
1Scientific Reports | 7: 5221 | DOI:10.1038/s41598-017-04725-2

www.nature.com/scientificreports

A Robust Method for Inferring 
Network Structures
Yang Yang1,2, Tingjin Luo3,4, Zhoujun Li1, Xiaoming Zhang1 & Philip S. Yu2

Inferring the network structure from limited observable data is significant in molecular biology, 
communication and many other areas. It is challenging, primarily because the observable data are 
sparse, finite and noisy. The development of machine learning and network structure study provides 
a great chance to solve the problem. In this paper, we propose an iterative smoothing algorithm with 
structure sparsity (ISSS) method. The elastic penalty in the model is introduced for the sparse solution, 
identifying group features and avoiding over-fitting, and the total variation (TV) penalty in the model 
can effectively utilize the structure information to identify the neighborhood of the vertices. Due to the 
non-smoothness of the elastic and structural TV penalties, an efficient algorithm with the Nesterov’s 
smoothing optimization technique is proposed to solve the non-smooth problem. The experimental 
results on both synthetic and real-world networks show that the proposed model is robust against 
insufficient data and high noise. In addition, we investigate many factors that play important roles in 
identifying the performance of ISSS.

Almost everything in our daily life can be modeled as complex networks, such as the social network1, 2, trans-
portation network3, protein-to-protein network4 and knowledge graph5. The interactions in these networks play 
an important role in identifying the networks’ structure, functionality and dynamics. Hence, many researchers 
utilize the detailed interaction information to do a lot of interesting research works, such as the centrality meas-
ures6, 7, community detection8, robustness analysis9–11, controllability12 and network game13–15. However, the link 
information of networks is often invisible in many cases. Hence, it’s very important to propose a robust method in 
inferring the network structure from very few observed values (measurements) with noise, which are indirectly 
generated from the network.

Many researchers have made great efforts in solving the network inference problem. For instance, Han and Di 
et al.16 proposed the state-of-art method i.e., Lasso (Least Absolute Shrinkage and Selection Operator)17, which 
provides an estimation of a network with limited connectivity and low model prediction error. Hempe18 proposed 
an inference algorithm based on inner composition alignment to identify the network structure19, 20 on the time 
series data21. Timme22 and Domenico Napoletani et al.23 inferred the complete connectivity of a network from 
its stable response dynamics. Daniel Marbach et al.24 summarized many robust gene network inference methods 
and compared their performances. Soheil Feizi et al.25 proposed network deconvolution as a general method to 
distinguish direct dependencies in gene expression regulatory networks.

Though many researchers have made great efforts in solving the network inference problem, it is still very 
challenging mainly on the following reasons. Firstly, the interactions in the network are very sparse. For most 
of the vertices of the network, they have few interactions with their neighbors, which are only a small portion of 
vertices compared with the network size, i.e. the total number of vertices. It leads to the sparseness of interactions 
for each vertex, which makes it hard to infer the local structure. Secondly, the inference of the inaccessible original 
network is mainly based on the observations, i.e. measurements generated from the network. However, almost 
all of measurements and outputs have noises. The noisy data present great challenges in the error control, and 
it creates great difficulties to identify the real network. Thirdly, the observations are always insufficient i.e., have 
missing terms. In many real world applications, it’s hard or costly to get all the measurements of the network from 
the beginning to the end. For many real world cases, we have only 5–20% observations16 on the whole network, 
which makes it an impossible task to infer the detailed network structure.
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In this paper, we propose an iterative smoothing algorithm with structure sparsity (ISSS) method to infer 
the network structure. The elastic penalty is the combination of L1 and L2 penalties. The special L1 penalty can 
successfully model the sparseness of network information. The L2 penalty can prevent over-fitting of the model. 
The TV penalty26 of the method can treat the neighbors of each vertex as a continuous signal, which makes the 
model tend to infer the local information of the network, i.e. community structure. The three structural penalties 
lead to the non-smoothness of the loss function, which makes it hard to solve the optimization problem. By intro-
ducing the Nesterov’s smoothing technique27, the optimization problem can be successfully solved. Moreover, the 
existence of three penalties and the smoothing technique makes the inference method more robust, even when 
the network has an insufficient observation with noise. We apply the model on synthetic networks to infer the 
dynamics of these networks, such as Erdős Rényi (ER)28, Barabási Albert (BA)29 and Watts Strogatz (WS)30 net-
works. Furthermore, we also apply the model on many real world networks, such as the Karate31 and Netscience32 
networks. The experimental results show the effectiveness of the ISSS model.

Problem Definition
Let’s take the ultimatum game (UG) on networks33 as an example. The vertices in the network represent play-
ers. If two people play the ultimatum game, there is an edge between them. Everyone in the game will play two 
times with his neighbors using strategy (p, q), both as a proposer and a responder. pij ∈ [0, 1] is the amount pro-
posed by player i to offer his neighbor j, while qij is the minimum amount that i responds to his neighbor j. For 
instance, player i has a strategy [0.8, 0.65], and one of his neighbors j has a strategy [0.6, 0.5]. Since i proposes 
to offer pij = 0.8 to j, which is larger than the minimum acceptance amount of j, i.e., qji = 0.5, then player i will 
get a 1−0.8 = 0.2 payoff. At the same time, j offers i with pji = 0.6, which is lower than the minimum amount of i 
accepts, i.e., qij = 0.65, then player i rejects j’s offer, and both of them get nothing. The game lasts for M rounds. For 
round μ ∈ [1, M] with time stamp tμ, the corresponding strategy of player i is denoted as (pj(tμ), qj(tμ)). The payoff 
of player i with player j at round μ can be summarized as follows:
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Hence, the overall payoff of player i with all its neighbors is defined as φ= ∑µ µ∈( ) ( )y t ti j E iji
, where Ei is the 

neighbors of player i. The strategy (pi(tμ+1), qi(tμ+1)) changes from time to time with a random number δ ∈ [−ε, 
ε]. ε is set to 0.05 and the strategy p and q are set to range [0, 1]. The reconstruction problem is formulated as 
Yi = Φi × Xi as shown in Fig. 1, where ∈ ×Yi

M 1 is given by the output of the network system for vertex i. 
Φ ∈ ×
i

M N  is the observation, i.e. measurements which is constructed by Equation (1). ∈ ×Xi
N 1  denotes the 

neighboring vector of vertex i, which is the network structure we want to infer. tμ ∈ [1, M] is the accessible time 
instance in time series. Our task is to infer all the neighbors of vertex i, i.e., Xi, given noisy, sparse and incomplete 
Yi and Φi in Equation (2).
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Here the UG on networks is just an example. There are also many other applications, such as the evolutionary 
games, transportation, communication processes, sociology and biology in papers16, 34, 35. For instance, the con-
struction of biological interaction networks with the goal of uncovering causal relationships between genotype 
and phenotype constitutes a major research topic in systems biology35. With the increased availability of DNA 
microarray time-series data, it is possible to infer gene regulatory networks (GRNs) from gene expression data 
to understand dynamic GRNs36. The information-geometric network inference to use a real radio emulation 
testbed to infer the end-to-end rate distributions of stochastic network flows from link rate measurements37. G 
Zahoranszky-Kohalmi38 employs network inference method in investigating the drug-target and target-target 
interactions in order to design new drugs.

In these real world applications, the observations from the network, i.e., Φi and Yi have noises, and Φi is 
generally sparse and incomplete, which are key factors in identifying the performance of the network inference 
method. In fact, the essence of the inferring network structure (network reconstruction) problem can be formu-
lated by Equation (2). The performance of the model is determined by the network structure and the expressing 
ability of model itself. Thus if the networks are built using ER network model with the same parameters, then the 
performance of any methods should be very similar. In the next section, we will discuss the advantages of ISSS 
and the key factors in identifying the performance of the ISSS and Lasso models.

Results
In this section, we apply our model on many different types of synthetic and real world networks. Then we com-
pare the experimental results of our model with the state-of-art method Lasso16 on ER, BA and WS networks. The 
experimental results show the effectiveness of our model, and it outperforms the baseline method significantly. 
In addition, we also investigate the key factors in identifying the performance of the model, such as the variance 
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of the elements in measurement Φ and the properties of many real world networks. Finally, we compare the clus-
tering coefficients of the network derived from the Lasso and ISSS model, respectively. And we also analyze the 
effectiveness of three penalties in the model.

Experiments on three typical networks.  We take the network inference as a binary classification task, 
i.e. the edge exists or not. Hence, Area under the Receiver Operating Characteristic (AUROC)39 is employed to 
evaluate the performance of the models. The Area under the Receiver Operating Characteristic is a common 
summary statistic for the goodness of a predictor in a binary classification task. It is equal to the probability that a 
predictor will rank a randomly chosen positive instance higher than a randomly chosen negative one. According 
to the experimental results in Table 1, the ISSS method outperforms Lasso on all the ER, BA and WS networks 
with different training data size, which is defined as Data = M/N, where M is the number of accessible time 
instances in the time series and the N is the number of vertices in the network. In the experiment, the ER, BA and 
WS networks all have N = 100 vertices, M = 100 time instances and the edges of networks are constructed ran-
domly according to the parameters. All the experimental results are averaged over at least 10 independent trials. 
The experiment setup in this paper is the same with the sate-of-art Lasso. With more than 40% of the training 

Figure 1.  The network structure inference problem. The colorful squares in Yi and Φi represent different float 
values. The colorful squares in Xi represent the connection between vertex i and other vertices. If the square of 
vertex j is blank, it means that there is no connection between vertex i and j. Hence, the color of squares in Xi is 
the same with the corresponding color of nodes in the graph. In many real world applications, the training data 
is insufficient, which indicates that some rows of Yi and Φi are missing, such as the j ∈ Emissing row in Yi and Φi.

Type Method

Data

0.05 0.1 0.15 0.2 0.4

ER
Lasso 0.51 0.55 0.59 0.64 0.95

ISSS 0.63 0.71 0.76 0.80 0.95

BA
Lasso 0.53 0.63 0.81 0.92 0.99

ISSS 0.73 0.79 0.86 0.92 1.00

WS
Lasso 0.53 0.60 0.71 0.87 1.00

ISSS 0.71 0.79 0.86 0.93 1.00

Table 1.  Comparison between ISSS and Lasso. We use AUROC39 (Area under the Receiver Operating 
Characteristic) index to depict the performance of the inference task. Area is the area under the curve. It is 
a common summary statistic for the goodness of a predictor in a binary classification task. It is equal to the 
probability that a predictor will rank a randomly chosen positive instance higher than a randomly chosen 
negative one.
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data, i.e. Data = 0.4, both ISSS and Lasso can successfully identify the network structure. As shown in Table 1, 
when the training data size is very small, the performance of ISSS is much better than Lasso. Take Data = 0.05 as 
an example, the AUCROC of ISSS is at least 0.1 larger than that of Lasso. It indicates that the ISSS improves the 
performance significantly with very few training data.

It is worth mentioning that variance of measurement Φ’s elements in Equation (2) play an important role 
in inferring the network structure. The Φ’s elements Φij ∈ [0, 1] on ER, BA and WS in Table 1 has default var-
iance = 10−1. Here we will analyze the situation that Φ has many other variances, s.t. variance = 10−2, 10−3 and 
10−4 in Fig. 2. We plot the performance of ISSS and Lasso with different variances of Φ’s elements on ER, BA and 
WS networks.

On the networks with variance = 10−4 in Fig. 2(a,d,g), i.e. the network structure is hard to reconstruct, Lasso 
fails to infer the network structure. The performance of Lasso is the same with the random guess. Compared 
with the Lasso, ISSS method greatly outperforms the lasso significantly. As the size of training data goes up, the 
performance of ISSS gets better. However, the AUROC of ISSS is still lower than 0.8 with all the training data, 
i.e., Data = 1. On the networks with variance = 10−3, as shown in Fig. 2(b,e,h), there is a big gap between two 
curves, which indicates that ISSS greatly outperforms the Lasso. With variance = 10−2 as shown in Fig. 2(c,f,i), the 
performance of ISSS is greatly improved especially when we have only 5% training data. As the size of training 
data rises, both the performances of ISSS and Lasso are improved. An interesting phenomenon is that ISSS and 
Lasso perform similarly among 25–40% training data with variance = 10−2. The cause of the phenomena is hard 
to interpret from theory and experiment aspects. In addition, low variance leads to faster convergence of the 

Figure 2.  The performance of ISSS and Lasso on the data with variance = 10−2, 10−3 and 10−4. With very small 
variance = 10−4, the performance of Lasso is equal to random guess, i.e., the blue line in Fig. 2(a,d,g). With very 
large variance, the inference or reconstruction task is much easier. To show the whole curves, the upper bound 
of the y axis is set to 1.2 for all the figures in this paper.
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model. For instance, to infer a small network, the training time with variance = 10−3 is 10% shorter than that with 
variance = 10−1. That’s the reason that many systems prefer low variance measurements and outputs. In summary, 
the ISSS model performs well with low variance measurements and few training data.

To further investigate the relation between variance and training data size, as shown in Fig. 3(a,b,c), we fix the 
training data size, i.e., Data = 0.1, 0.5 and 1, then find out the performance of ISSS and Lasso as variance scale 
goes up from (0, 1] with step 0.1. The experimental results on ER, BA and WS network are similar. Hence, we take 
ER network as an example in the figure. When Data = 1 and 0.5, ISSS can successfully infer the network structure 
with very small variance scale. With Data = 0.1, the AUROC keeps its value as the variance goes up. The perfor-
mance of Lasso is just a little better than the random guess. However, the AUROC value of ISSS is larger than 
0.70. It indicates that training data size is an important factor in identifying the upper bound of the performance.

To test the robustness of the ISSS against the noise, we add some Gaussian noises  µ δ∼ ( , )2  to the output Y 
and measurement Φ. Then we apply the ISSS and Lasso model on the noisy data. The results are shown in 
Fig. 3(d,e,f). For low noise with δ2 = 10−3, the ISSS outperforms the Lasso, especially when the elements of Φ have 
very small variance. For very high noise that follows the normal distribution with δ2 = 10−1, the performance of 
ISSS and Lasso are similar. For the noise with δ2 = 10−2, the performance of ISSS is better than Lasso for all vari-
ance scales.

Experiments on real world networks.  We apply the ISSS and Lasso on many real world networks to 
evaluate the performance. Table 2 denotes the minimum data for achieving at least 0.95 AUROC in combination 
with several real world networks. Lasso cannot achieve 0.95 AUROC on all networks with default variance = 10−1. 
ISSS greatly outperforms the Lasso. On karate and Les Miserables networks, ISSS achieves 0.95 AUROC with only 
Data = 0.2 and 0.4, respectively. By analyzing many properties of the network, we find that it is much easier to 

Figure 3.  Insufficient data vs variance scale. In most cases, the AUROC of ISSS and Lasso rises, as the variance 
increases. With small variance, ISSS performs much better than the Lasso. With Data = 0.1, the performance 
cannot be improved with any variance. It indicates that insufficient data plays an important role in the inference 
task. Extremely insufficient data leads to the failure of all the methods. The experimental results with other 
Data ∈ [0.2, 1] values are similar. In this section, we take Data = 0.4 as a representative. As shown in this figure, 
with small noise, ISSS outperforms Lasso. With great noise, the performance of ISSS and Lasso reach the upper 
bound of the model. Hence the performance of the two methods are the same.

Network Vertices Eedgs CC Average path Centralization Heterogeneity Density Lasso ISSS

Karate 34 78 0.571 2.408 0.4 0.833 0.139 N/A 0.2

Dolphins 62 159 0.259 3.357 0.116 0.572 0.084 N/A 0.5

Netscience 1589 2743 0.638 5.823 0.019 1.005 0.002 N/A 0.8

Adjnoun 113 435 0.173 2.536 0.38 0.903 0.068 N/A 0.6

Football 115 613 0.403 2.508 0.012 0.083 0.094 N/A 1

Les Miserables 77 254 0.573 2.641 0.397 0.91 0.087 N/A 0.4

Table 2.  Minimum data for achieving at least 0.95 AUROC in combination with several real networks. CC 
stands for clustering coefficient.
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infer the network structure with higher centralization index with very few training data. The network with both 
higher heterogeneity and density can also be easily inferred. To evaluate the performance of ISSS and Lasso on 
large networks, we do some experiments on the power grid (4941 vertices, 6594 edges), roget (1022 vertices, 5075 
edges), Gnutella peer-to-peer file sharing network (6301 vertices, 20777 edges) and collaboration network in 
computational geometry (7343 vertices, 11898 edges). As shown in Fig. 4, ISSS outperforms the Lasso on all the 
networks. The Gnutella peer-to-peer network is hard to infer. Both ISSS and Lasso require more training data to 
infer the Gnutella peer-to-peer network structure.

We compare the clustering coefficient of the network inferred by ISSS and Lasso with different training data 
sizes in this part. In Fig. 5, the horizontal axis represents the training data size, and the vertical axis is the cluster-
ing coefficient of the network inferred by ISSS and Lasso. The red solid line lies above the blue line all the time. 
It indicates that the ISSS model is inclined to infer the networks with stronger community structures than that 
of Lasso. As the training data size increases in Fig. 5, the clustering coefficient of the network inferred by ISSS 
approaches the ground truth, i.e., the yellow line. These results show that the TV penalty in ISSS model works 
well. Here is an example to demonstrate why the TV penalty works. For instance, a network has 50 vertices. As 
shown in Fig. 6, the horizontal axis represents all the 50 vertices in the network. If vertex j is a neighbor of ver-
tex i, it is 1, otherwise it is 0 in the figure. Lasso tends to predict the neighbors of vertex i discretely as shown in 
Fig. 6(a), while the ISSS is opt to infer the network structure in a continuous way, as shown in Fig. 6(b). The rea-
son for choosing TV penalty is that almost all of the vertices in many networks have similar natural number. Take 
the karate network as an example. Almost all the vertices’ labels that are less than 20 are in the same community. 
For the dolphin network, the vertices’ labels under 30 are connected with each other. For the networks don’t have 
natural number labels or the vertices don’t have continuous labels as shown in Fig. 6(a). We can remove the TV 
penalty from the model. The experimental results are shown in Table 3. The experiment is done on a BA network 
with continuous natural number labels. Without TV penalty, the ISSS model also works well. However, the ISSS 
with all the three penalties is still the best.

As we mentioned above, TV penalty is a factor in inferring the network structure. Hence, how to choose the 
value of parameter γ is important as shown in Equation (4). In this part, we investigate the relationship between 
the most common used hyper parameter coefficients γ and the training data size, i.e. Data. According to the 
results in Table 4, γ = 10−3 and 10−4 have the best performance on almost all training data. Given Data = 0.1, 
γ = 10−6 is the best choice. The hyper parameter β, λ of L1, L2 are empirically set as 0.001 and 0.0001, respectively.

Figure 4.  The performance of ISSS and Lasso on power grid, roget, Gnutella peer-to-peer file sharing network 
and collaboration network in computational geometry. The performance of ISSS and Lasso ON Gnutella 
network are not good enough. The reason is that we need more training data to infer the network, i.e., 
Data = M/N = 2, where M is the time instances and N is the number of vertices in the network.
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Discussion
In this paper, we propose the robust ISSS model in solving the network reconstruction problem. Compared with 
the state-of-art Lasso, the ISSS model is more robust, which can successfully infer the network structure with 
insufficient training data against noise. The sparse regularization term L1, L2 and the structural TV penalties make 

Figure 5.  The clustering coefficient of the reconstructed network by ISSS and Lasso. The yellow line 
represents the real clustering coefficient of the network. The red line represents the clustering coefficient of the 
reconstructed network by ISSS.

Figure 6.  The reconstruction of vertex i’s neighbors. Suppose there are 50 vertices in all. If vertex i is connected 
with vertex j, the corresponding item in histogram is 1, otherwise it is 0. Lasso is good at predicting the 
neighbors in a discrete style, while the ISSS is inclined to predict continuous neighbors. The continuous 
neighbors are probably the way to construct the community structure of the network.
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the ISSS model reconstruct the network with strong community structure. The experiments on the WS, ER and 
BA networks show that the ISSS outperforms Lasso even when the network system has very few observations with 
great noises. We also do some experiments to analyze the factors in identifying the performance of the ISSS, i.e. 
the variance of Φ, training data size and the clustering coefficient of the network.

In the future, on the one hand, we will continue to find out all the factors in identifying the upper and lower 
bound of ISSS’s performance, and prove that from both theory and experiment perspectives. On the other hand, 
the community structure of a network defines the characteristic of a network, which identifies its functionality 
and should be preserved during the inferring process. Though ISSS model can identify the network with com-
munity structure, there could be room for improvement. For instance, the group Lasso and the tree group Lasso 
are the promising directions in network reconstruction task. Furthermore, we will optimize ISSS and apply the 
network inference method to solve the drug prediction and breast cancer prediction problems.

At present, it is still very challenging to infer many large-scale networks. Hence, it is a future trend with 
promising application field. And the evaluation criteria on directed and undirected networks are the same. As the 
development of network inference and compressed sensing research, more reasonable evaluation methods will be 
proposed to evaluate the experimental results on undirected networks.

Methods
The main goal of complex network reconstruction is to recover the connection Xi by the payoff information yi 
and virtual-payoff matrix Φi of vertex i from the time series of strategies. Note that the number of the neighbors 
of vertex i is often much less than the total number of vertices in the entire complex network, i.e., Xi is sparse. 
Han et al.40 adopted to use Lasso model to identify the neighbors of vertex i. By using Lasso model, the problem 
of network reconstruction is formulated as

λ− Φ +Y X Xmin ,
(3)i i i i

X 2
2

1
i

where λ is a non-negative regularization parameter. All nonzero elements of the reconstructed Xi correspond to 
the neighbors of i vertex. However, the Lasso-based model (3) only considers the sparse information.

In practice, to estimate a true signal in noise, the most frequently used methods are based on the total varia-
tion (TV) norm and the 1 norm. TV penalty forces sparsity on the spatial derivative of the weight map. TV 
norms are essential 1 norms of derivatives, hence 1 estimation procedures are more appropriate for the subject 
of TV estimation. The space of functions of bounded total variation plays an important role when accurate esti-
mation of discontinuities in solutions is required26. By contrast, total variation is remarkably effective at simulta-
neously preserving edges whilst smoothing away noise in flat regions for image denoising. Therefore, we consider 
to use ridge regression model with the TV regularization to preserve the structural information of networks and 
enhance the robustness performance of network reconstruction. After imposed the TV regularization, the objec-
tive of our method is formulated as

β λ γ= − Φ + + +
∆F Y TVX X X X Xmin ( )

2
( ),

(4)i i i i i i i
X 2

2
2
2

1
i

Data 0.05 0.10 0.15 0.20 0.4

ISSS 0.728 0.771 0.864 0.931 0.991

ISSS/TV 0.720 0.751 0.857 0.926 0.986

ISSS/L1 0.723 0.742 0.807 0.921 0.995

ISSS/L2 0.703 0.772 0.865 0.931 0.992

Lasso 0.542 0.587 0.677 0.757 0.941

Table 3.  The performance of models with different penalties on a BA network. ISSS/TV is the ISSS model 
without TV penalty. ISSS/L1 is the ISSS model without L1 penalty. ISSS/L2 is the ISSS model without L2 penalty.

TV coefficient

Data

0.1 0.3 0.5 0.8 1

1.00E-06 0.8000 0.9700 0.9988 1.0000 1.0000

1.00E-05 0.8037 0.9750 0.9990 1.0000 1.0000

1.00E-04 0.7790 0.9815 0.9994 1.0000 1.0000

1.00E-03 0.7078 0.9830 0.9993 1.0000 1.0000

1.00E-02 0.7785 0.9538 0.9909 0.9996 0.9999

1.00E-01 0.7090 0.7832 0.8029 0.8363 0.8619

1.00E-00 0.4825 0.6137 0.6225 0.6406 0.6385

Table 4.  Sensitivity analysis of TV penalty coefficient γ in Equation (4).
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where TV(·) represents the TV regularization, which is defined as = ∑ + −=
−TV j jX X X( ) ( 1) ( )i j

N
i i1

1 . It is worth 
noting that the Lasso-based model40 is a special case of our model. When β = 0 and γ = 0, our model will reduce 
to the Lasso-based model40 for complex network reconstruction.

Compared to the model in ref. 40, our model in (4) is able to utilize the structural information to help recover 
the connection of network. However, the TV regularization is a complex and non-smoothed sparsity-inducing 
penalties, and its proximal operator is unknown and difficultly computed. The traditional convex optimization 
methods, such as iterative soft-thresholding algorithm (ISTA41, fast or accelerated ISTA (FISTA)42 and first-Order 
primal-dual(Primal-Dual) algorithm43 and second-order methods44–46, require only one non-smoothed term 
alone or access to the unknown proximal operator of the non-smooth part of the objective function. In general, 
the proximal operator of the sum of two non-smooth functions, i.e. 1 and TV, is unknown and computing expen-
sive. Thus, we can not use them solve this problem (4) directly. Motivated by Nesterov’s smoothing technique27, 
we first smooth the TV penalty with the unknown proximal operator, while keeping the exact 1 constraint and 
then use accelerated proximal gradient descent to minimize the whole function as shown in Algorithm 1.

Time-complexity of iterative convex optimization is kind of tricky to analyze, as it depends on a conver-
gence criterion. Here we give a brief estimation of the time complexity. Suppose we have N players, and M time 
instances, as shown in Equation 2. The optimization procedure of the ISSS is shown in Algorithm 1. The first 3 
setps are the most time-consuming, which costs O(T(M * N + N2)), in which T is the number of iterations. For all 
N vertices, the time complexity of the ISSS is O(T(M * N2 + N3)). Lasso is implemented using LARS algorithm. 
(1) For N < M, N3 < N2 * M and the computational complexity of Lasso is O(N2 * M). (2) For N ≥ M, N3 ≥ N2 *M 
and the complexity of Lasso is O(N3). With limited T iterations, the time complexity of ISSS is slightly higher than 
that of Lasso.

Nesterov’s smoothing technique for TV penalty.  Denote = ∑ + − ==
−TV j jX X X( ) ( 1) ( )i j

N
i i1

1  

∑ ∈ A XG G i . Using the duality concept47, we can establish the dual form of TV(Xi)

G G K
∑ ∑= = =
∈ ∈ ≤ ∈

TV z zX A X A X AX( ) max , max , ,
(5)

i
G

G i
G z

G G i
z

i
1G 2

where ∈zG
G  is a vector of auxiliary variables associated with AG and K G

G
∈ =






= 


... 


≤ ∀ ∈





z z z z z G, , : 1,G
T

G
T

T
G 21

. 

The A is the vertical concatenation of all the AG matrices, that is

=











−
−

−
−











 A

1 1
1 1

1 1
1 1 (6)

Algorithm 1.  The main procedures of solving the problem (4)

The set  is the Cartesian product of unit balls in Euclidean space, therefore, a compact convex set. Before 
smoothing the TV penalty, we introduce the following important Lemma.

Lemma 1 Let μs X( )i  be Nesterov’s smooth transform of TV X( )i . If M zmax /2z 2
2= ∈ , then for all ∈Xi

p ,

μ≤ ≤ + .μ μs TV s MX X X( ) ( ) ( )i i i

By using Nesterov’s smothing technique, the smoothed TV penalty is formulated as



⁎ ⁎μ μ
= − = −μ μ μ

∈ { }s z z z zX AX X AX X( ) max ,
2

( ),
2

( ) ,
(7)i

z
i i i i2

2
2

2

where μ is a positive smothing parameter and
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

⁎ μ
= − .μ

∈ { }z z zX AX( ) argmax ,
2 (8)i

z
i 2

2

Theorem 1 (Nesterov’s Theorem27). Let the function sμ be Nesterov’s smooth transform of a convex function TV 
penalty. We can obtain the following results:

(1) sμ is convex and differentiable with gradient ⁎∇ =μ μs zX A X( ) ( )i
T

i  and ∇ μs X( )i  is Lipschitz continuous with 
constant μ=

μ
L A /s 2

2 , where λ=A A A( )T
2
2

max  is the largest eigenvalue of ATA.
(2) For all ∈ Xi

p, we have =μ μ→ s TVX Xlim ( ) ( )i i0 .
The proof of Theorem 1 is obtained according to Lemma 1. According to the projection theorem44, we know 

that μ
⁎z X( )i  is the projection of 

μ
AXi

1  onto the compact and convex space , that is

K
G
K

⁎ ∏μ μ
=











=








μ

∈
z P PX AX A X( ) 1 1 ,

(9)
i i

G
G iG

where Π is the Cartesian product of a set and  ⋅P ( )
G

 is the projection onto each compact set G defined as

P x x
x

x if x
x
x

otherwise( )
max( , 1)

, 1

,
2

2

2
G

= =








≤

.

Optimization.  After smoothing by Nesterov’s technique, the proximal operator of sμ becomes easily com-
puted. We obtain a new optimization problem by using sμ(Xi) to replace the TV penalty of the problem (4):

λ β λ γ= + = − Φ + + +µ µ µ
∆F f y sX X X X X X Xmin ( ) ( ) 1

2 2
( ),

(10)i i i i i i i i i
X 1 2

2
2
2

1
i

where γ= − Φ + +µ
β

µf y sX X X X( ) ( )i i i i i i2
2

2 2
2  is a smooth convex function, i.e., continuously differentiable 

with Lipschitz continuous gradient constant 
μ

L f

∇ − ∇ ≤ − ∀ ∈μ μ μ
f u f v L u v u v( ) ( ) , , ,f
d

and sμ(Xi) is Nesterov’s smoothing function of TV(Xi) and defined as Equation (7). Motivated by the idea of 
FISTA42, we adopt the following quadratic model as the approximation of Fμ(Xi) at a given point v

λ= + − ∇ + − +µ µµ

µQ v f v v f v
L

vX X X X( , ) ( ) , ( )
2

, (11)L i i
f

i i
2

1f

which admits a unique minimizer

 λ= =







+ −

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
− ∇




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


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µ

µ

µ

p v Q v
L

v
L

f vX X X( ) argmin ( , ) argmin
1

2
1 ( ) ,

(12)
L L i i

f
i

fX X
1

2

f i i

where β γ∇ = Φ Φ − + + ∇ µf v v Y v s v( ) ( ) ( )i
T

i i . Note that p v( )L fμ
 is the well known component-wise soft thresh-

olding operator

λ








 = −

+
µ

u up v sign( ) ( ) ( ) ,L
i

i if

where = − ∇
μ

u v f v( )
L
1
f

 and (·)+ = max(·, 0).

The main procedure of our method is described in Algorithm 1. Denote t0=0, as FISTA, we generate two vec-
tors + +v X( , )k

i
k1 1  to minimize the smoothed model in (10) at k+1 iteration:

= +
−

− =+

+

− + +

μ
v t

t
and p vX X X X1 ( ) ( ),

(13)
k

i
k k

k
i
k

i
k

i
k

L
k1

1

1 1 1
f

where = + ++t t(1 1 4 )/2k k1
2 . By using this iterative method to minimize the smoothed model in (10), it will 

converge to ⁎Xi , which is the minimum of Fμ(Xi). Moreover, Xi 1
 is a strong convex function, the convergence 

rate is guaranteed by
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−
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μ⁎

⁎

F F
L

k
X X

X X
( ) ( )

2

( 1)
,

(14)
i
k

i
f i i

0 2

2

where k is the number of iterations. Meanwhile, by the duality gap theory and theoretical results in refs 27, 42, 48, 
we can obtain the following important result:

⁎=μ
→∞

F FX Xlim ( ) ( ), (15)k
i
k

i

and the number of iterations is upper bounded by

γ

ε ε






+






−

µ ⁎M LA
X X

8 2
,

(16)

f
i i

2
2 2

0
2

provided that ε− <µ
⁎F FX X( ) ( )i

k
i . The more details of proof are referred to refs 27, 42 and 48.

Data Availability.  All original data are available from the website FigShare https://figshare.com/articles/
adjnoun_gml/4883708.
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