Abstract
A quantum critical point (QCP) is currently being conjectured for the BaFe_{2}(As_{1−x }P_{ x })_{2} system at the critical value x _{ c } ≈ 0.3. In the proximity of a QCP, all thermodynamic and transport properties are expected to scale with a single characteristic energy, given by the quantum fluctuations. Such a universal behavior has not, however, been found in the superconducting upper critical field H _{c2}. Here we report H _{c2} data for epitaxial thin films extracted from the electrical resistance measured in very high magnetic fields up to 67 Tesla. Using a multiband analysis we find that H _{c2} is sensitive to the QCP, implying a significant charge carrier effective mass enhancement at the dopinginduced QCP that is essentially banddependent. Our results point to two qualitatively different groups of electrons in BaFe_{2}(As_{1−x }P_{ x })_{2}. The first one (possibly associated to hot spots or whole Fermi sheets) has a strong mass enhancement at the QCP, and the second one is insensitive to the QCP. The observed duality could also be present in many other quantum critical systems.
Introduction
In most of unconventional superconductors, a quantum critical point (QCP) of charge or spin density wave (CDW/SDW) states lies beneath the superconducting dome^{1,2,3,4}. Lowenergy quantum fluctuations in the vicinity of a QCP lead to nonFemi liquid (nFL) behavior in the normal state and a strong enhancement of the effective electron mass (m*). A good example is given by heavy fermion superconductors. In some of these systems the maximum superconducting transition temperature (T _{c}) coincides with the position of the expected QCP of the magnetic phase^{4}. The presence of a QCP beneath the superconducting dome is evidenced by a strong enhancement of the superconducting specific heat jump ΔC/T _{c} at T _{c} and the slope of the upper critical field \({H}_{{\rm{c}}2}^{^{\prime} }={\rm{d}}{H}_{{\rm{c}}2}/{\rm{d}}T\) normalized by the critical temperature in the vicinity of T _{c} ^{5}.
In multiband ironbased superconductors (FBS), the maximum of T _{c} is usually linked to the expected position of a QCP of the SDW phase^{6}. Evidence for a zerotemperature second order magnetic transition with pronounced quantum fluctuations was found for optimally doped BaFe_{2}(As_{1−x }P_{ x })_{2} by various measurements in the normal state^{7,8,9,10,11,12}. Therefore, it is considered to be a classical example of unconventional superconductivity emerging in the vicinity of a magnetic state^{13, 14}. However, no doping dependence of the scattering rates expected for a QCP scenario was observed in recent angleresolved photoemission spectroscopy (ARPES) studies^{15}. In the superconducting state, a divergent quasiparticle effective mass (m*) above the QCP of the SDW phase was suggested based on specific heat^{16} and penetration depth measurements^{17, 18} as well as predicted by theoretical studies^{19, 20}. However, H _{c2} at low T and its slope near T _{c} are insensitive to the QCP^{21}. This behavior is seemingly in contradiction to many other experimental observations. To resolve this puzzle we investigated in detail the temperature dependence of H _{c2} for BaFe_{2}(As_{1−x }P_{ x })_{2} singlecrystalline thin films in a wide range of Pdoping. The obtained data can be described in an effective twoband model with qualitatively different doping dependences of the Fermi velocities (v _{F}). Namely, v _{F1} is indeed nearly featureless across the QCP implying a doping independent \({m}_{1}^{\ast }\). On the other hand, v _{F2} is strongly dopingdependent, in accord with the almost divergent logarithmic enhancement of \({m}_{2}^{\ast }\) observed in many other experiments.
Results
Electronic phase diagram of BaFe_{2}(As_{1−x }P_{ x })_{2}
BaFe_{2}(As_{1−x }P_{ x })_{2} epitaxial thin films were grown by molecular beam epitaxy (MBE)^{22, 23}. The investigated MBE thin films have high crystalline quality with T _{c} values above 30 K at optimal doping level. Some of the films were prepared by pulsed laser deposition (PLD). The PLD films have slightly reduced T _{c} at similar doping levels compared to the films prepared by MBE as shown in inset of Fig. 1a. This result is consistent with previous studies^{24}. To construct the phase diagram of our thin films, we analyzed the temperature dependence of the resistivity for various doping levels shown in Fig. 1a. The phase diagrams of the BaFe_{2}(As_{1−x }P_{ x })_{2} thin films and single crystals^{14, 25} are shown in Fig. 1b. The whole phase diagram for the thin films prepared on MgO substrates is shifted to lower doping levels compared to that of the single crystals. The shift of the phase diagram, as it was shown in previous studies, is substratedependent due to different inplane strain^{22, 23, 26,27,28}. In particular, the inplane tensile strain for the films grown on MgO modifies slightly the position of the bands resulting in the observed difference between the phase diagrams of thin films and single crystals^{28}. On the other hand, the amount of strain for the films grown on LaAlO_{3} (LAO) is negligibly small resulting in the same phase diagram as for single crystals^{23}.
We assumed that the temperature dependences of the resistivity (Fig. 1a) can be described by ρ = ρ _{0} + AT ^{n} in the normal state above the superconducting and magnetic transition temperatures. This general expression has been frequently employed in the quantum critical region, where n = 1 at the QCP and n = 2 in a Fermi liquid (FL) state^{8, 14}. The contour plot in Fig. 1b illustrates the temperature and doping dependences of the exponent \(n=\frac{T{d}^{2}\rho /d{T}^{2}}{d\rho /dT}+1\), as calculated using experimental temperature dependences of the resistivity. In this analysis we exclude the data close to the SDW transition, where \(d\rho /dT\mathop{ < }\limits_{ \tilde {}}0\) (white region in Fig. 1b). The region in the phase diagram with nFL behavior is similar to the single crystals: the exponent n shows a Vshape; however, it shifts to lower doping level. This allows us to estimate the critical doping level for thin films on MgO substrates as \({x}_{{\rm{c}}}\approx 0.25\pm 0.03\), which is slightly lower than \({x}_{{\rm{c}}}\approx 0.3\) reported for single crystals^{14}. For the films prepared on LAO substrate we assumed that the position of the QCP coincides with the one for the single crystals due to the close similarity between their phase diagrams as discussed above.
Upper critical field
The temperature dependences of H _{c2} for BaFe_{2}(As_{1−x }P_{ x })_{2} thin films with various doping levels for fields parallel to the caxis are shown in Fig. 2. The temperature dependence of H _{c2} is strongly affected by the amount of doping. To compare the data of samples with different doping levels, we plot the reduced field \({h}_{{\rm{c2}}}=\frac{{H}_{{\rm{c2}}}}{{H}_{{\rm{c2}}}^{^{\prime} }{T}_{{\rm{c}}}}\) versus the reduced temperature t = T/T _{c} in Fig. 2b, where \({H}_{{\rm{c2}}}^{^{\prime} }\) is the extrapolated slope of H _{c2} at T _{c}. For the strongly overdoped, and slightly underdoped samples, 0.15 < x < 0.21, the experimental h _{c2} data are close to the prediction of the singleband WerthamerHelfandHohenberg (WHH) model which includes only the orbital pairbreaking effect^{29}. For other doping levels, the experimental h _{c2} data deviate from the single band fit. The doping dependence of h _{c2}(0) extrapolated to zero temperature is shown in the inset of Fig. 2b. The h _{c2}(0) values exhibit a broad maximum around optimal doping x _{c}. Additionally, h _{c2}(0) is strongly enhanced in the coexistence state between SC and magnetism, where the SDW transition temperature T _{N} > T _{c}.
The doping evolution of the temperature dependences of H _{c2} can be described by the twoband model for a clean superconductor as proposed by Gurevich^{30, 31} assuming dominant interband coupling, \({\lambda }_{12}{\lambda }_{21}\gg {\lambda }_{11}{\lambda }_{22}\), as expected for s _{±} superconductors. The expression for \(B\parallel c\) is given in the Supplementary material Eq. S1. A small value of the intraband coupling constants λ _{11} = λ _{22} ~ 0.1 affects the resulting Fermi velocities within 10%, only around optimal doping (see Fig. S7) and has a negligible effect for overdoped samples. Therefore, to reduce the number of fitting parameters, we adopted zero intraband pairing constants λ _{11} = λ _{22} = 0. In this case, the superconducting transition temperature is related to the coupling constants by \({T}_{{\rm{c}}}=1.14\,{{\rm{\Omega }}}_{{\rm{sf}}}{{\rm{e}}}^{(1/{\lambda }_{12}{\lambda }_{21})}\). We considered two different values of the characteristic spin fluctuation energy Ω_{sf}: 100 K and 62 K, in order to take into account the observed softening of the spin fluctuations spectrum at the QCP^{32}. We assumed also that the paramagnetic pair breaking is negligibly weak, \({\alpha }_{{\rm{M}}}\ll 1\), as suggested by the small electronic susceptibility of BaFe_{2}(As_{1−x }P_{ x })_{2}, where the Maki parameter \({\alpha }_{{\rm{M}}}={2}^{\mathrm{1/2}}{H}_{{\rm{c2}}}^{{\rm{orb}}}/{H}_{{\rm{p}}}\), defined by the ratio between the orbital critical field \({H}_{{\rm{c2}}}^{{\rm{orb}}}\) and the Pauli limiting field H _{p}, quantifies the strength of the paramagnetic pair breaking (see also the Supplementary material). This assumption is consistent with a relatively small Knight shift of BaFe_{2}(As_{1−x }P_{ x })_{2} ^{12}. The result of the fit is shown in Fig. 2, and the obtained fitting parameters are given in the Supplementary Tables (Tables S1 and S2).
Discussion
The doping dependencies of \({{H}_{{\rm{c2}}}^{^{\prime} }/{T}_{{\rm{c}}}}^{0.5}\) extrapolated to T _{c}, and the \({H}_{{\rm{c}}2}^{0.5}/{T}_{{\rm{c}}}\) extrapolated to T = 0 K are shown in Fig. 3a. According to the BCS theory for clean superconductors, these values are proportional to the quasiparticle effective mass (m*). As it was pointed out in ref. 21, \({{H}_{{\rm{c}}2}^{^{\prime} }/{T}_{{\rm{c}}}}^{0.5}\) should have a peaklike maximum at the QCP of the SDW phase since m* is strongly enhanced near optimal doping on the whole Fermi surface according to various experimental data^{7, 16, 17}. However, this is not the case: \({{H}_{{\rm{c}}2}^{^{\prime} }/{T}_{{\rm{c}}}}^{0.5}\) and \({H}_{{\rm{c2}}}{\mathrm{(0)}}^{0.5}/{T}_{{\rm{c}}}\) are nearly featureless at optimal doping (x _{c} ~ 0.25) in accord with ref. 21. Both the single crystals and our MBE films have high T _{c} values of about 30 K at optimal doping indicating similar low impurity scattering rates. The slightly higher \({{H}_{{\rm{c}}2}^{^{\prime} }/{T}_{{\rm{c}}}}^{0.5}\) values of the single crystals compared to those of the MBE films are probably related to the different experimental methods used for the evaluation of H _{c2}. Also, H _{c2} of the PLD films follows the same trend in spite of a lower T _{c} and residual resistivity ratio (inset of Fig. 1a) as compared to the MBE films. Therefore, we believe that the observed doping dependence of H _{c2} is not affected essentially by impurity scattering rates and related instead mainly to the changes of v _{F} and the coupling constants.
H _{c2} of multiband unconventional swave superconductors with dominant interband coupling is limited by the largest v _{F} in the usually considered pronounced s _{±}regime^{30, 31}. Therefore, in the case of a strong v _{F} asymmetry between different bands, the larger Fermi velocity (v _{F1} in our notation) dominates H _{c2} around optimal doping. In this case one can write \({({H}_{{\rm{c}}2}^{^{\prime} }/{T}_{{\rm{c}}})}^{0.5}\propto {H}_{{\rm{c}}2}{\mathrm{(0)}}^{0.5}/{T}_{{\rm{c}}}\propto {v}_{{\rm{F}}1}^{1}\propto {m}_{1}^{\ast }\). This explains the observed weak doping dependence of these quantities (Fig. 3). The obtained doping dependences of the (normalized reciprocal) v _{F1} and v _{F2} are shown in Fig. 3b. The 1/v _{F1} values are indeed smaller than 1/v _{F2} and show a weaker doping dependence. In contrast, 1/v _{F2} is strongly enhanced around optimal doping. The Ω_{sf} value affects the Fermi velocities quantitatively but their qualitative doping dependence is conserved. The corresponding normalized effective mass m*/m _{b} obtained from the de Haasvan Alphen (dHvA) experiments^{7, 16} (m_{b} is the quasiparticle mass taken from the band structure calculations) follows the same trend if the small shift of the QCP along the doping axis (Δx = −0.05) due to the strain is taken into account (see Fig. 1b). The logarithmic divergence at x _{c} = 0.25 is an indication for the reduction of v _{F2} caused by the quantum fluctuations associated with a QCP of the SDW phase^{8, 16}. A strong reduction of v _{F2} is observed also at x < 0.15 which roughly corresponds to the doping level where T _{N} > T _{c} (Fig. 1b, see also Tables S1 and S2 in the Supplementary material). This behavior may be associated with the reconstruction of the Fermi surface due to the presence of the coexisting SDW phase^{15, 33, 34}.
Some of the multiband heavy fermion superconductors show a similar behavior around the magnetic QCP as the BaFe_{2}(As_{1−x }P_{ x })_{2} system. The measured enhancement of the effective mass depends also essentially on the experimental method^{35}. Also, a seemingly conflicting behavior between the dHvA, ARPES and transport data was discussed for cuprate superconductors around optimal hole doping^{36}. It was proposed that for the suggested nodal electron pocket induced by bidirectional charge order in high fields, the mass enhancement is very anisotropic around the small Fermi surface. It was argued that the corners of that pocket exhibit a large enhancement without any enhancement along the diagonal nodal direction. Such an angledependent mass enhancement is interpreted as a destruction of the Landau quasiparticles at ‘hot spots’ on the large Fermi surface at a proximate QCP. Moreover, another recent theoretical work questioned the paradigm of the universal nFL behavior at a QCP^{37}. It was shown that at the nematic QCP the thermodynamics may remain of FL type, while, depending on the Fermi surface geometry, either the entire Fermi surface stays cold, or at most there are ‘hot spots’. Therefore, one may speculate that the complex behavior observed in FBS and in particular for BaFe_{2}(As_{1−x }P_{ x })_{2} can be related to the superposition of two distinct QCPs associated with the SDW phase and the nematic order^{38}. The evidence for two distinct QCPs was indeed reported for the Ba(Fe_{1−x }Ni_{ x })_{2}As_{2} system^{39}. Recently, a banddependent mass enhancement toward the QCP was suggested from the highfield specific heat measurements of overdoped BaFe_{2}(As_{1−x }P_{ x })_{2} single crystals^{40}. Thus so far, the available experimental data emphasize the relevance of multiband effects for a proper and complete understanding of the quantum criticality of BaFe_{2}(As_{1−x }P_{ x })_{2} and related systems. Further experimental and theoretical investigations including possible strong coupling interactions since the suggested bosonic frequencies (spin fluctuations) exceed the superconducting critical temperature by a factor of three,only, retardation effects might be important, would be helpful to develop a microscopic scenario of the QCP for the title compound and other multiband systems.
Methods
Samples
BaFe_{2}(As_{1−x }P_{ x })_{2} single crystalline thin films with various P doping levels x were grown by MBE with a background pressure of the order of 10^{−7} Pa. All elements were supplied from solid sources charged in Knudsen cells. Pure elements were used as sources for Ba, Fe, and As. The P_{2} flux was supplied from a GaP decomposition source where Ga was removed by two trapping caps placed on the crucible. The details of the sample preparation are given in refs. 22 and 23. Some of the films on MgO (100) substrate were prepared by PLD with a KrF excimer laser (248 nm). In this case, we used polycrystalline BaFe_{2}(As_{1−x }P_{ x })_{2} as the PLD target material. The preparation process took place in an ultrahigh vacuum chamber with a similar base pressure of 10^{−7} Pa. Before the deposition, the substrate was heated to 850 °C. Then the BaFe_{2}(As_{1−x }P_{ x })_{2} layer was grown with a laser repetition rate of 3 Hz. The layer thickness was adjusted via the pulse number at constant laser energy. To improve the sample’s homogeneity and thickness gradient, the substrate was rotated during the whole deposition process. Phase purity and crystalline quality of the films were examined by Xray diffraction (XRD). The caxis lattice parameters were calculated from the XRD data using the Nelson Riley function. It depends linearly on the Pdoping (determined by electron probe microanalysis (EPMA)) for the films grown on the same substrate^{23}. In this work, we mainly investigated films prepared on MgO (100) substrate. At high doping levels, also several films on LaAlO_{3} (100) substrate have been used. The Pdoping levels given in the paper have been determined using the caxis lattice parameter values according to the data in ref. 23 as shown in the Supplementary material Fig. S1.
Resistivity measurements
The temperature dependence of the electrical resistivity was measured by a fourcontact method in a Quantum Design physical property measurement system (PPMS) in magnetic fields up to 14 T. Examples of the temperature dependence of the resistivity in zero and applied magnetic fields are shown in Supplementary material (Figs. S2–S7). The highfield measurements were performed in DC magnetic fields up to 35 T at the National High Magnetic Field Laboratory, Tallahassee, FL, USA. The highfield transport measurements in pulsed magnetic fields up to 67 T were performed at the Dresden High Magnetic Field Laboratory at HZDR and at the National High Magnetic Field Laboratory, Los Alamos, NM, USA. The superconducting transition temperature T _{ c }, as given in the paper, was determined using T _{c,90} as shown in the Supplementary material (Figs. S6 and S7). Other criteria, such as 50% of the normal state resistance, yield qualitatively the same temperature dependence of H _{c2}. The SDW transition temperature T _{N} was defined as the peak position of the temperature derivative of the resistivity curves in analogy to the procedure applied for bulk single crystals^{41}, see Supplementary material Fig. S2.
The measurements were performed in magnetic fields applied along the crystallographic caxis of the films, which coincides with the normal direction of the films surface. Therefore, the H _{c2} data presented in the paper depend on the inplane coherence length \({\xi }_{{\rm{ab}}}\) only, which is unaffected by the film thickness D _{film} ~ 100 nm. Additionally, \({\xi }_{c} > d/2\) is satisfied for all doping levels, where d is the spacing between the neighboring FeAs layers. The estimates given in the Supplementary material indicate that the fluctuation effects close to T _{c} can be neglected in our case. We assume that the transition width is related to small inhomogeneities in the P distribution and to a difference between H _{c2}(T) and H _{irr}(T), where H _{irr} is the irreversibility field. In particular, H _{irr}(T) is noticeably affected by flux pinning at low temperatures and high magnetic fields. Thus, our consideration of BaFe_{2}(As_{1−x }P_{ x })_{2} thin films as 3D superconductors and the neglect of 2D corrections and fluctuation effects are indeed justified.
References
 1.
Scalapino, D. J. A common thread: The pairing interaction for unconventional superconductors. Rev. Mod. Phys. 84, 1383 (2012).
 2.
Hirschfeld, M. M., Korshunov, P. J. & Mazin, I. I. Gap symmetry and structure of Febased superconductors. Rep. Prog. Phys. 74, 124508 (2011).
 3.
Gabovich, A. I., Voitenko, A. M. & Ausloos, M. Charge and spindensity waves in existing superconductors: competition between cooper pairing and peierls or excitonic instabilities. Physics Reports 367, 583–709 (2002).
 4.
Gegenwart, Q., Si, P. & Steglich, F. Quantum criticality in heavyfermion metals. Nat. Phys. 4, 186–197 (2008).
 5.
Bauer, E. et al. Pressureinduced superconducting state and effective mass enhancement near the antiferromagnetic quantum critical point of CePt_{2}In_{7}. Phys. Rev. B 81, 180507(R) (2010).
 6.
Johnston, D. C. The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides. Advances in Physics 59, 803–1061 (2010).
 7.
Shishido, H. et al. Evolution of the fermi surface of BaFe_{2}(As_{1−x }P_{ x })_{2} on entering the superconducting dome. Phys. Rev. Lett. 104, 057008 (2010).
 8.
Analytis, J. G. et al. Transport near a quantum critical point in BaFe_{2}(As_{1−x }P_{ x })_{2}. Nat. Phys. 3, 194–197 (2014).
 9.
Hayes, I. M. et al. Scaling between magnetic field and temperature in the hightemperature superconductor BaFe_{2}(As_{1−x }P_{ x })_{2}. Nat. Phys. 12, 916–919, doi:10.1038/nphys3773 (2016).
 10.
Nakai, Y. et al. Unconventional superconductivity and antiferromagnetic quantum critical behavior in the isovalentdoped BaFe_{2}(As_{1−x }P_{ x })_{2}. Phys. Rev. Lett. 105, 107003 (2010).
 11.
Iye, T. et al. Gradual suppression of antiferromagnetism in BaFe_{2}(As_{1−x }P_{ x })_{2}: Zerotemperature evidence for a quantum critical point. Phys. Rev. B 85, 184505 (2012).
 12.
Nakai, Y. et al. Normalstate spin dynamics in the ironpnictide superconductors BaFe_{2}(As_{1−x }P_{ x })_{2} and Ba(FeCo_{1−x })_{2}As_{2} probed with NMR measurements. Phys. Rev. B 87, 174507 (2013).
 13.
Abrahams, E. & Si, Q. Quantum criticality in the iron pnictides and chalcogenides. J. Phys.: Condens. Matter 23, 223201 (2011).
 14.
Shibauchi, A., Carrington, T. & Matsuda, Y. A quantum critical point lying beneath the superconducting dome in iron pnictides. Annu. Rev. Condens. Matter Phys. 5, 113–135 (2014).
 15.
Fink, J. et al. Nonfermiliquid scattering rates and anomalous band dispersion in ferropnictides. Phys. Rev. B 92, 201106(R) (2015).
 16.
Walmsley, P. et al. Quasiparticle mass enhancement close to the quantum critical point in BaFe_{2}(As_{1−x }P_{ x })_{2}. Phys. Rev. Lett. 110, 257002 (2013).
 17.
Hashimoto, K. et al. A sharp peak of the zerotemperature penetration depth at optimal composition in BaFe_{2}(As_{1−x }P_{ x })_{2}. Science 336, 1554–1557 (2012).
 18.
Lamhot, Y. et al. Local characterization of superconductivity in BaFe_{2}(As_{1−x }P_{ x })_{2}. Phys. Rev. B 91, 060504(R) (2015).
 19.
Levchenko, A. et al. Enhancement of the london penetration depth in pnictides at the onset of spindensitywave order under superconducting dome. Phys. Rev. Lett. 110, 177003 (2013).
 20.
Nomoto, T. & Ikeda, H. Effect of magnetic criticality and fermisurface topology on the magnetic penetration depth. Phys. Rev. Lett. 111, 167001 (2013).
 21.
Putzke, C. et al. Anomalous critical fields in quantum critical superconductors. Nat. Commun. 5, 5679 (2014).
 22.
Kurth, F. et al. Unusually high critical current of clean Pdoped BaFe_{2}As_{2} single crystalline thin films. Appl. Phys. Lett. 106, 072602 (2015).
 23.
Kawaguchi, T. et al. The strain effect on the superconducting properties of BaFe_{2}(As,P)_{2} thin films grown by molecular beam epitaxy. Supercond. Sci. Technol. 27, 065005 (2014).
 24.
Sato, H. et al. High criticalcurrent density with less anisotropy in BaFe_{2}(As,P)_{2} epitaxial thin films: Effect of intentionally grown caxis vortexpinning centers. Appl. Phys. Lett. 104, 182603 (2014).
 25.
Kasahara, S. et al. Evolution from nonfermi to fermiliquid transport via isovalent doping in BaFe_{2}(As_{1−x }P_{ x })_{2} superconductors. Phys. Rev. B 81, 184519 (2010).
 26.
Iida, K. et al. Strong T _{c} dependence for strained, epitaxial Ba(Fe_{1−x }Co_{ x })_{2}As_{2} thin films. Appl. Phys. Lett. 95, 192501 (2009).
 27.
Engelmann, J. et al. Strain induced superconductivity in the parent compound BaFe_{2}As_{2}. Nat. Commun. 4, 2877 (2013).
 28.
Iida, K. et al. Hallplot of the phase diagram for Ba(Fe_{1−x }Co_{ x })_{2}As_{2}. Sci. Rep. 6, 28390 (2016).
 29.
Werthamer, E., Helfand, N. R. & Hohenberg, P. C. Temperature and purity dependence of the superconducting critical field, H _{c2}. III. electron spin and spinorbit effects. Phys. Rev. 147, 295 (1966).
 30.
Gurevich, A. Upper critical field and the FuldeFerrelLarkinOvchinnikov transition in multiband superconductors. Phys. Rev. B 82, 184504 (2010).
 31.
Gurevich, A. Ironbased superconductors at high magnetic fields. Rep. Prog. Phys. 74, 124501 (2011).
 32.
C. H. Lee, et al. Universality of the Dispersive SpinResonance Mode in Superconducting. Phys. Rev. Lett. 111, 167002 (2013).
 33.
Yi, M. et al. Electronic reconstruction through the structural and magnetic transitions in detwinned NaFeAs. New J. of Phys. 14, 073019 (2012).
 34.
Nakashima, Y. et al. Fermisurface reconstruction involving two van hove singularities across the antiferromagnetic transition in BaFe_{2}As_{2}. Solid State Commun. 157, 16–20 (2013).
 35.
Knebel, G. et al. The quantum critical point in CeRhIn_{5}: A resistivity study. J. Phys. Soc. Jpn. 77, 114704 (2008).
 36.
Senthil, T. On the mass enhancement near optimal doping in high magnetic fields in the cuprates. arXiv:1410.2096 (2014).
 37.
Paul, I. & Garst, M. Lattice effects on nematic quantum criticality in metals. Phys. Rev. Lett. 118, 227601 (2017).
 38.
Chowdhury, D. et al. Phase transition beneath the superconducting dome in BaFe_{2}(As_{1−x }P_{ x })_{2}. Phys. Rev. B 92, 081113(R) (2015).
 39.
Zhou, R. et al. Quantum criticality in electrondoped BaFe_{2−x }Ni_{ x }As_{2}. Nature Comm. 4, 2265 (2013).
 40.
Moir, C. M. et al. Mass enhancement in multiple bands approaching optimal doping in a hightemperature superconductor. arXiv:1608.07510 (2016).
 41.
Pratt, D. K. et al. Coexistence of competing antiferromagnetic and superconducting phases in the underdoped Ba(Fe_{0.953}Co_{0.047})_{2}As_{2} compound using xray and neutron scattering techniques. Phys. Rev. Lett. 103, 087001 (2009).
Acknowledgements
This work was supported by DFG (GR 4667/11). S.L.D., D.E., I.C. and I.M. thank the VW foundation for financial support. D.E. also thanks RSCFDFG Grant. The work at NHMFL was supported by the National Science Foundation Cooperative Agreement No. DMR1157490 and the State of Florida. K.I. acknowledges the Open Partnership Joint Projects of JSPS Bilateral Joint Research Projects. We acknowledge the support of the HLD at HZDR, member of the European Magnetic Field Laboratory (EMFL). I.C. and I.M. thank the support RSF, grant No. 164201100 and RFBR grant No. 150399628a. We acknowledge fruitful discussions with D. Daghero, C. H. Lee, T. Terashima and J. Wosnitza. The publication of this article was funded by the Open Access Fund of the Leibniz Association.
Author information
Affiliations
Contributions
V.G., K.I. and F.K. designed the study. V.G. analyzed H _{c2} data, and wrote the manuscript. D.V.E. and S.L.D. provided theoretical support in data analysis. I.C., I.M. and A.Y. prepared the PLD targets. Thin PLD films were prepared by V.G., K.I. and F.K. Highfield measurements were performed by J.H., T.F., C.T., J.J., B.M., M.J., F.K., K.I. and V.G. V.G. performed transport measurements at magnetic fields up to 14 T. I.N., R.F., T.H. and H.I. prepared and characterized MBE thin films. K.I., J.H., H.I. and R.H. supervised the project. All authors discussed the results and implications and commented on the manuscript.
Corresponding author
Ethics declarations
Competing Interests
The authors declare that they have no competing interests.
Additional information
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Grinenko, V., Iida, K., Kurth, F. et al. Selective mass enhancement close to the quantum critical point in BaFe_{2}(As_{1−x }P_{ x })_{2} . Sci Rep 7, 4589 (2017). https://doi.org/10.1038/s41598017047243
Received:
Accepted:
Published:
Further reading

Mass divergence type metalinsulator transition in charge transfer rareearth nickelates
Physical Review B (2019)

Febased superconducting thin films—preparation and tuning of superconducting properties
Superconductor Science and Technology (2019)

Multiband mass enhancement towards critical doping in a pnictide superconductor
npj Quantum Materials (2019)

Universal scaling behavior of the upper critical field in strained FeSe0.7Te0.3 thin films
New Journal of Physics (2018)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.