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Single microtubules and small 
networks become significantly 
stiffer on short time-scales upon 
mechanical stimulation
Matthias D. Koch1,3, Natalie Schneider2, Peter Nick2 & Alexander Rohrbach1

The transfer of mechanical signals through cells is a complex phenomenon. To uncover a new 
mechanotransduction pathway, we study the frequency-dependent transport of mechanical stimuli 
by single microtubules and small networks in a bottom-up approach using optically trapped beads as 
anchor points. We interconnected microtubules to linear and triangular geometries to perform micro-
rheology by defined oscillations of the beads relative to each other. We found a substantial stiffening 
of single filaments above a characteristic transition frequency of 1–30 Hz depending on the filament’s 
molecular composition. Below this frequency, filament elasticity only depends on its contour and 
persistence length. Interestingly, this elastic behavior is transferable to small networks, where we 
found the surprising effect that linear two filament connections act as transistor-like, angle dependent 
momentum filters, whereas triangular networks act as stabilizing elements. These observations 
implicate that cells can tune mechanical signals by temporal and spatial filtering stronger and more 
flexibly than expected.

Today, we know that cells across all domains are mechanosensitive1, and that mechanosensitivity is the base for 
sensing quite different stimulus qualities including osmotic challenges, gravity, movements or even sound. In 
addition, mechanosensitivity is used to organize and integrate cells and organs into functional units, e.g., in the 
course of movements in metazoan organisms or during plant development2. Perturbations of mechanotrans-
duction have been implicated in various severe diseases like cancer3, 4. Remodeling of the cell as a response or 
adaption to an external, physical stimulus is steered by gene expression in the nucleus5. Therefore, the informa-
tion of the stimulus has to be transported across the cell from the periphery to the center. Common models of 
cellular mechanotransduction assume the conversion of a physical stimulus to a chemical signal by membrane 
proteins such as integrins3, and the subsequent transport to the nucleus either passively by diffusion or actively 
by molecular motors, i.e., rather slow processes. However, the direct propagation of a mechanical stimulus by 
stress waves through stiff cytoskeletal elements connecting the membrane and the nucleus6 would enable a 
much faster transport pathway on the microsecond timescale and thus allow almost instantaneous integration of 
responses across the cell7. A model for such a pathway has been proposed by Ingber8, 9 on the basis of a tensegrity 
model of flexible actin filaments (able to transmit traction forces) connected to the relatively stiff microtubules 
(able to transmit compression forces). In mammalian cells, microtubules are typically aligned radially inside 
a cell spanning from the centrosome, located close to the nucleus, to the cell membrane10, a set up that would 
allow for efficient mechanotransduction between cell membrane and nucleus11. In fact, mechanical stimulation 
has been shown recently to induce a perinuclear actin ring, brought about by the activity of actin-microtubule 
cross-linking formins12. MTs are well known as components of mechanosensing in flies13 as well as in verte-
brates14 and microtubules have also been found to participate in gravity sensing and mechanic integration in 
plants (reviewed in ref. 15). Remarkably, mutants of Caenorhabditis affected in beta tubulin turned out to be 
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insensitive to mechanic stimulation16. Efficiency and specificity of the MT sensory functions, however, depend on 
their frequency dependent viscoelastic properties, which are characteristic for biological systems.

To address these aspects of microtubule-dependent signaling, we present an approach for the targeted con-
struction of cytoskeletal meshes with defined geometries by using optically trapped beads as anchor points. 
Existing approaches only demonstrated the construction of small networks without biologically relevant meas-
urements17 or rely on the stochastic attachment or growth of filaments to optically trapped beads or micro pil-
lars which is less flexible and barely allows control of the number of attached filaments18–20. We use established 
micro-rheology techniques21–23 to measure the time-dependent viscoelastic properties of single microtubules. 
Existing approaches have investigated bulk material properties24–26 in vitro, the properties of the cytoskeletal 
molecules in vivo27 ignoring their organization or number28–30, or static representations of single filaments31, 32.  
Microtubule stiffness and bending relaxation has also been addressed by Fourier decomposition of bending 
modes caused by thermal fluctuation33, 34, however, thermal forces are not sufficient in amplitude to significantly 
deform a whole network. A recent review summarizing the molecular origins of microtubule mechanics and 
highlighting effects of network architecture during stress transmission is presented by Lopez and Valentine35.

Since different cell types show different structures of the cytoskeleton and alignment of microtubules, we test 
the viscoelastic properties of different small network topologies on their performance of conducting mechanical 
stimuli at different frequencies. This approach should not only allow determining which network symmetries are 
best suited to transduce mechanical signals, but also to get insight into the general role of the cytoskeletal struc-
ture and function in different cell types by successively increasing the complexity of the network through addition 
of other cytoskeletal associated components.

Results
To determine the time-dependent viscoelastic properties of single microtubules (MTs) and small networks of 
MTs, movable Neutravidin coated beads as anchor points were attached to a biotinylated microtubule at defined 
positions by time-shared optical tweezers (see Methods). Then, these anchor points were mutually displaced 
in an oscillatory fashion with defined frequencies and amplitudes along the x-direction as illustrated in Fig. 1. 
The resulting frequency dependent stretching and buckling behavior of these constructs is measured, which 
allows determining both the elastic and the viscous properties of the MT constructs in different geometrical 
arrangements.

Stiffening of single filaments at high oscillation frequencies. Upon force generation, the beads are 
displaced from their equilibrium position with a straight microtubule as depicted in Fig. 1. The displacements 
xB1(t) − xL1(t) and xB2(t) − xL2(t) of bead 1 (actor) and bead 2 (sensor) relative to the laser trap positions xL1 and 
xL2, are shown exemplarily in Fig. 2a,b for two different actor displacement frequencies, fa = 0.1 Hz and 
fa = 100 Hz, at a displacement amplitude Aa = 500 nm. Due to high tensile and small buckling forces, the sensor 
bead is pulled out of the trap center by up to xB2 ≈ 80 nm and pushed only slightly by less than xB2 ≈ 10 nm during 

Figure 1. Design of experiment illustrating different stages of an oscillation period. Optically trapped 
d = 1.06 µm Neutravidin-coated beads are used as anchors points for laterally attached, biotinylated 
microtubules. Bead positions are tracked interferometrically by QPDs. (a) The filament is stretched during the 
first half oscillation period. (b) The filament is straight after each half period. (c) The filament is buckled during 
the second half oscillation period. Insets: overlay of corresponding fluorescence and brightfield images.
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each half period. This situation changes significantly at high frequencies fa = 100 Hz. While the maximum dis-
placements xB2 during microtubule stretching were approximately the same at fa = 100 Hz and fa = 0.1 Hz, the 
displacement increased by an order of magnitude at high frequencies during buckling, i.e., xB2(fa = 100 Hz) ≈ 10·
xB2(fa = 0.1 Hz). Therefore, only the compression and buckling of single filaments will be analyzed in this study. 
The complete frequency dependence of the filament – bead construct is expressed by the average maximum dis-
tance change between both beads ΔLx = Aa − xmax1 − xmax2 as shown in Fig. 2c for three different amplitudes Aa 
during stretching and buckling. While the slight amplitude decrease during stretching can be attributed to the 
increasing friction force π η=γ F R x6B B,  of the bead, the much stronger drop during buckling is caused by the 
microtubule filament, indicating an apparent stiffening of the filament at high oscillation frequencies fa > 1 Hz 
(see Supplementary Results Fig. S2). We would like to point out that microtubules are inextensible and not actu-
ally stretched during the pulling phase32. Instead, they are bent locally as shown in Fig. 1a. To estimate whether 
this frequency response is a purely viscous effect governed by the friction of the actuated filament, we analyzed 
the amplitudes of the involved forces theoretically as explained in the Supplementary Results and shown in 
Fig. 2d. The main contributions to the amplitude of the total viscous force ≈ +γ γ γ ⊥F F Ftot tran, , ,B MT

 are the trans-

Figure 2. Frequency dependent response of a single microtubule filament – bead construct (L = 5 µm). (a) and 
(b) Two periods of the relative actor and sensor bead displacements xB1(t) − xL1(t) and xB2(t) − xL2(t) from their 
trap centers during oscillations of the actor trap xL1(t) = L/2 + Aasin(ωat) and the static sensor trap xL2(t) = −L/2 
at Aa = 500 nm and ωa/2π = 0.1 Hz (a), or ωa/2π = 100 Hz (b), respectively. Markers indicate the maximum 
amplitude xmax1 and xmax2 of both beads during each half period. (c) Frequency dependence of the maximum 
amplitude ΔLx = Aa − xmax1 − xmax2 between both beads during stretching and buckling averaged over several 
oscillation periods. (d) Theoretical mean amplitudes of the involved viscous forces (solid lines) compared 
to the experimentally obtained sum of all acting forces (markers) for a single trapped bead (yellow) and the 
filament – bead construct (red).
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lational viscous forces of the beads γF tran,B
 and the perpendicular viscous force component of the filament γ ⊥F ,MT

. 
Both, the rotational viscous forces of the beads γF rot,B

, acting as hinged supports of the filament ends, and the 
parallel viscous forces γF ,MT

, are negligible. A comparison between the theoretically estimated viscous and the 
experimentally obtained total force amplitudes reveals a strong difference especially dominant at intermediate 
frequencies 1 Hz ≤ fa ≤ 100 Hz. This shows that significant elastic forces control the deformation of the microtu-
bule filament.

Excitation and relaxation of higher MT deformation modes. As introduced above, the oscillatory 
driving force counteracts against the viscous and the elastic forces of both the MT and the two beads. The behav-
ior of the semi-flexible MT of length L is described by the hydrodynamic beam equation, which predicts that 
induced MT deformations can be described by a superposition of sine waves with wave numbers = π⋅qn

n
L

 and a 
characteristic relaxation time proportional to 1/q4~L4 (see Methods and Supplementary Results). Hence, higher 
deformation modes n > 1 can only be excited at higher driving frequencies ω = 2π fa, leading to the effect of MT 
stiffening. The stiffening can be described by the frequency dependent complex shear modulus 
G(ω) = G′(ω) + i·G′′(ω) (see Methods Section), where a representation of all forces in frequency space allows to 
extract the elastic component G′(ω) and the viscous component G′′(ω).

The elastic modulus G′(ω) shown in Fig. 3 describes the frequency dependent MT stiffness, which is charac-
terized by a constant plateau value G′(0) and a frequency dependent response ω ω′ G ( )1  at high frequencies. 
This can be estimated as

ω ω ω ω′ = = ⋅ ′ >π
.

 ~( )G k T G( 0) and ( ) (1)L p B
p

2 16
1 4

1
2

Here, lp = EI/kBT is the persistence length of a semiflexible polymer with L ≪ lp and bending modulus EI (flexural 
rigidity). The frequency of the MT’s ground mode ω = π( )EI

g L1
4

MT
 depends on the viscous drag gMT of the MT. As 

shown further below, we obtain a power law exponent p = 5/4 for oscillations of single microtubules in longitudi-
nal direction, matching the theoretical prediction for semiflexible filaments in the intermediate frequency 
regime36, 37 tested here. However, we also find that the degree of stiffening, the exponent p, depends on the fila-
ment stabilization, i.e., the molecular architecture of the filament, and the direction of oscillation.

We checked whether the measured frequency response and apparent stiffening of single filaments indeed 
results from the excitation of higher deformation modes as described by Equation (1). Therefore, we analyzed the 
dynamics of the trapped anchor points with two particle active micro-rheology techniques (see refs 22, 23 and 
Supplementary Methods for details) as described in the following.

The frequency dependent elastic response of the single microtubule was analyzed in terms of G′(ω). As 
explained in the Supplementary Information, we can assume proper linear response for all of the mentioned 
experimental conditions. The results for filaments stabilized with Taxol and polymerized with either GTP or 
its slowly hydrolysable homolog GMPCPP are displayed in Fig. 3a–c. Here, the results are grouped accord-
ing to lengths L ≈ 5 µm (3.4 µm ≤ L ≤ 6.0 µm for Taxol) and L ≈ 15 µm (15 µm ≤ L ≤ 25 µm for Taxol and 
10 µm ≤ L ≤ 16 µm for GMPCPP). Each group represents the average of 3–6 individual filaments each probed 
at 2–4 different oscillation amplitudes (Aa = 200 nm, 400 nm, 600 nm typically), resulting in approximately 10 
measurements per group. The grouping was chosen due to the length dependence of the persistence length34, 38,  
as discussed further below, and because no significant difference in elasticity within these individual groups 
could be observed. For an oscillation parallel to the filament axis, the theoretical slope with p = 1.25 according to 
Equation (1) (also see Methods) fits well to our experimental results as shown in Fig. 3a–c. However, we also used 
a free exponent p as additional fit parameter, G′(ω) − G′(0) = Cω p, to check for any deviation from the theoretical 
prediction. We obtained p = 1.08 ± 0.15 and p = 0.93 ± 0.07 for short and long MTs stabilized by 10 µM Taxol, 
p = 0.78 ± 0.25 and p = 1.46 ± 0.13 for short and long MTs stabilized by 100 µM Taxol, and p = 1.51 ± 0.13 for 
(long) GMPCPP filaments. Within the error margins this indicates a rough coincidence with our model (p = 0.75) 
for short MTs, whereas the stiffening for longer MTs better matches with the advanced model36, 37 predicting an 
exponent p = 1.25.

Frequency response depends on MT stabilizations. Frequency dependent persistence 
length. Figure 3a–c show that the plateau value depends on the length of the filament and filament stabilization. 
For long filaments (L ≈ 15 µm) we find G′(0) = 1.5 mPa (with 10 µM Taxol), G′(0) = 2 mPa (with 100 µM Taxol) 
and G′(0) = 4 mPa (with GMPCPP). For short filaments (L ≈ 5 µm), MT stabilization hardly affects the plateau 
values, which are G′(0) ≈ 10 mPa for both 10 µM and 100 µM Taxol. No data is available for short GMPCPP fila-
ments. As shown in Equation (1), the plateau value is a measure of the persistence length. Dividing G′(ω) by 

π

. ⋅

kT
L2 16

2

4 , we find a frequency dependent persistence length

ω ω ω ω= ′ ⋅ ≈ + >
π

.
  G L( ) ( ) (0) ( ) (2)p kT p p

2 16 4
12

which increases with frequency because of a successive excitation of higher modes at ω > ω1.
It can be seen in Fig. 3d that the persistence length depends sensitively on the contour length L of the MT. 

We find lp(0) = (0.33 ± 0.05) mm for L = 5 µm and all stabilizations. For L = 15 µm we find lp(0) = (4.06 ± 0.26) 
mm stabilized with 10 µM Taxol, lp(0) = (5.80 ± 0.39) mm for 100 µM Taxol, and lp(0) = (12.10 ± 0.66) mm for 
GMPCPP. The estimates based on Equation (2) agree well with the published dependency of lp on the filament 
contour length38 and stabilization39, as further elucidated in the discussion.
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Transition frequency. Beyond a characteristic frequency, a visible increase of G′(ω) is manifested due to the 
excitation of higher deformation modes. We define this transition by the frequency ωt where G′(ωt)/G′(0) = 1.5, 
i.e., G′(ω) is increased by 50% such that

ω ω≈ = π
( ) kT3 (0) (3)t g L p1

3 4

MT

We find that the transition frequencyωt = 2πft scales by a factor of 3 with the ground mode.
We obtain ft = (5.3 ± 1.2) Hz and ft = (4.2 ± 1.7) Hz for short filaments (L = 5 µm) stabilized with 10 µM 

or 100 µM Taxol, respectively. For long filaments (L = 15 µm), we find ft = (0.6 ± 0.1) Hz, ft = (1.8 ± 0.4) Hz 
and ft = (3.9 ± 0.8) Hz for stabilization with 10 µM, or 100 µM Taxol, or for 100 µM Taxol + GMPCPP, respec-
tively. Comparing this to the theoretical estimate of Equation(3) predicting ωt = 21 Hz and ωt = 35 Hz for 
short MTs with 10 µM and 100 µM and ωt = 2 Hz, ωt = 3.3 Hz and ωt = 7 Hz for long MTs with 10 µM, 100 µM 
and GMPCPP, out experimentally obtained values are throughout too small, but follow the general depend-
ence on length and stiffness (see Supplementary Results Fig. S11). Thus, the transition frequency ωt increases 
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Figure 3. Elastic modulus for differently stabilized single microtubules of different lengths. (a) Stabilization 
with 10 µM Taxol, MT end oscillation direction: longitudinal. N = 8 measurements for short and N = 19 
measurements for long microtubules. (b) Stabilization with 100 µM Taxol, MT end oscillation direction: 
longitudinal. N = 9 measurements each length. (c) Stabilization with GMPCPP + 100 µM Taxol, MT end 
oscillation directions: longitudinal (solid black line) and lateral (dashed black line). N = 9 measurements each 
direction. (d) Frequency dependent persistence lengths obtained from the elastic moduli for all filament types. 
Error bars represent the standard deviation (SD).
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with increasing stabilization, clearly indicating the importance of the molecular structure of microtubules (see 
Discussion). As indicated in Fig. 3a–c (vertical dashed lines), these results fit well to a graphical estimation of ft 
at G′(ωt) = 1.5·G′(0).

Lateral oscillation of single filaments. So far, only longitudinal oscillations of filament ends have been considered, 
i.e. bead displacements parallel to the filament axis. Figure 3c further shows the result for a bead oscillation lateral 
to the axes of long (L = 15 µm) GMPCPP stabilized filaments. Again, we observe a plateau value for frequencies 
ω < ωt and a power law rise for ω > ωt with p = 1.76 ± 0.02, i.e., a 40% larger stiffening exponent than the pre-
dicted value p = 1.25 for a longitudinal oscillation. In contrast, the plateau ′⊥G (0) = 0.54 mPa is approximately one 
order of magnitude smaller than G||′(0) in axial direction. The transition frequency ft = 3 Hz obtained from 

ω′ = . ′⊥ ⊥G G( ) 1 5 (0)t  is approximately the same as in axial direction.

Momentum transport along a linear chain of connected MTs. An important question is whether the 
findings for single filaments can be used to predict the momentum transport through small networks of filaments 
- in analogy to Kirchhoff ’s circuit laws for the connection of currents in network nodes. However, for connected 
microtubules, i.e. for different networks, the compression of one filament usually results in a stretching of another 
filament and vice versa, such that a separation of compression and stretching is not possible anymore. Therefore, 
the complete oscillation period of the actor and sensor beads will be analyzed in the following.

In a first step, we constructed a linear network consisting of three optically trapped beads and two microtubule 
filaments as shown in Fig. 4a. This construct was probed such that trap 1 was oscillated sinusoidally at varying 
frequency and amplitude, while trap 2 and 3 remained stationary. In this way, we investigated the momentum 
transfer along the first microtubule, while attached to a second microtubule, through ω′G ( )(1,2) , but also the 
momentum transfer along both microtubules through ω′G ( )(1,3) . The longitudinal and lateral oscillation of the 
actor and sensor beads displayed in Fig. 4b,c reveal a qualitatively similar momentum transfer as for single fila-
ments. Results are the average of three measurements for filaments of length L = 10 µm after stabilization with 
100 µM Taxol.

Longitudinal chain oscillation. By inspecting the curves in Fig. 4b,c, both a frequency- independent plateau 
′G (0)i j( , ) , and a frequency-dependent behavior ω′G ( )i j( , )  between beads i and j can be observed. Using power law 

fits according to Equation (1), the plateau values ′G (0)(1,2)  = 6 mPa and ′G (0)(1,3)  = 32 mPa for a single (1 → 2) and 
two-step (1 → 3) MT connection are determined. Interestingly, the static elasticity ′ > ′G G(0) (0)(1,3) (1,2)  for the 
two step connection is larger than for the single step. As shown in Fig. 4d, κ′G (0, )T

(1,3)
2  is a function of the stiff-

ness κT2 of the intermediate trap 2. Here, we repeated the measurement and doubled the trap stiffness κT2 each 

Figure 4. Rheology of a linear chain of connected filaments with transistor function. (a) Experimental design 
of linear network of two filaments held by three trapped beads. Bottom: overlay of fluorescence and brightfield 
image. Scale bar: 5 µm. (b) and (c) Elastic components G′ for a longitudinal and lateral MT end oscillation, i.e., 
in directions longitudinal or lateral to filaments, respectively. The transition frequencies are marked by black 
dotted lines. (d) Elastic components G′(1,3) for a longitudinal oscillation and different stiffnesses κ2 of the 
intermediate optical trap. Error bars represent the standard deviation (SD) of N = 3 measurements each.
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time, resulting in an increase of κ′ ∆~G (0) T
(1,3)

2  proportional to the square root of the stiffness change ΔκT2. 
While ′G (0)(1,2)  for the first 10 µm long filament fits well between ′G (0) for L = 5 µm and L = 15 µm shown above, 

′G (0)(1,3)  for two 10 µm long filaments is much larger than ′G (0) for a single filament with L = 20 µm
The transition frequency ft

(1,2) =  (4.1 ±  0.3) Hz (black dashed line in Fig.  4b) according to 
= π

( )f kT(0)t g L p
1

2

4

MT
 in Equation (3) is approximately identical to that of single filaments, while ft

(1,3) = (17 ± 2.5) 
Hz is approximately 4 times larger.

Lateral chain oscillation. As shown in Fig. 4b,c, the static elasticity ′G (0) for lateral displacements of beads and 
MT ends is significantly different to longitudinal (parallel) displacements. For the longitudinal elasticity ′G (0)i j( , ) , 
the double MT connection 1 → 3 was about five times stiffer than the direct MT connection 1 → 2, whereas for the 
lateral elasticity ′⊥G (0)i j( , ) , the connection 1 → 3 is about five times softer than the connection 1 → 2, i.e., 

′ ≈ ′⊥ ⊥G G(0) (0)(1,3) 1
5

(1,2) . Beyond the transition frequency, the frequency dependent elasticity ω ω′⊥ ~G ( )i j p( , )  
increases according to a power law exponent p = 2.5 ± 0.1 and p = 2.4 ± 0.1 for the connection 1 → 2 and 1 → 3. 
Interestingly, the transition frequency ft = (11 ± 1) Hz is approximately the same for both connections, in contrast 
to the longitudinal oscillations. However, during a lateral oscillation, both filaments are always slightly stretched 
compared to a longitudinal oscillation, where filaments are buckled. The role of the intermediate connection and 
the role of the coupling point (trapped bead #2) are explained in the discussion.

Momentum transport in an equilateral triangle. We used GMPCPP filaments to construct equilateral 
triangles of 15 µm side length as depicted in Fig. 5a. The trap 1 is again oscillated in x or y, resulting in a trap 
movement radial or tangential to the connection between bead 1 and the center of the triangle. An overlay of 
brightfield and fluorescence images of one radial oscillation period at fa = 0.1 Hz (T = 1/fa = 10 s) and Aa = 600 nm 
along x is shown in Fig. 5b. In contrast to single filaments and the linear chain, here, in total two filaments are 
always buckled or tense, while at the same time, the third one behaves in the opposite manner, i.e., is tense or 
buckled.

Triangles are stiffer than single filaments and have a similar high frequency response. Due to 
the symmetric configuration of the equilateral triangle, the elastic modulus for both connections 1 → 2 and 1 → 3 
should be identical, except for different oscillation directions. This is indeed the case as shown in Fig. 6a,b for an 
exemplary construct, where the radial and tangential elastic responses, ω′G ( )x

i j( , )  and ω′G ( )y
i j( , ) , are plotted for an 

actor bead oscillation along x and y. The static elasticities ′ ≈ ′G G(0) (0)x x
(1,2) (1,3)  = (55 ± 20) mPa and 

′ ≈ ′G Gy y
(1,2) (1,3) = (30 ± 10) mPa indicate a 25-fold increase of the overall stiffness of the construct compared to 

that of single filaments (see to Fig. 3c). In the Supplementary Results, we present further data of triangular con-
structs with slight pretension, induced by thermal fluctuations of the filaments during construction of the 
network.

According to Equation (3), the larger static elasticities should result in an increase of the transition frequency 
ωt by a factor 25, i.e., ft = (810 ± 308) Hz and ft = (75 ± 13) Hz for both oscillation directions. 810 Hz is much 
larger than the measured maximum frequency, so that we cannot observe a power law rise for an oscillation along 
x. However, the extrapolated intersection of the single filament response (fit with free exponent according to 
Equation (1)) with the plateau of the triangle can be estimated to ft ≈ 800 Hz, which is in good agreement with the 
theoretical estimate of Equation (3). For the tangential oscillation direction (y) displayed in Fig. 6b, the network 
stiffens already at a transition frequency ft ≈ (100 ± 10) Hz (vertical black dashed line). This value is slightly larger 
than predicted (vertical red dashed line), which could be a consequence of the dip in G′(ω) at f = 50 Hz and might 
influence the value of ft. This dip is not visible for other constructs with the same geometry as presented in the 
Supplementary Results.

Discussion
Microtubule stiffness depends on the contour length. We have analyzed the elastic behavior of single 
and inter-connected MTs by means of the elastic modulus G′(ω), which can be described by a low frequency plateau 

′ ~G (0) (0)p , and a rise at high frequencies above a characteristic transition frequency ωt, defined by a 50% increase 
of G′(ω).

Varying the molecular composition of the filaments, by stabilization agents had no visible effect on the static 
elasticity of short MTs (5 µm length). Interestingly, this was different for long MTs (of around 15 µm length), 
where the effect of chemical stabilization on elasticity became visible, leading to the conclusion that the molecular 
coupling length extends over several µm. Similar effects have already been reported by Pampaloni et al.38, who 
found a length dependence of the persistence length, which levels to a plateau above a critical length c = 21 µm, 
i.e., > L( )p c  = const. Similarly, Taute et al.40 introduced an additional internal friction term to explain devia-
tions of their measured MT drag coefficients when microtubules were shorter than ≈ 5 µm, attributed to dissipa-
tion during conformational changes or liquid flow passing through narrow pores in the MT lattice as introduced 
by41. Polymorphic conformational states of the tubulin lattice and non-equilibrium filaments dynamics have also 
been studied in motor based microtubule gliding assays, recently42, 43. Irrespective of the effects found here, the 
plateau value G′(ω = 0) is directly related to the conventional, frequency independent persistence length lp(ω = 0), 
which increases with the contour length of the MTs according to lp(ω = 0, L) ~ 1/(1 + lc

2/L2)38. We measured two 
different ranges of lengths for single MTs varying in length by a factor of 3 (plus one intermediate length for the 
linear network). Considering the total length dependence ′ = π π

.
 ~ ( )( )G L(0) (0, )kT

p L L2 16

4 1 22
, which is approxi-

mately quadratic and results in a 9-fold higher plateau for 3-fold shorter MTs, we find a reasonable match with 
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our measurements shown in Fig. 3. From the two MT lengths, we also find that our results for 
 L(0, )p  agree well 

to those reported previously34, 38.

Frequency dependent persistence length and stiffness. The novelty of our observations is the 
increase of the persistence length, or correspondingly the elastic modulus G′(ω), of a single microtubule with the 
displacement frequency ω (Fig. 3). In the Methods section, we show that this is caused by the excitation of higher 
deformation modes, which means that filaments become stiffer on shorter timescales, such that filament buckling 
is suppressed. In other words, molecular relaxation processes as a consequence of internal stress along the MT 
cannot follow on too short timescales. The timescale of molecular relaxation is approximated by the transition 
frequency ωt ≈ 3·ωn=1, which we indicated in all plots of G′(ω). Beyond this frequency, the second deformation 
mode (n = 2) renders the filament about 1–4 times stiffer, beyond ω = 20·ωn=1 the third deformation mode (n = 3) 
stiffens the filament 4–10 times relative to ω = 0 as explained in the Supplementary Results (Fig. S4). Our meas-
urements confirm the general, theoretically predicted trend of a smaller transition frequency for longer MTs. 
According to ω = π

 ~ ( )( )(0)t
kT

g p L L
3 4 1 2

MT
, we expect an about 9-fold lower transition frequency for 3-fold longer 

MTs (see Methods), which we obtain for 10 µM Taxol stabilization, but not for 100 µM Taxol, indicating that fur-
ther theoretical studies are necessary.

For short MTs we measured a stiffness increase according to ω ω′ ~G ( ) 3/4 at high frequencies 
(50 Hz < ω < 100 Hz), whereas for longer MTs we found ω ω ω′ > > ~G ( )t

5/4, which is reasonably close to the 
theoretical prediction based on the hydrodynamic beam model for semiflexible filaments36, 37. In some cases, 
though, such as for the strong GMPCPP stabilization, the fitting of a free exponent describes a power law 

Figure 5. Probing an equilateral triangular network of GMPCPP filaments. (a) Design of experiment in pseudo 
3D with overlay of fluorescence and brightfield image (bottom). Scatterplots of absolute bead positions during 
a tangential oscillation in y direction are shown color coded over the current phase φa of the actor trap. (b) 
Overlay of fluorescence and brightfield images of the characteristic time points during one radial (x) oscillation 
period at fa = 0.1 Hz. Scale bar: 5 µm.

http://S4)
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behavior of ω1.5, which represents faster stiffening, i.e., a slower molecular relaxation on shorter timescales. It is 
known that MTs polymerized in the presence of slowly or non-hydrolyzable GTP analogs such as GMPCPP or 
γ-S-GTP form more lateral inter-protofilament contacts between β-tubulins as compared to GTP/GDP MTs (see 
refs 44–46 and the Supplementary Material). Approximating the connection between individual αβ- tubulin 
dimers by damped harmonic springs47, 48, the damping of the intermolecular connections should affect the tem-
poral response to mechanical stimuli and thereby the transition frequency ωt.

Within the accuracy of our measurements, the viscous modulus G”(ω) (see Supplementary Results) increases 
linearly with frequency as predicted by the lateral friction coefficient ω⋅ = πηω

+ .
gMT L D

4
ln( / ) 0 84

 of a simple rod 
moving in an aqueous solution. Hence, we can clearly exclude that the strong increase of filament stiffness G′ at 
high frequencies is governed by simple friction on the filament.

In biological and other noisy systems, the signal energy stored in various degrees of freedom (translation, 
oscillation, etc.) is significantly less pronounced at higher frequencies (e.g., a 1/ω² decay for thermal motion). In 
this way, microtubules should act as transmission amplifiers or high pass filters for mechanical signals, based on 
our observations that mechanical stimuli are transferred much more efficiently at higher frequencies.

Angular momentum filtering in a linear MT chain. For the linear MT chain, the MT triangle and for 
comparisons with single filaments, we analyze the full oscillation period of the anchor points leading to com-
pression and stretching of the filaments. The serial connection of two 10 µm microtubules (stabilized by 100 µM 
Taxol) held by three optically trapped anchor points (bead i = 1, beads j = 2, 3) revealed an unexpected elastic 
behavior. Relative to the first bead connection 1 → 2 with one MT, the addition of a second MT makes the new 
bead connection 1 → 3 five times stiffer in longitudinal direction and five times softer in lateral direction. Hence, 
longitudinal momentum can be well transported through this linear construct, but lateral momentum is damped 
such that the linear construct acts as angular filter for the transport of mechanical momentum. Remarkably, the 
single filament description of the elastic modulus G′(ω) as the sum of a frequency independent part G′(0) and a 
part following a power law is still valid and the transition frequency for longitudinal momentum transport also 
increases with increasing G′(0). Since longitudinal and lateral tubulin bonds differ in strength, one can conclude 
that the geometry of the network and the angular direction of momentum transport affect the molecular relax-
ation behavior of individual tubulin heterodimers and the stabilizing molecules bound to these heterodimers.

The two-step elastic modulus ′G (1,3) can be modelled as serial connection of two springs, resulting in an addi-
tional coupling term Gcpl as explained in the Methods section. It is likely that ω′G q F( , , )cpl ext  depends on an exter-
nal force Fext, which is given in our case by the optically trapped bead 2. The stronger this external (optical) force, 
the less lateral oscillations can be transferred from the first to the second microtubule, and the stiffer is the con-
nection in longitudinal direction. This trapping effect has been quantified for different stiffnesses of the optical 
trap as shown in the Fig. 4d, but has not yet been subtracted to obtain the pure elasticity of the filament itself. In 
general, we have no control of the attachment of both filaments to the second, intermediate bead 2. They might 
attach perfectly opposite to each other or nearly at the same location giving rise to different effective suspensions 
of the middle bead.

The role of the intermediate (trapped) bead simulates the situation inside a cell, where filaments are 
cross-linked to each other, and to other cellular components, such as actin. These crosslinkers have different 
elasticities, hence, we can test the situation in vivo by varying the trap stiffness of the intermediate bead. A recent 
theoretical study investigated the role of crosslinkers in reversibly crosslinked networks of semi-flexible polymer 
filaments and found a qualitatively similar behavior, i.e., a low frequency plateau depending on the number of 
crosslinkers and a power law rise at high frequencies49.

Figure 6. Elastic components G′(ω) for an equilateral triangular network. These are compared to the theoretical 
estimates for single filaments (lines without markers). (a) Radial oscillation along x. (b) Tangential oscillation 
along y. Error bars represent the standard deviation (SD) of N = 10 measurements each.
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Interestingly, this situation resembles an (electronic) transistor, where a small input signal (here, a mechanical 
stimulus) controls a strong current (here, the momentum transport from bead 1 → 3). It will be interesting to 
perform further experimental and theoretical investigations to explain the elastic behavior, where momentum 
transport between two network nodes can be steered by an intermediate node.

The MT triangle – a uni-directional stable network. Displacement of the actor bead in either radial 
x- or tangential y- direction as illustrated in Fig. 5 results in a very direct and efficient transport of momentum 
in direction towards the one or the other sensor bead. Remarkably, the measured elasticity behavior described 
by the modulus G′(ω) is the same as in the single filament case. It consists of a static elasticity G′(0), and a strong 
rise of G′(ω) when higher deformation modes are excited beyond the transition frequency ωt. This strong rise is 
clearly visible at ft = 100 Hz for a tangential oscillation, but could not be resolved for a radial oscillation. This is 
probably due to a much faster rise (larger exponent) of G′ in a direction lateral to the filament axis, as we observed 
this phenomenon for single filaments and the linear MT chain as well. However, based on our observations for 
single filaments, we could estimate the transition frequency for a radial oscillation of the triangle to be ft ≈ 800 Hz.

In the static case, the triangle is about 25 times stiffer than a single filament. This can be explained by the fact 
that every radial or tangential displacement of the actor bead results in a compression and stretching of another 
MT at the same time. Since MTs are hardly stretchable32, this results in static elasticities of G′(0) ≈ 20–50 mPa. 
Comparing the estimates for the transition frequency ωt obtained from G′(0) and Equation (3), these extrapo-
lated values come close to the frequency where G′(ω) ≈ 1.5·G′(0). Again, we interpret the increased transition 
frequency as a result of the intermolecular relaxations of or between two tubulin heterodimers, which cannot 
follow on timescales below 2π/ωt < 10 ms. A stiffening beyond a transition frequency of ft ≈ 200 Hz could also be 
observed in cross-linked actin networks50.

Whereas the optically trapped anchor points could rotate and act as hinges in the previous configurations, 
the anchor points of the triangle can hardly rotate, and therefore rather resemble a movable support only. This 
triangular situation is relevant for the radial MT arrays that form around the nuclei of many cells by a mechanism 
where microtubule-nucleation factors are directionally transported by dynein motors51. In addition, the forces 
conveyed to the nucleus by this network would act, via links of the cytoskeleton to the nuclear lamina, on struc-
ture and dynamics of the chromatin52, providing a mechanism how mechanic signals can modulate gene activity 
in the network’s center.

Summary and conclusions. Motivated by the capability of individual microtubules and inter-connected 
microtubule networks to transduce a mechanical stimulus over a long distance within short times, we clearly 
identified substantial differences in response for different network topologies and at different stimulation fre-
quencies ω35. This has a couple of interesting implications for biology:

The rather low stiffness at frequencies below the characteristic transition frequency, ω < ωt, of single filaments 
or the linear network is expected to dampen the transmission of mechanical signals, while the rise at ω > ωt would 
allow for an enhanced transmission of signals that typically show a reduced amplitude in noise driven systems 
such as living cells.

Interestingly, this transition frequency is in a physiologically relevant range (1–10 Hz). For instance, the mam-
malian heartbeat ranges between 1 Hz in humans up to 18 Hz in mice53, and muscles undergo an innate oscilla-
tion of around 20 Hz54.

A second aspect of the strong influence of network topology is the comparatively high stiffness at low fre-
quencies of triangular networks. This displays a stiff, load bearing scaffold, which could be used to reinforce the 
cell against external pressure in densely packed tissues, or enable the contraction of large scale MT networks55. 
The specific mechanical properties of triangular networks are relevant for nuclear positioning, since the nucleus 
is tethered and positioned by radial arrays that are stabilized by cross-connection in many organisms integrated 
into cell polarity56. A third implication of our findings is linked with the “mechanic transistor” function of micro-
tubule networks, where small mechanical forces can control a large amount of momentum transport.

Microtubule crosslinkers have recently been reported to be able to generate entropic forces on the pN range57, 
which could lead to passive changes of network elasticity over time by pre-stretching individual filaments of a 
network. This would provide a mechanism how cells can control the directionality of mechanic signaling, which is 
relevant for mechanic integration of cells into organs, or of organs into organisms2. These implications show that 
our bottom-up approach to analyze the transmission of mechanic forces in networks of increasing complexity is 
relevant to understand, how mechanic signals can shape biology.

Materials and Methods
Theoretical description of viscoelastic behavior. This section introduces the relevant forces acting on a 
single filament and its resulting deformations as well as the relative bead displacements during an oscillation lon-
gitudinal to the MT. Through a representation of all forces in frequency space, the elastic and viscous components 
of the filament can be extracted using the frequency dependent complex shear modulus G(ω).

To separate the viscoelastic contributions of the filament and the trapped beads, we analyzed the data by 
means of active two particle micro-rheology in frequency space. Because the microtubule is firmly attached to the 
beads, every displacement xB of a bead in x direction directly results in an evasion of the microtubule, i.e., buck-
ling with amplitude u(x, xB). Hence, the forces acting on the microtubule and the forces on the beads are directly 
coupled through the constraint of a constant contour length L. As we show in the Supplementary Results, the 
measured net forces on the beads in direction lateral (y) to the filament are negligibly small, such that all effective 
forces due to microtubule buckling and viscous drags point only in x direction. Hence, in the tension free case the 
sum of forces acting on a single bead with index j can be described by the following, one dimensional equation of 
motion for the bead at longitudinal position xBj and the filament contour described by u(x):
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 is the lateral viscous drag coefficient per 
unit length, and η the viscosity of water58. Both in our theoretical description as well as in our rheological analysis 
shown in Figs 3, 4 and 6, we only include the effects of buckling during single filament compression, and neglect 
microtubule stretching because the microtubule stretching spring constant is on the order of 10 pN/nm32. This 
would result in a maximal extension during our experiments of approximately 1 nm, compared to large buckling 
deformations on the order of several 100 nm. The absolute values in the expressions for the total buckling and 
viscous forces of the filament are due to symmetry: filament buckling in positive or negative direction ±u(x) must 
always result in the same force on the beads.

The oscillatory driving force κ= − ⋅F t x t( ) ( )D T L1  is generated by the first optical trap (j = 1, actor trap) at 
position ω=x t A t( ) sin( )L a1 1 , thereby compressing and stretching the MT. The equation of motion according to 
Equation (4) can then be given explicitly:

∫κ γ κ ω− + ±


 +



 = −∂

∂
∂

∂

∂
∂( )x t EI u x t g u x t dx A t( ) ( , ) ( , ) sin( )
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2 0

4

4

Hence, Equation (5) represents a set of m coupled differential equations, where m is the number of beads. These 
are solved pair wise using relative and collective coordinates xR = xB1 − xB2 and xC = xB1 + xB2. Since the contribu-
tion of the filament acts in opposite directions for each bead (points away from the MT ends, ±in Equation (5)), 
this effect cancels out in the collective coordinate xC(xB1, xB2), but manifests in the relative coordinate xR(xB1, xB2, 
u).

The buckling of the filament contour u(xB1, xB2, x, t) is a function of the compression given by the bead posi-
tions xB1 and xB2 and is assumed to be deformed in lateral direction y only with small angles to the x-axis. The 
deformation amplitude can be written as a superposition of sinusoidal modes with wavenumber qn = n·π/L 
(n ≥ 1)59–61:
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δL(t) ≈ xL1(t), which is a reasonable approximation to the resulting elliptic integral, as shown in the Supplementary 
Results. The mode relaxation with frequency ω = qq
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 is the faster, the larger the wave number and the bend-
ing modulus EI. For a single deformation mode qn, Equation (5) then becomes for the relative coordinate xR
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The spectral forces acting on the beads with relative position ωx ( )R  are known and can be subtracted, such that the 
following response equation holds: ω α ω ω= ∆

u F( ) ( ) ( )qn qn D . Here, ω∆F ( )D  is the Fourier transform of the exter-
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. The complex viscoelastic response functions of the MT fila-

ment consists of the storage modulus ω′G ( ), describing the elastic energy stored in the system, and the loss mod-
ulus ω″G ( ), describing the friction energy dissipated to the environment. By using ω =
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 where C is a constant factor. For higher driving frequencies ω > ω1, G′(ω) 
follows a power law with p = 3/459, whereas a more advanced theory for semiflexible filaments36, 37 predicts a 
power law with p = 5/4. For low frequencies ω → 0, the elastic modulus is close to the first mode ω′ =G ( )n 1 , which 
is independent of the frequency.

In the following, we only investigate the elastic component G′, whereas the viscous contributions G”, expressed 
by the viscous drag gMT of the MT, are discussed in the Supplementary Results.

Theoretical estimate for MT stiffening on short timescales. The question is how well our observa-
tions can be explained on the basis of an equation of forces, as introduced in Equation (4), and viscoelastic forces 
known from hydrodynamic beam theory. Our theoretical description of microtubule deformation through the 
shear modulus G′(ω) is based on the beam equation = θM x EI( ) d x

dx
( )  with bending moment M and tangent angle 

θ(x) along the filament58, which has been successfully applied to active filament stretching32 and buckling31 and to 
thermal deformations33. On this basis, the static MT deformations result in a strong length dependency of 
G′(ω = 0) ~( )L

1 4
. However, by considering the contour-length dependence of the persistence length lp(ω = 0, 

L) ~ L2 38, the plateau value G′(0) as well as the transition frequency ωt approximate to a ( )L
1 2

 dependency. Whereas 
this could be confirmed for the plateau value, the description of the transition frequency requires a more 
advanced theory, which should also include the molecular architecture of differently stabilized filaments.

As introduced above, the buckling amplitude of the filament deformation u(xB1, xB2, t) is a superposition of 
different deformation modes, which relax the faster, the larger the wave number qn = n·π/L, or the shorter the 
deformation length. By calculating individual response functions α(ω, q) for each mode qn and taking the inverse 
sum of all response functions, G′(ω, n) = 1/(Σnα(ω, q)), both the elastic and viscous modulus are obtained. It 
turned out that typically n = 4 modes were excited at our maximum driving frequency of 100 Hz, such that the fit 
function ω ω′ = ≈ ′ =ω ω ω ω ω ω

ω ω ω ω ω ω

+ + +
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 with the parameters A and 
ω1 was sufficient.

Using this fit function, the transition frequency ωt ≈ 3ω1 could be extracted from the experimental data. ωt 
was interpreted as the frequency at which molecular relaxations cannot follow the external filament deformation. 
The frequency independent stiffness at low frequencies and the sudden increase in G′(ω) on a double-logarithmic 
scale could be well observed in single filaments as well as in the linear and triangular MT arrangements. From 
these observations, we conclude that the description of forces chosen in Equations (4) and (5) to quantify our 
mechanistic model is reasonable. However, the stronger stiffening at high frequencies with p > 5/4 needs a more 
thorough theoretical investigation. In addition, the theoretical approach has to be extended in the future, to also 
integrate the porous molecular structure, especially to explain the dependence of the transition frequency on 
chemical stabilization of the microtubule (see Supplementary Results).

Stiffness estimate for a linear MT chain. The two-step elastic modulus ′G (1,3), resulting in a fivefold stiffen-
ing in longitudinal direction and fivefold softening in lateral direction compared to the one-step modulus ′G (1,2), can 
be modelled as serial connection of two springs (two filaments, 2fl) with MT length L/2 or wave number 2q, such 
that ′ → ′G G q(2 )fl

(1,3)
2 . Reciprocal addition of two single filament elasticities ′G q(2 )f1  results in a two filament sum 

elasticity, ′ =G q(0, 2 )fl2  

 +
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fl fl1 1
 ≠ ′G q(0, 2 )(1,3) , which is two times softer than that of 

a single filament. Alternatively, the two-step modulus ′G (1,3) can be identified with a single filament of length L, or 
wave number q, such that ′ → ′G G q( )f

(1,3)
1 . However, this results in a fivefold decrease of the elasticity relative to that 

of a single filament with length L/2, according to ′ =G q l q k T q(0, 2 ) (0, 2 ) (2 )f p B1
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16
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The factor 1/3 arises from the length dependence of lp(q).
Hence, an additional coupling term ′Gcpl is required to explain the elastic behavior of the linear construct, such 

that

ω ω ω′ = ′ + ′G q G q G q( , ) ( , ) ( , ) (12)f cpl
(1,3)

1

′G q(0, )cpl  must be positive for longitudinal momentum transport, and negative for lateral momentum 
transport.

Experimental setup with optically trapped beads as actor and sensor. A single biotinylated micro-
tubule was attached laterally to two Neutravidin coated beads trapped by time-multiplexed optical tweezers and 
aligned along the x-direction as illustrated in Fig. 1. The average laser power per trap was always 19 mW in the 
focal plane at a trapping wavelength of 1064 nm. The position of each bead was tracked in three dimensions at 
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50 kHz using back focal plane (BFP) interferometry and quadrant photo diodes (QPD) as described in ref. 62. The 
first optical trap (trap 1, shown in red) was the force generating actor and oscillates sinusoidally at frequency fa 
and amplitude Aa along x around the central position x01. The other trap(s) (blue) remained static and were used 
as position and force sensors for the mechanical stimulus exerted by the actor and transduced by the microtubule. 
The beads were displaced by xB1 and xB2 relative to the trap centers. During both half periods of an oscillation, 
the distance between the beads was first increased and then decreased resulting in tensile and compressive forces 
acting on the microtubule, respectively. Since microtubules are practically inextensible, they are bent locally at 
the point of attachment to beads (Fig. 1a) during the first half period32 and buckled during the second half period 
due to their high compliance to compression forces63. The buckling amplitude along the filament is denoted by 
u(x, t) as illustrated in Fig. 1c.

In the experiments, we used a lateral stiffness of κopt ≈ 25pN/µm per trap. The actor trap was typically oscillat-
ing at frequencies 0.1 Hz ≤ fa ≤ 100 Hz in nearly logarithmical steps and amplitudes 200 nm ≤ Aa ≤ 600 nm along 
x or y, i.e., longitudinal or lateral with respect to the axis of single filaments or the linear chain. Each filament or 
construct was probed several times at different amplitudes to test for any force or displacement dependence, to 
obtain statistics, and to test for structural defects during experiments, which happened rarely and usually resulted 
in filament breaking close to one bead. In such cases, the measurements were excluded from further analysis. 
Also, we did not observe significant differences for repetitive measurements on the same filament indicating that 
microtubules were not structurally damaged during oscillation. In some cases, one of the filaments was detached 
of a bead. These experiments have also been excluded from analysis. Elastic effects of the biotin linker can be 
neglected, since the effective length of this linker is in the Ångstrom range64 and its spring constant65, 66 is much 
larger than that of microtubules, both for buckling and stretching32.

Suitability of experimental approach. The use of optically trapped beads as anchor points for simple 
microtubule networks turned out to be a very suitable approach. Potential phototoxic effects such as bleaching 
and filament breaking were successfully suppressed by addition of glucose oxidase and catalase as enzymatic 
scavengers of reactive oxygen species (see Microtubule preparation), which allowed to obtain reproducible results 
for more than 30 experimental repeats on the same construct extending up to 40 minutes. At a moderate laser 
power of 19 mW per trap, optical forces were high enough to compensate all occurring friction and elastic forces. 
Only for trap displacements at frequencies strongly exceeding 100 Hz, the trapping of higher refracting polysty-
rene spheres became unstable67. However, most physiologically relevant mechanical forces on timescales below 
(100 Hz)−1 = 10 ms are local effects on the order of one pN or less, caused by thermal fluctuations and are likely 
not relevant for a transport through the entire cell. As we have shown in the Supplementary Results, the extents of 
the 1 µm large beads result in additional geometrical effects affecting the deformation and have to be considered 
in the future. However, these effects are minor and do not impair the feasibility of the strategy to use individu-
ally trapped beads as flexibly controllable force actors and sensors within small MT networks. The basis for all 
experiments were the multi-particle trapping, the precise position tracking and the force measurement in well 
calibrated optical traps, which worked robustly at the used tracking rates of 50 kHz/N (N = number of traps). We 
think that this successful approach for optical trapping and tracking of anchor points will also allow investigating 
more complicated networks in the future.

Microtubule preparation. Tubulin was purified from fresh brains collected freshly after slaughtering using 
the classical protocol by Shelanski et al.68. For biotinylation, microtubules were preassembled at 37 °C in presence 
of 100 µM taxol and 100 µM of GTP in BRB80 buffer (80 mM Pipes KOH, pH 6.8, 1 mM MgCl2, 1 mM EGTA), 
and then complemented with 500 µM of sodium bicarbonate and 1 mg/ml of biotin-XX N-hydroxysuccinimide 
ester. After incubation for 30 min at 37 °C, the mixture was purified by ultracentrifugation through a twofold 
volume of a sucrose cushion (15 min 300000 g) in BRB80. Purity and quality of each tubulin preparation was 
verified by SDS-PAGE, before coupling the purified tubulin to tetramethyl rhodamine as described previously69. 
For Taxol stabilized microtubules, tubulin, fluorescently labeled tubulin, and biotinylated tubulin were thawed 
on ice, mixed with GTP in the ratio 8: 4: 4: 0.8 and polymerized for 30 min at 37 °C. This stock was stable up to 2 
days at room temperature. Dilutions (1:100 – 1:2000) in BRB80 buffer containing Taxol (10 µM or 100 µM) were 
prepared freshly from the stock every 2–3 hours during experiments. Doubly stabilized filaments were polymer-
ized similarly, but with Guanosine-5′-[(α, β)-methyleno]triphosphate (GMPCPP) instead of GTP and spun down 
with a TLA100 rotor in a Beckman centrifuge at 300000 g. Sedimented microtubules were resuspended in BRB80 
buffer containing 100 µM Taxol and stable for 2–3 months at room temperature. Further dilutions (1:100 – 1:500) 
were prepared freshly during experiments. 7.5 µl of the microtubule suspension was mixed on a coverslip with 
Neutravidin coated beads (Molecular probes, Invitrogen, F8777), and an oxygen scavenging system (GODCAT, 
100 µg/ml Glucose oxidase 22778 from Serva, 20 µg/ml catalase C40 from Sigma, 10 mM BME M3148 from Sigma 
and 40 mM Glucose from Carl Roth) to prevent fluorescence bleaching and filament breaking. We always used a 
roughly 80 µm thick coverslip sandwich separated by double sided sticky tape (Tesa).
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