and m-TOR pathway inhibitor treatment groups. (c) Immunoreactivity 
staining score (HSCORE) of PAS-positive cells in lung tissue from mice in the control group, the OVA-induced 
asthma group, and the OVA-induced asthmatic group that were treated with budenoside, rapamycin, LY294002, 
or triciribine. The asthmatic mice demonstrated significantly higher levels of PAS-positive cells than in the 
control, budenoside treatment, and m-TOR pathway inhibitor treatment groups. All data was presented as the 
mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001.
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in asthmatic markers by mTOR inhibitor treatment suggests that mTOR pathway activation is critical for asthma 
pathogenesis.

To confirm inhibition of the mTOR pathway by the inhibitors and to further study the inhibitory effect of 
inhibitors on individual target molecules in the mTOR pathway, we examined p-PI3K, p-Akt, p-mTOR, and 
p-p70S6k by IHC staining of lung tissue from mice in all groups. Activation of these molecules was mainly seen 
in pulmonary alveolar epithelial cells, bronchial epithelial cells, macrophages, and neutrophils (Fig. 5a). Mice 
in the asthma group showed significantly higher levels of mTOR activation than those in the control group, 
and this elevated mTOR activation was significantly reduced with budenoside, LY294002, triciribine, or rapa-
mycin treatment. There were no statistically significant differences in IHC staining between the intervention 
groups (Fig. 5a and b). Similarly, p-p70S6k showed the highest expression levels in the asthma group. These 
levels were significantly higher than those in the control group or the groups of mice treated with budenoside, 
LY294002, triciribine, or rapamycin. There were no statistically significant differences between the intervention 
groups (Fig. 5a and b). The level of p-PI3K in the asthma group was significantly higher than that in the control 
group and the budenoside treatment group. PI3K inhibitor LY294002 treatment and mTOR inhibitor rapamycin 
treatment significantly reduced the level of p-PI3K to levels comparable to those in the control and budenoside 

Figure 5. Activation of mTOR signaling molecules in the lung tissues of asthmatic mice and asthmatic mice 
treated with budenoside or mTOR pathway inhibitors. (a) IHC staining of mTOR signaling molecules of 
tissues from mice in the control group and the OVA-induced asthma group, and the OVA-induced asthmatic 
mice that were treated with budenoside, rapamycin, LY294002, or triciribine. All images were obtained at 
200× magnification. The scale bar represents 80 μm. (b) Quantification of IHC staining (HSCORE) of mTOR 
signaling molecules from mice in the control group, the OVA-induced asthma group, and the OVA-induced 
asthmatic mice treated with budenoside, rapamycin, LY294002, or triciribine. The asthmatic mice demonstrated 
significantly higher levels of p-mTOR, and p-p70S6k than in the control, budenoside treatment, and m-TOR 
pathway inhibitor treatment groups. No statistical significance was observed among those groups. The level of 
p-PI3K in the asthmatic group and the triciribine-treated group were significantly higher than the rest of the 
groups. The level of p-Akt in the asthmatic group and the rapamycin-treated group were significantly higher 
than the rest of the groups. (c) Activation of mTOR signaling molecules determined by western blot in lung 
tissues from mice in the control group, the OVA-induced asthma group, and the OVA-induced asthmatic mice 
treated with budenoside, rapamycin, LY294002, or triciribine. (d) Quantification of mTOR signaling molecules 
by western blot normalized against the expression of β-actin. The asthmatic mice demonstrated significantly 
higher levels of p-mTOR, and p-p70S6k than in the control, budenoside treatment, and m-TOR pathway 
inhibitor treatment groups. No statistical significance was observed among those groups. The level of p-PI3K in 
the asthmatic group and the triciribine-treated group were significantly higher than the rest of the groups. The 
level of p-Akt in the asthmatic group and the rapamycin-treated group were significantly higher than the rest of 
the groups. All data was presented as the mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001.
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treatment group. Interestingly, the mice treated with the Akt inhibitor triciribine showed significantly higher 
levels of p-PI3K than mice in the other groups (Fig. 5a and b). Similar changes were observed with p-Akt levels. 
The level of p-Akt in the asthma group was significantly higher than that in the control and budenoside treatment 
groups. The PI3K inhibitor LY294002 treatment group and Akt inhibitor triciribine treatment group showed sig-
nificant reductions in p-Akt levels, to levels comparable to those of the control and budenoside treatment groups. 
The mTOR inhibitor rapamycin treatment group showed the highest level of p-Akt among all the groups (Fig. 5a 
and b). The activation status of these molecules was also confirmed by western blot with proteins extracted from 
mouse lung tissues (Fig. 5c and d). These results confirmed the inhibition of mTOR signaling molecules with the 
different inhibitors. The activation of mTOR in asthmatic mice and reduced activation of mTOR in the budeno-
side treatment group suggests that the mTOR pathway was activated during asthma onset and suppressed when 
asthma was alleviated. More importantly, the reduced asthmatic markers in response to mTOR inhibitor treat-
ments suggest that activation of the mTOR pathway is required for asthma disease onset.

mTOR pathway inhibitor treatment reversed the loss of Th1/Th2 and Th17/Treg balances in 
asthma attack. After confirming activation of the mTOR pathway during asthma onset and demonstrating 
the requirement of mTOR for asthma disease onset, we then further analyzed whether mTOR pathway suppres-
sion can rescue the loss of balance between Th17 and Treg and between Th1 and Th2 cytokines in asthmatic mice 
during disease onset. The levels of serum mTOR and cytokines in mice were measured by ELISA after asthma 
induction with or without budenoside or mTOR inhibitor treatment. As a result, mTOR in mouse serum was 
elevated in the asthmatic mice compared to that in the controls, and this increase was reversed by treatment 
with budenoside or mTOR pathway inhibitors. There were no significant differences between mTOR levels in the 
intervention groups (Fig. 3c).

The asthmatic mice showed higher serum IL-17 levels than those in the controls, and this increase was 
reversed by budenoside or mTOR pathway inhibitor treatment. There were no significant differences between 
IL-17 levels in the intervention groups (Fig. 6a). BALF IL-17 showed a consistent increase in mice in the asth-
matic group and a reduction with budenoside or mTOR pathway inhibitor treatments (Fig. 6b). In contrast, a 
reduction in serum TGF-β was observed in the asthma group when compared to that in the controls, but was not 
observed in mice in the asthma group treated with budenoside or the mTOR inhibitor. There were no statistically 
significant differences between TGF-β levels in the intervention groups (Fig. 6a). BALF TGF-β levels were con-
sistently different from serum TGF-β levels (Fig. 6b). The change in the IL-17/TGF-β ratio in the asthma group 
was consistent with the Th17/Treg imbalance during asthma onset. Treatment with mTOR inhibitors restored the 
IL-17/TGF-β ratio in the asthmatic mice, suggesting that inhibiting mTOR pathway activation reversed the loss 
of Th17/Treg balance during asthma onset.

Similarly, loss of Th1/Th2 balance was observed in the asthmatic mice, demonstrated by the increased BALF 
IL-4 and decreased BALF IL-10 and IFN-γ when compared to those in the controls. Budenoside treatment 
reversed the increase in IL-4 and decrease in IL-10 and IFN-γ. Similarly, mTOR inhibitor treatment during 
asthma onset restored IL-4, IL-10, and IFN-γ levels to levels similar to those in the control mice (Fig. 6a and 
b). These data suggested that inhibiting mTOR pathway activation reversed the loss of Th1/Th2 balance during 

Figure 6. Levels of asthma-related cytokines in mouse serum and bronchoalveolar lavage fluid (BALF) 
determined by ELISA. (a) The levels of IL-17 (pg/mL) and TGF-β (pg/mL) in sera from mice in the control 
group and the OVA-induced asthma group, and the OVA-induced asthmatic mice treated with budenoside, 
rapamycin, LY294002, or triciribine. The asthmatic mice demonstrated significantly higher levels of IL-17 
and lower level of TGF-β than in the control, budenoside treatment, and m-TOR pathway inhibitor treatment 
groups. No statistical significance was observed among those groups. (b) The levels of IL-17 (pg/mL), TGF-β 
(pg/mL), IL-10 (pg/mL), IL-4 (pg/mL), and IFN-γ (pg/mL) in BALF from mice in the control group and the 
OVA-induced asthma group, and the OVA-induced asthmatic mice treated with budenoside, rapamycin, 
LY294002, or triciribine. The asthmatic mice demonstrated significantly higher levels of IL-17 and IL-4, 
and lower level of TGF-β, IL-10 and IFN-γ than in the control, budenoside treatment, and m-TOR pathway 
inhibitor treatment groups. No statistical significance was observed among those groups. All data was presented 
as the mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001.
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asthma onset. Taken together, mTOR pathway activation positively correlated with the loss of Th1/Th2 balance 
and the loss of Th17/Treg balance during asthma onset, and inhibiting mTOR with mTOR pathway inhibitors 
restores these balances.

Discussion
Asthma is a chronic inflammatory disease. Studies have shown that multiple inflammatory cells participate in air-
way inflammation and induce asthma25. Airway remodeling, a major asthmatic symptom, is the biggest challenge 
in asthma treatment. Our study demonstrated the requirement for mTOR in asthma disease onset and compared 
the effects of asthma treatment with rapamycin, LY294002, or triciribine to that of the standard budenoside treat-
ment. We demonstrated that mTOR pathway inhibitor treatment not only effectively reduced asthmatic markers, 
including airway remodeling, in mice but also suppressed the altered Th17/Treg and Th1/Th2 balances that are 
associated with asthma onset at the molecular level.

Previous studies have suggested the role of mTOR in asthma: airway inflammation was inhibited by reducing 
the activation of PKC-δ in the mTOR pathway26, and airway remodeling was shown to tightly associated with high 
levels of mTOR expression in an asthmatic mouse model27. Further, reducing the levels of p-Akt and p-mTOR 
suppressed smooth muscle fibrosis in asthma28, and rapamycin suppressed asthma onset by inhibiting mTOR 
signaling26. However, despite studies supporting the involvement of mTOR in asthma, controversy exists over 
the effects of rapamycin treatment in asthma, especially its ability to suppress airway inflammation and airway 
hyperreactivity29. These discrepancies may be a result of different treatment procedures, subjects, or timing, and 
resolving these differences will require additional investigations. Because of this controversy, there are currently 
no clinical studies of asthma treatment with rapamycin. In our study of asthma patients, serum mTOR levels in 
the asthma attack group were significantly higher than those in the remission, pneumonia, and control groups, 
and the last three groups showed no significant differences, which suggested that the mTOR signaling pathway 
was activated during asthma and inhibited when asthma was alleviated.

In our animal study, mice in the asthma group demonstrated lung smooth muscle hypertrophy, as well as 
thickening in airway walls and the epithelial mucosa. These pathological changes, none of which was observed in 
the control mice, were alleviated with budenoside treatment, indicating the successful establishment of an asthma 
disease model. The mTOR signaling pathway was activated in the asthma group, and suppression of mTOR acti-
vation led to an improvement in asthmatic phenotypes, demonstrating the requirement of mTOR activation for 
asthma pathogenesis. There were no statistically significant differences between the treatment groups, indicating 
that p-PI3K, p-Akt, p-mTOR, and p-p70S6k offer four novel potential targets for the next generation of asthma 
treatments as alternatives to the current standard of budenoside.

Interestingly, the mTOR signaling pathway displayed different patterns of suppression with the different inhib-
itors. p-mTOR and p-p70S6k levels, highest in the asthma group, were decreased to similar levels in all treatment 
groups as a result of mTOR pathway suppression by the inhibitors. PI3K activation was highly induced in the 
asthma group and reduced in the mTOR inhibitor treatment groups, except for the triciribine treatment group, 
which showed the highest levels of p-PI3K. A similar phenomenon was seen with Akt activation, which was 
highest in the rapamycin treatment group and second highest in the asthma group. These results indicate a pos-
sible negative feedback loop, demonstrated by the compensatory activation of the molecule upstream of the one 
targeted by the inhibitor in the mTOR pathway.

It is well established that the loss of balance between Th1 and Th2 plays a critical role in asthma onset30. In 
recent years, it has been recognized that a Th1/Th2 imbalance does not fully explain the etiology of asthma, 
because restoring the Th1/Th2 balance does not completely control asthmatic symptoms in humans31. Some 
studies have suggested that other CD4+ T cell subsets may play a role in asthma, including Th17 and Treg cells32. 
CD4+CD25+Foxp3+ Treg cells may be involved in the pathogenesis of bronchial asthma and may be the upstream 
regulatory mechanism for the restoration of Th1/Th2 balance by Lactobacillus salivarius33. Inactivated atomized 
Mycobacterium phlei suppressed airway inflammation and partially suppressed airway hyperreactivity via mod-
ulating the balance between CD4+CD25+ Treg and Th17 cells34. The ratio of Th17/Treg cells plays an impor-
tant role in regulating allergies and autoimmune diseases. A high level of Treg cells protects against asthma, as 
evidenced by the alleviation of asthma airway remodeling after replacing endogenous, deficient Treg cells with 
exogenous, functional Treg cells35.

Lung tissues from asthmatic mice show decreased Treg expression and increased Th17 expression. The 
increased Th17/Treg ratio leads to an increase in the number of infiltrating neutrophils and eosinophils, which in 
turn induces asthma. In other words, asthma is induced by an imbalance in Th17/Treg cells36. Studies have shown 
that Treg cells regulate cellular immunity through TGF-β and IL-1037. IL-6 and TGF-β are critical to determining 
which direction the Th17/Treg balance will tip38. Our study showed a significant decrease in Treg cells, TGF-β, 
IL-10, and IFN-γ and a significant increase in Th17 cells, IL-17, and IL-4 in both BALF and sera from asthmatic 
mice. This confirms a loss of Th17/Treg balance, in addition to the loss of Th1/Th2 balance, with asthma disease 
onset.

mTOR signaling pathway regulates the differentiation and activation of CD4+ T cells39. Progesterone pro-
motes the generation and maintenance of Treg cells by suppressing mTOR, indicating the tight association 
between mTOR activation and the loss of Th17/Treg balance40. Our study shows that mTOR activation pos-
itively correlates with IL-17 levels and negatively correlates with TGF-β and IL-10 levels, which is consistent 
with the results of previous studies on the effect of mTOR on CD4+ T cell subpopulation differentiation. These 
results, together, suggest that the downregulation of TGF-β and IL-10 and the upregulation of IL-17 resulting 
from mTOR activation may cause a loss of balance between Treg and Th17, which induces asthma onset and 
progression. Because the mTOR signaling pathway is required for asthma onset and progression, and because 
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inhibiting mTOR activation restores the Th17/Treg balance, mTOR inhibitors such as rapamycin represent novel 
treatment options for asthma.

In our clinical study, asthma attack patient samples were collected before the patients were treated with steroid 
budenoside, whereas the asthma remission patients were sampled following remission, either with steroid buden-
oside and β2-adrenergic receptor agonists Terbutaline Sulphate Solution for Nebulization, or auto-remission 
without any treatment. It is possible that the difference observed in asthma attack patients and remission 
patients were due to different treatments, however, there were no statistical significances between patients in the 
remission group with or without treatment in serum mTOR, Th17, Treg, IL-17, TGF-β, IL-10, IL-4, and IFN-γ 
(Supplemental Table 1), which indicates that the differences observed between asthma attack patients and asthma 
remission patients were not attributed to steroid or β2-adrenergic receptor agonists treaments.

Currently, budesonide is the standard treatment for asthma, and there are no clinical trials on treating asthma 
with rapamycin. Our model shows that mTOR inhibitor treatments showed no statistically significant differences 
in effects from that of budesonide treatment, and we propose mTOR inhibitors as promising potential treatments 
for asthma that will be at least comparable to budesonide. The effect of mTOR inhibitors on asthma of different 
subtypes and stages should be investigated.

Materials and Methods
Ethics statement. All methods were carried out in accordance with relevant guidelines and regulations. All 
experiment protocols were approved by a named institutional and/or licensing committee. Specifically, for the patient 
study, all experiment protocols were reviewed and approved by the Medical Ethics Association of the Third Affiliated 
Hospital of Zhengzhou University, and written informed consents were received from the parents of all children 
involved; for animal studies, all protocols were reviewed and approved by the Animal Ethics Committees of the Third 
Affiliated Hospital of Zhengzhou University under University Animal Research Guideline 1996–21. Animals were 
housed and treated under the approved protocols, and all efforts were made to minimize animal suffering.

Clinical study. The patients were categorized into four groups: an asthma attack group, asthma remission 
group, community-acquired pneumonia group, and normal healthy group. The asthma group consisted of 34 
children (17 males, 17 females), aged 4.2 to 10.8 years (mean = 6.5 ± 2.1 years), with asthma who had visited a 
doctor or were hospitalized in the Third Affiliated Hospital of Zhengzhou University from January 2014 to June 
2014. Patients were sampled within 24 hours of first experiencing increased symptoms when they visited the 
doctor or were hospitalized. Asthma attack patient were treatment with steroid budenoside after sampling. The 
remission group included 35 children (18 males, 17 females), aged 3.8 to 10.2 years (mean = 6.4 ± 1.8 years), who 
had experienced an asthma attack and then were in asthma remission either through treatment with the steroid 
budenoside and β2-adrenergic receptor agonists (Terbutaline Sulphate Solution for Nebulization, 10 males and 9 
females) or self-remission without treatment (8 males and 8 females). Patients were sampled within 24 hours of 
entering remission. There were no statistical significances between patients in the remission group with or with-
out treatment in serum mTOR, Th17, Treg, IL-17, TGF-β, IL-10, IL-4, and IFN-γ (Supplemental Table 1). All of 
the patients with asthma were confirmed as cases according to the published diagnostic standard41. The pneumo-
nia group comprised 37 children (20 males, 17 females), aged 3.7 to 9.9 years (mean = 6.5 ± 1.9 years), who were 
diagnosed with pneumonia in the same hospital in the same period as the patients with asthma. All of the patients 
with pneumonia were confirmed as cases according to the published diagnostic standard41. The healthy con-
trol group comprised 31 normal healthy children (17 males, 14 females), aged 2.9 to 9.3 years (mean = 5.9 ± 1.4 
years), that were randomly chosen from those who had a physical examination in the hospital in the same period 
as the patients with asthma and pneumonia. There were no statistically significant differences in ages and gender 
composition among the groups (p > 0.05).

Animal study. Sixty specific pathogen-free (SPF) grade 6- to 8-week-old female Balb/C mice were provided 
by the Zhengzhou University Animal Experiment Center (serial number: SCXK[Yu] 2015–0005) and housed 
in the Experiment Center of the Third Affiliated Hospital of Zhengzhou University with free access to food and 
water for one week prior to initiation of the experiment. Mean mouse body weights were 20 ± 2 g as determined 
by a digital scale before the experiment. Mice were divided into six groups: saline control (A), OVA-induced 
asthmatic mice (B), asthmatic mice treated with budesonide (C), asthmatic mice treated with the mTOR inhibitor 
rapamycin (D), asthmatic mice treated with the PI3K inhibitor LY294002 (E), and asthmatic mice treated with the 
Akt inhibitor triciribine (F). The asthma mouse model was established based on a previous study42 with modifica-
tions. Briefly, each mouse was injected intraperitoneally with 0.2 mL OVA (Sigma)/aluminum hydroxide on days 
1, 8, and 15, and then subjected to 2% OVA inhalation for 30 minutes for stimulation every other day, starting 
from day 22 for a total of 10 doses. Asthma was established in the treatment groups using the same procedure, 
except with an additional 30 minutes of inhalation treatment with 1 mg (2 mL) budesonide (C) or intraperitoneal 
injection of rapamycin (D, 3 mg/kg, Sigma), LY294002 (E, 1 mg/kg, Sigma), or triciribine (F, 1 mg/kg, Sigma) 
before stimulation. Rapamycin, LY294002, and triciribine were dissolved in dimethyl sulfoxide (DMSO) to create 
a stock solution that was diluted with sterile phosphate-buffered saline (PBS) before use. Negative control mice 
were treated under the same protocol as asthmatic mice, except that OVA was replaced with saline solution. No 
mice from any of the six groups died during the experiments.

Evaluation of OVA-induced murine model of asthma. Mice were divided into an asthma group and 
control group. There were no statistically significant differences between these two groups in body weights, activ-
ity levels, or reaction to stimuli before the experiment. No swellings or ulcers were observed during or after 
the intraperitoneal injection. Three days into stimulation, mice in the asthmatic group displayed restlessness, 
sneezing, and deepened breathing, which stopped about 10 minutes after completing the 30 minutes of OVA 
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stimulation. Five days into OVA stimulation, mice in the asthma group demonstrated either hypomania or a 
significant reduction in activity levels. Mice in the control group behaved as they did before the experiment, 
exhibiting healthy appetites, agile movements, and glossy fur. Mice that displayed shortened breath, restlessness, 
cyanosis, salivation, as well as fecal and urine incontinence, after inhalation of the allergen indicated the success-
ful establishment of the asthma mouse model. More severe reactions included hypopnea or respiratory arrhyth-
mia, respiratory failure, and lethargic. All mice were evaluated by H&E, IHC, and PAS staining for asthmatic 
markers such as inflammatory cells, thickening of airway smooth muscles, airway walls, and epithelial mucosa.

BALF cell collection. Mice were anesthetized and stabilized on a wooden board 24 hours after the last stim-
ulation, and their chests were opened for the following procedures. The distal trachea and left main bronchus 
were ligated, and then each mouse was tracheally intubated with a modified 22 G catheter for a 0.5-mL cold PBS 
lavage performed three times. BALF was collected with a recycle rate of >85%. Supernatants were collected after 
10 minutes of centrifugation at 4 °C and 1500 rpm, and were stored at −20 °C for use in experiments.

Isolation of sera from humans and mice. Fasting venous blood was collected from patients with asthma 
and from controls, allowed to clot at room temperature, and centrifuged for 10 minutes at 2000 rpm. Serum was 
collected from the top layer in the tube, and aliquoted for use in experiments. Mouse blood was collected by ster-
ile retro-orbital bleeding and processed similarly.

Enzyme-linked immunosorbent assay (ELISA). ELISA was performed on clinical serum samples, 
mouse sera, and BALF according to the manufacturer’s instructions. ELISA kits used were the following: Human 
mTOR ELISA Detection Kit, Human IL-17 ELISA Detection Kit, Human IL-10 ELISA Detection Kit, Human IL-4 
ELISA Detection Kit, Human IFN-γ ELISA Detection Kit, Human TGF-β ELISA Detection Kit, Mouse mTOR 
ELISA Detection Kit, Mouse IL-17 ELISA Detection Kit, Mouse TGF-β ELISA Detection Kit, Mouse IL-10 ELISA 
Detection Kit, Mouse IL-4 ELISA Detection Kit, and Mouse IFN-γ ELISA Detection Kit, all from R&D Systems.

Flow cytometry. PBMCs were suspended at a concentration of 1 × 106/mL in RPMI 1640 medium (Gibco) 
supplemented with 10% fetal bovine serum. To activate cells, PMA + Ion (25 ng/mL + 1 mg/mL) and protein 
transport inhibitor BFA (1 mg/mL) (both from Sigma) were added, and cells were incubated at 37 °C for 5 hours 
with 5% CO2. The activated cells were stained with FITC-labeled anti-human CD3 and PerCP-labeled anti-human 
CD8 and then stored in the dark at 4 °C for 20 min. After being washed with PBS, the cells were fixed with 100 mL 
fixation solution for 15 minutes and then washed again. Permeabilization working solution was added, mixed for 
15 minutes, and then washed with PBS. Intracellular staining was performed with the addition of APC-labeled 
anti-human IL-17, and, simultaneously, homeotype control reaction tubes were prepared. After pre-cooling and 
washing with PBS, the cells were counted by FACSCalibur flow cytometry (BD Biosciences). The results were 
analyzed by CellQuest software, with CD3+CD8−IL-17+ representing Th17 cells.

PBMC suspensions without stimulation were supplemented with human FITC-labeled anti-human CD4, 
APC-labeled anti-human CD25, and PE-labeled anti-human CD127, and incubated in the dark at room tempera-
ture for 15 minutes. Cells were washed with PBS twice, and then fixed with 300 μL PBS. Cells were detected by flow 
cytometry (FACSCalibur, BD Biosciences) and analyzed by CellQuest software, with CD4+CD25high+CD127low 
representing Treg cells43.

H&E, PAS, and IHC staining. The procedures were performed according to the kit manufacturer instruc-
tions. For H&E staining to detect inflammatory cells, the number of eosinophils, neutrophils, and lymphocytes 
were averaged from five different areas on each slide were evaluated microscopically at 400× magnification. IHC 
staining was scored by the same researcher under the same microscope, with yellow or brown staining considered 
positive signals. Mouse lung tissues were stained with p-PI3K, p-Akt, p-mTOR, and p-p70S6k antibodies and yel-
low/brown staining was scored under the microscope. Images were obtained at 200 × magnification, five positive 
areas per slice were selected for analysis, and optical density values were measured. The intensity of H&E, IHC, 
and PAS staining was evaluated semi-quantitatively using the following categories: 0 (no staining), 1+ (weak 
but detectable staining), 2+ (moderate or distinct staining), and 3+ (intense staining). For each specimen, an 
HSCORE value was derived by calculating the sum of the percentages of cells that were stained in each intensity 
category and multiplying that value by the weighted intensity of the staining, using the formula HSCORE = Pi 
(i + 1), where i represents the intensity score, and Pi is the corresponding percentage of cells44. In each slide, five 
different areas and 100 cells per area were evaluated microscopically with α*40 objective magnification. The per-
centage of cells at each intensity within these areas was determined at different times by two investigators blinded 
to the source of the samples, and the average of their scores was used.

Western blot. Lung tissue from each mouse was sampled three times and prepared for western blot. The lung 
tissues were lysed in protein lysis buffer, and proteins were extracted and quantified by Coomassie blue staining. 
Proteins were detected by western blot using antibodies against p-PI3K (Cell Signaling Technology), p-Akt (Cell 
Signaling Technology), p-mTOR (Santa Cruz Biotechnology), and p-p70S6k (Epitomics). Proteins were quanti-
fied using Odyssey software 3.0 and normalized against β-actin as an internal control.

Statistical analysis. All data were analyzed with SPSS v21.0 and were presented as mean ± standard devi-
ation (SD). Each set of data was determined to conform to a normal distribution, analyzed by F-test for homo-
geneity of variance, and then subjected to a univariate analysis between groups in a multi-application, pairwise 
comparison with Bonferroni correction. Correlations were determined by Pearson correlation, with α = 0.05 set 
as the criterion for statistical significance.
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