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Automatic Thalamus Segmentation 
from Magnetic Resonance Images 
Using Multiple Atlases Level Set 
Framework (MALSF)
Minghui Zhang, Zhentai Lu, Qianjin Feng & Yu Zhang

In this paper, we present an original multiple atlases level set framework (MALSF) for automatic, 
accurate and robust thalamus segmentation in magnetic resonance images (MRI). The contributions of 
the MALSF method are twofold. First, the main technical contribution is a novel label fusion strategy in 
the level set framework. Label fusion is achieved by seeking an optimal level set function that minimizes 
energy functional with three terms: label fusion term, image based term, and regularization term. This 
strategy integrates shape prior, image information and the regularity of the thalamus. Second, we use 
propagated labels from multiple registration methods with different parameters to take full advantage 
of the complementary information of different registration methods. Since different registration 
methods and different atlases can yield complementary information, multiple registration and multiple 
atlases can be incorporated into the level set framework to improve the segmentation performance. 
Experiments have shown that the MALSF method can improve the segmentation accuracy for the 
thalamus. Compared to ground truth segmentation, the mean Dice metrics of our method are 0.9239 
and 0.9200 for left and right thalamus.

The thalamus plays a critical role in human brain function. It is the largest, most internal structure of the dien-
cephalon. Segmentation and characterization of the thalamus from brain magnetic resonance images (MRI) 
are expected to help noninvasive diagnosis and treatment. Thalamus segmentation has become more and more 
important for a wide range of clinical and research applications. For example, the thalamus changes in terms of 
volume and intensity are involved in a large number of diseases, such as Parkinson’s disease, multiple sclerosis 
and schizophrenia. Expert manual segmentation of thalamus from MRI data is still the gold standard, but it is 
labor intensive, and the segmentation results are not reproducible. The thalamus has no clearly contrasted bound-
aries in MR T1-weighted images, this issue is illustrated by Fig. 1, where no obvious thalamus boundary can be 
observed. It is a difficult challenge even for an expert radiologist.

Because of low image contrast, noise, and missing or diffuse boundaries, some discrete methods such as 
thresholding, FCM1, and region growing2 are not reliable because they only use image intensity information. 
Erhard et al. compared the performances of publicly available segmentation tools (volBrain, FSL, FreeSurfer and 
SPM) and their impact on diffusion quantification, emphasizing the importance of using recently developed 
segmentation algorithms and imaging techniques. They found that volBrain is superior in thalamus and hip-
pocampus segmentation compared to FSL, FreeSurfer and SPM3. Shape is important information for brain struc-
ture segmentation. It is preferable to combine the intensity information along with the shape prior information. 
Active contours model (ACM) is a very popular technique for image segmentation which can combine shape 
prior information. According to the features of the involved image, ACM can be categorized as the image inten-
sities statistical information (region-based ACM)4–8 or the image gradients (edge-based ACM)9–12. ACM needs 
precise initialization of the starting contours. It can not converge to the target structures unless the initialization 
is good enough. Another concern is that most of the boundaries of the thalamus are diffuse or missing, and thus 
it is difficult to segment the thalamus, even by a radiology expert. The performance of ACM may be adversely 
affected when these methods are employed. Shiyan Hu et al. combined levelset shape modeling and appearance 
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modeling to identify the hippocampus and amygdala using multi-contrast MR imaging. The linear model for the 
gray-intensity of each contrast MR image can be constructed by applying principle component analysis (PCA) to 
the pre-processed gray images. PCA-based techniques require that the structures to be segmented are pre-aligned 
well13. Dinggang Shen et al. presented a learning-based algorithm by taking advantage of the multi-atlas frame-
work and the auto-context model. Under the multi-atlas framework, auto-context model based classifiers are 
trained for all atlases to incorporate anatomical variability. It is time-consuming to extract image appearance 
features, texture features and context features. A sequence classifier is trained in each atlas space by borrowing 
the training samples from not only the underlying atlas but also all other linearly-aligned atlases, which has high 
computational complexity14.

Another popular methodology is atlas-based methods15–17. In these methods, the atlas includes a gray level 
image and a manually labelled image associated with the training image. The training gray level image is reg-
istered to the target image. The manually labelled images are thus propagated to the target image by using the 
deformation fields determined by registration method. The segmentation is accomplished with the help of image 
registration. The sophisticated non-rigid registration techniques can be used in a meticulous way, in which the 
shape prior and spatial information can be incorporated to help segmentation, so the atlas-based segmentation 
can be highly accurate.

Compared to other generic segmentation techniques, the atlas-based approach has several major advantages. 
For example, only a registration method and a number of pre-segmented data sets are required. There is no need 
for complex training procedures. The quality of the atlas-based approach is limited by the accuracy of the regis-
tration procedure and the anatomical similarity between the labelled and target image. Rather than depending 
on a single atlas, an alternative strategy is to register multiple atlas images to the target image separately15. These 
pairwise transformations are then used to propagate the labels to the target image. The final segmentation is 
achieved by fusing the propagated labels. A number of label fusion strategies have been proposed for multi-atlas 
based segmentation in the literature. Among them, the majority voting (MV) method is probably the simplest 
one and has been widely used in medical image segmentation17. In the MV method, the weights of candidate 
segmentations from each atlas are equal. The label with largest agreement from all atlases is assigned as the final 
label. A natural extension of the MV method is to use adaptive weighted averaging. Another popular approach is 
simultaneous truth and performance level estimation (STAPLE), which uses the expectation-maximization (EM) 
algorithm to achieve the best possible final segmentation18.

This multi-atlas based segmentation approach reduces the effect of errors associated with individually prop-
agated atlases. A registration error for a particular propagated atlas is less likely to affect the final segmentation 
when combined with other atlases. Multi-atlas based segmentation methods have been proven to be effective 
and accurate in comparison with single atlas-based approaches. The quality of the registration algorithm and the 
selection of the atlas will directly affect the segmentation performance. The main limitations of the multi-atlas 
segmentation methods are that they often lead to a compromise between the accuracy of the registration and the 
smoothness of the deformation, and that those methods are time consuming.

To combine the advantages of the methods described above and overcome some of their disadvantages, we 
propose a new multiple atlas segmentation strategy using different registration methods and a level set fusion 
framework. The main contributions of this paper include the following. (1) The proposed method employs level 
set model further to improve the segmentation performance, which is able to provide smooth and closed contours 
in the final segmentation. (2) We explore the effect of the quality of registration method on segmentation accu-
racy. Multiple registration methods, i.e., ANTS19, DRAMMS20 and Demons5 are incorporated into the segmenta-
tion procedure, which facilitates combining the advantages of the different registration approaches. (3) The local 
similarity maps that calculated in the registration procedure are used as local weight of the level set function. This 

Figure 1.  MR T1-weighted image (a) an image slice obtained from a 3-D thalamus MR image. (b) The 
manually-delineated thalamus boundary shown by the red contour, superimposed on the original image in (a).
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strategy does not add a substantial computational burden to the algorithm, since the atlases are registered to the 
target image offline. (4) The algorithm combines local intensity information, atlas prior, and shape regularity, it is 
very robust and able to accurately segment a new subject.

Method
The proposed new segmentation method has two stages, multiple atlas registration (blue rectangle) and active 
contour model label fusion (red rectangle). It is illustrated schematically in Fig. 2. The gray level images Ii form the 
atlas is registered to the target image T by using ANTS, DRAMMS and Demons. The resulting transformations 
are used to warp the corresponding atlas label Li. The propagated label L′i are then combined to create the final 
segmentation S of the target image by using the level set method.

Ethics Statements.  The original MRI scans were obtained from the Open Access Series of Imaging Studies 
(OASIS) project web site (http://www.oasis-brains.org/). OASIS is a project aimed at making MRI data sets 
of the brain freely available to the scientific community. Patient’s records and information were anonymized 
and de-identified prior to analysis. A subset of this data was used as the “gold standard” for the MICCAI 2013 
Grand Challenge and Workshop on Multi-Atlas Labeling. Our study was approved by the ethics committee of 
Washington University Alzheimer’s Disease Research Center.

Multiple Atlas Registration.  Sources of error in atlas-based segmentations include registration error and 
manually delineated errors. The more accurately the registration warps the atlas onto the target image, the more 
accurate the result of the segmentation. The registration errors produced by using different atlases and different 
registration methods are not identical, and thus employing multiple atlases and multiple registration methods 
can effectively reduce the registration errors. To improve the segmentation performance of multiple atlas-based 
methods, we utilize many of the existing complementary registration strategies, i.e., ANTS19, and DRAMMS20.

Elastic registration methods such as statistical parametric mapping (SPM)21, free-form deformations (FFD)22, 
and Demons operate23 in the space of vector fields, which do not preserve topology. Not applying ad hoc con-
straints will result in the brain topology changing in an uncontrolled way. ANTS uses diffeomorphic transforma-
tions to warp images, and combines multiple different similarity measures that are optimized in parallel, which 
provide well-behaved solutions with mathematical guarantees about distance in deformation space and regularity.

DRAMMS bridges the gap between the traditional voxel-wise methods and landmark/feature-based methods. 
It renders each voxel relatively distinctively identifiable by a rich set of attributes to reduce match ambiguities. 
Additionally, DRAMMS modulates the registration by assigning higher weights to those voxels which have a 
higher ability to establish unique correspondences across images, therefore reducing the negative impact of those 
regions that are less capable of finding correspondences.

As shown in Fig. 3, ANTS and DRAMMS obviously outperform Demons. The performances of ANTS and 
DRAMMS are very similar, and it is difficult to evaluate which one is better, even by experts. To avoid possible 
registration error and to take full advantage of the merit of different registration methods, we combine the ANTS 
and DRAMMS registration results in a level set framework.

Figure 2.  Schematic illustration of our segmentation method.
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Level Set Label Fusion.  We use the level set method8 to model the structures of thalamus in the training 
data. First, the level set function (LSF) is utilized to represent the shape of manually segmented labels. Figure 4 
shows the shape of the thalamus (showed in Fig. 1) by using the level set method, where the manually segmented 
thalamus is described by the LSF, and its boundary is captured by its zero level-set.

For a training data set with n labels, as we use ANTS and DRAMMS to register the atlases to target image, 
there are N = 2n separate LSF …f f{ , , }N1  where negative distances assigned to the inside and positive distances to 
the outside of object, are adopted to describe the boundaries of atlas shapes. The zero level contour of LSF φ is the 
boundary of the thalamus in the target image, denoted by C. Our purpose is to find an optimal LSF φ by using a 
label fusion technique under the proposed variational framework.

We propose a new and general variational level set formulation for label fusion, in which the energy E of LSF 
φ is defined in a general form:

φ α φ φ φ β φ γ φ= … + +E F D I R( ) ( ; , , ) ( ; ) ( ) (1)N1

where F(φ; φ1, …, φN) is the label fusion term, which can integrate the shape priors of different atlases; D(φ; I) is 
the image based term with a given target image I, which will combine the regional intensity information of the 
target image; and R(φ) is the regularization term that will smooth the shape of the thalamus in the level set evolu-
tion procedure. α, β and γ are the corresponding coefficients.

The label fusion term F(φ; φ1, …, φN) is defined by

Figure 3.  Registration performance comparison between ANTS, DRAMMS and Demons. (a) ANTS, (b) 
DRAMMS, (c) Demons. Each row represents different patient. The red contours in each column represent the 
warped thalamus boundary after ANTS, DRAMMS and Demons registration, respectively. The green contours 
are the ground truth that manually delineated by experts.



www.nature.com/scientificreports/

5Scientific Reports | 7: 4274  | DOI:10.1038/s41598-017-04276-6

∫ ∑φ φ φ ω φ φ... = −
Ω =F x x x dx( ; , , ) ( ) ( ) ( )

(2)N i
N

i i1 1

2

where ωi(x) is a local weight assigned to the i-th label represented by the level set function φi, with ω∑ == x( ) 1i
N

i1 , 
x indexes the image pixels, and Ω denotes the target image domain. Both ANTS and DRAMMS calculate the local 
similarity of each voxel in the registration procedure, where we use the local similarity as the local weight of the 
level set function. This strategy does not add computational burden to the algorithm, since the atlases are regis-
tered to the target image offline.

Minimizing label fusion energy F, the zero LSF φ is forced to be close to the zero LSF φ1, …, φN, which are the 
boundaries of the thalamus given by the warped labels ′ ′ ... ′L L L, , , N1 2 . However, minimizing the energy F alone 
may result in an irregular shape of the contour obtained. Therefore, we need a regularization mechanism to main-
tain the regularity of the contour. We use the arc length of the zero level contour of the LSF φ as the 
regularization.

∫φ φ= ∇R H x dx( ) ( ( )) (3)

This regularization term ensures the regularity of the boundary of the thalamus.
The traditional fusion method only combines the warped labels, without taking into account the target image 

information. These methods cannot correct the registration error and manually delineated errors effectively. We 
use the region-scalable fitting (RSF) model24 as the image term, which is able to handle intensity variations within 
the foreground and background of the image due to its localization property. This image term can guide the 
motion of the contour toward the thalamus boundaries, if there are some registration errors and manual labelling 
errors.

Given a point y, consider it’s neighborhood Oy = {x:|x − y|≤ρ}, which is divided by an object boundary C into 
two parts: Oy∩inside(C) and Oy∩outside(C). The image intensities I(x) in Oy∩inside(C) and Oy∩outside(C) can be 
approximated by the two constants f1(y) and f2(y), respectively. We seek an optimal contour C and fitting func-
tions f1 and f2 such that the following energy

∫ ∫∩ ∩
λ λ= − + −E C f y f y I I x f y dx I x f y dx( , ( ), ( ); ) ( ) ( ) ( ) ( )

(4)y
O inside C O outside C1 2 1

( ) 1

2

2
( ) 2

2

y y

is minimized for all y ∈ Ω for a given target image I, where λ1 and λ2 are the weighting coefficients. Minimization 
of Ey(C, f1(y), f2(y); I) for all y can be achieved by minimizing the integration of Ey with respect to y, i.e., the energy 
D is defined by

∫=
Ω

D C f f I E C f y f y I dy( , , ; ) ( , ( ), ( ); ) (5)y1 2 1 2

The energy D(C, f1, f2; I) can be expressed in an equivalent form in terms of LSF φ and the fitting functions f1 and 
f2 as the following:

∫ ∫∑ φ= − −ρ= ( )D C f f I K x y I x f y M x dx dy( , , ; ) ( ) ( ) ( ) ( ( )) (6)k i i1 2 1
2 2

where M1(φ(x))=1−H(φ(x)) and M2(φ(x))=H(φ(x)), and where H is the Heaviside function. We approximate 
this as follows:

π ε
=







+











εH z z( ) 1

2
1 2 arctan

(7)

where Kρ is the kernel function. In this paper we chose a Gaussian kernel:

Figure 4.  2D slice of an example of the shape modeling using the level-set method. (a) Manually segmented 
shape, (b) Level set function (LSF), (c) Zeros level set.
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with a scale parameter ρ > 0.
The above energy can be further expressed as

∫ ∫∑ φ= − −ρ= ( )D C f f I K x y I x f y dy M x dx( , , ; ) ( ) ( ) ( ) ( ( )) (9)k i i1 2 1
2 2

which defines a specific form of the image based term in the proposed variation framework. The minimization of 
the energy E with respect to the LSF can be achieved by using the standard gradient descent method8:

φ δ φ λ λ υδ φ φ
φ

µ φ φ
φ

∂
∂

= − − +





∇
∇






+




∇ −






∇
∇











ε εt

e e div div( )( ) ( )
(10)

1 1 2 2
2

where δε is the smoothed Dirac delta function, and e1 and e2 are the functions

∫= − − =ρe x K x y I x f y dy i( ) ( ) ( ) ( ) , 1, 2 (11)i i
2

Parameter optimization
The parameter values of our proposed variational framework were chosen based on the 20 labeled images that 
were used for training. This was done by performing leave-one-out parameter-tuning experiments on those 20 
images. For example, consider the case where image 1 was used as a target, and images 2 to 20 were used for train-
ing. To determine the optimal values of α, β, γ, μ, v, λ1, and λ2, 20 parameter-tuning experiments were conducted. 

parameter α β γ μ v λ1 λ2

value 0.1 1 0.1 0.1 0.01 0.0001 0.0001

Table 1.  The parameters used in all experiments.

Figure 5.  Box-plot of performance metric on the MICCAI dataset. The left column is left thalamus and the 
right column is right thalamus. The top row contains the similarity index, higher values implying greater 
volumetric overlap with the manual segmentation, and the bottom row contains the Hausdorff distance, lower 
values implying a surface closer to the manual segmentation.



www.nature.com/scientificreports/

7Scientific Reports | 7: 4274  | DOI:10.1038/s41598-017-04276-6

First, the manual labels of images 2–20 were warped to the coordinate framework of image 1, and segmentation 
was performed using certain values of the parameters. The manual labels of image 1 were then used as the gold 
standard to compute the similarity index (SI) for these parameters. This was repeated for several values of α, β, γ, 
μ, v, λ1, and λ2. Similar parameter-tuning experiments were then performed for images 2–20, each yielding a list 
of SI-parameter combinations. The parameters that gave the highest SI averaged over all parameter-tuning exper-
iments were chosen. We fixed the parameters for all experiments in our proposed method, as listed in Table 1.

Figure 6.  Box-plot of performance metric on the MICCAI dataset. The left column is left thalamus and the 
right column is right thalamus. (a) Similarity index (SI), higher values implying greater volumetric overlap 
with the manual segmentation, (b) Precision (P), (c) Recall (R), (d) Relative Overlap (RO) and (e) Hausdorff 
Distances (HD), lower values implying a surface closer to the manual segmentation.
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Experiments results
In this section, several experiments were conducted to evaluate the proposed method. Since our method aims to 
improve segmentation accuracy in two ways, by incorporating multiple registration method into the conventional 
multiple atlas-based methods and by taking the advantage of level set framework, it is worthwhile to evaluate the 
contributions from these two different methods. First, we compared the proposed multiple registration method to 
label fusion using a single registration method. Second, we compared the proposed method to five state-of-the-art 
automatic segmentation methods: STAPLE25, Spatial STAPLE26, Major Voting27, Weight Voting28, and SIMPLE29. 
We use MASI Label Fusion software tools (http://www.nitrc.org/projects/masi-fusion). There are no parameters 
in Major Voting and Weight Voting, so we obtain the fusion results directly. For STAPLE, Spatial STAPLE, and 
SIMPLE, we use leave-one-out parameter-tuning experiments to get the best results, and then compare these with 
our proposed method. The Matlab source code for the Multiple Atlases Level Set Framework (MALSF) can be 
downloaded at https://github.com/luzhentai/MALSF.2.0.

Data and Experiments set
Thirty-five real brain MRI images were downloaded from https://masi.vuse.vanderbilt.edu/. This web site 
provides the online continuation of a segmentation contest held at the 2013 Medical Image Computing and 
Computer Assisted Intervention Challenge (MICCAI). The dataset consists of a de-faced T1-weighted struc-
tural MRI and an associated manually labeled volume with one label per voxel. Each volume (MRI and label) 
will be stored in a separate 3D NiFTI file. The dimensions are 256 × 256 × 287, and the voxel dimensions are 
1 × 1 × 1 mm. We randomly select fifteen images as targets and twenty images as training images.

All MR volumes are corrected for intensity inhomogeneity using the N4 bias field correction algorithm30. The 
intensities are then linearly normalized to the range of 0 to 255. The formula for the normalization is: 

×−
−

255I I
I I

min

max min
, where Imin and Imax are the minimum and maximum intensity values in the volume, 

respectively.
To reduce computational burden, the segmentation is estimated only within the region of interest (ROI) sur-

rounding the left and right thalamus. We use a very fast and simple approach that utilizes the union of all expert 
labels in the training database as the ROI. In this way, we ensure that the structure is completely included in the 
ROI.

Quantitative evaluation of thalamus segmentation
To quantify the quality of our automatic segmentations, as well as of other state-of-the-art segmentation methods, 
we employed four widely used metrics, similarity index (SI), recall (R), relative overlap (RO), and precision (P), to 
measure the volumetric overlap of automatic segmentation with respect to the manual labels (i.e., ground truth). 
Moreover, we also measure the surface distance based on the Hausdorff distance (HD)28:

∩ ∩ ∩ ∩
∪

=
+

= = = =SI V A B
V A V B

P V A B
V B

R V A B
V A

RO V A B
V A B

HD H H2 ( )
( ) ( )

( )
( )

( )
( )

( )
( )

max( , )
(12)1 2

where V(A) denotes the volume of the ground-truth segmentation, V(B) denotes the volume of automatic seg-
mentation, = ∈ ∈H d a bmax (min ( , ))a A b B1 , = ∈ ∈H d a bmax (min ( , ))b B a A2 , and d(a, b) is the Euclidean distance 
between two points a and b.

Effect of using multiple registration method.  We performed segmentation on the MICCAI data using 
the following method:

LS-ANTS: our level set based fusion strategy that uses a single ANTS registration method
LS-DRAMMS: our level set based fusion strategy that uses a single DRAMMS registration method
Our: our level set based fusion strategy that uses multiple registration methods (ANTS and DRAMMS)

Figure 5 shows summary box-plots of the similarity index (SI) and Hausdorff distance (HD) versus the manual 
delineate for each segmentation method on the MICCAI dataset. In top row, the red line is the median SI of fifteen 
test images, with higher values implying greater volumetric overlap with the manual segmentation. In bottom 
row, the red line is median Hausdorff distance, with lower values implying a surface closer to the manual segmen-
tation. The results show that our method using multiple registrations methods is better than the one using a single 

Similarity Index (mean ± standard deviation)

Method Left Thalamus Right Thalamus

STAPLE 0.9106 ± 0.0224 0.9132 ± 0.0229

Spatial STAPLE 0.9109 ± 0.0218 0.9136 ± 0.0222

Major Voting 0.9118 ± 0.0205 0.9126 ± 0.0239

Weight Voting 0.9119 ± 0.0204 0.9128 ± 0.0237

SIMPLE 0.9100 ± 0.0225 0.9141 ± 0.0210

Our 0.9200 ± 0.0124 0.9239 ± 0.0100

Table 2.  The Similarity Index (SI) on the MICCAI dataset (mean ± standard deviation) for the various 
segmentation methods as compared with manual segmentations.

https://github.com/luzhentai/MALSF.2.0
https://masi.vuse.vanderbilt.edu/
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registration method. The use of the multiple registrations captures greater anatomical variability and improves 
robustness against occasional registration failures.

Effect of using the level set fusion method.  To compare our results with those of recent automatic 
segmentation methods reported in the literature, we performed segmentation on the MICCAI data using several 
state-of-the-art fusion algorithms: STAPLE25, Spatial STAPLE26, Major Voting27, Weight Voting28, and SIMPLE29.

Table 2 shows the mean values and standard deviations of the similarity index for the MICCAI data. The mean 
similarity index of our segmentation is 0.9200 for the left thalamus and 0.9239 for the right thalamus. The pro-
posed method clearly leads to a higher mean similarity index compared to the five other methods, which provide 
similar overlap scores separately. The volumes measured by our method are closer to the manual expert segmen-
tations than to the volumes measured by the five other methods. The results also show that there is no significant 
volume difference between segmented left and right thalamus.

Figure 6 shows summary box-plots of the similarity index (SI), precision (P), recall (R), relative overlap (RO), 
and Hausdorff distance (HD) versus the manual delineate for each segmentation method on the MICCAI data-
set. The results show that our method using the level set fusion strategy is better than the state-of-the-art fusion 
algorithms.

For visual comparison, we show in Fig. 7 the segmentation results of MICCAI image No.1006 by our method 
and five other methods, along with the manual segmentation. It can be observed that the thalamus segmented by 
our method is more similar to the ground-truth than any other method, e.g., STAPLE, Spatial STAPLE, Major 
Voting, Weight Voting, and SIMPLE. Particularly, in the region of the yellow arrow, the five other methods cannot 
locate the left and right thalamus. Our method can correct the registration errors, because the region-scalable 
fitting (RSF) model in the level set fusion framework can guide the motion of the contour toward the thalamus 
boundaries.

We also show in Fig. 8 the segmentation results of MICCAI image No.1025 by our method and five other 
methods along with the manual segmentation. It can be clearly seen that the proposed method can accurately 
delineate the thalamus boundaries, especially for the regions near the lateral ventricle. The SIMPLE method 
can correct the registration errors in left thalamus as shown by the blue arrow, but it cannot correct the errors in 
right thalamus as shown by the yellow arrow. In addition to showing the two-dimensional slice of segmentation 
results, we present a three-dimensional visual inspection of the experimental results. In Fig. 9, we show the results 
of STAPLE, Spatial STAPLE, Major Voting, Weight Voting, SIMPLE and the proposed method. The five other 

Figure 7.  The segmentation results of MICCAI image No. 1006 by our method and five other methods.  
(a) Our method, (b) STAPLE, (c) Spatial STAPLE, (d) Major Voting, (e) Weight Voting, (f) SIMPLE. Automatic 
segmentation results are illustrated in red contour, the manually-delineated thalamus boundary shown by the 
green contour.
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methods are able to perform reasonable segmentations, but our method is able to provide smooth and closed 
contours on the final segmentation.

Discussion
In this section important properties and possible alternative schemes of the proposed method are discussed. To 
the best of our knowledge, the proposed level set label fusion framework is new to the multi-atlas based segmen-
tation. Our level set fusion framework is flexible and can be integrated with other types of registration methods 
and image based term for the possible improvement of thalamus segmentation. The choice of registration method 
will influence the overall performance of the segmentation the thalamus. One reason to use ANTS and DRAMMS 
as the registration methods in this paper is due to their topology preserving characteristic. Another reason is that 
both calculate the local similarity of each voxel in the registration procedure, and we can use the local similarity 
as the local weight when fusing the propagated labels.

The region-scalability of the image based term RSF is due to the kernel function with a scale parameter, which 
allows the use of intensity information in regions at a controllable scale, from small neighborhoods to the entire 
domain. As a result, this method can segment images with low contrast.

Currently, our method is implemented with Matlab 2012a on an Intel(R) Core(TM) 2.93 GHz CPU, the aver-
age time for segmenting a new image was approximately 2 min. However, our algorithm can be optimized and 
implemented using C/C++ in the future for significant improvement of the segmentation speed. The program 
can be further improved by using parallel programming techniques to reduce the segmentation time.

Conclusion
The purpose of this work is to develop a new framework for the segmentation of the thalamus in magnetic res-
onance brain images. Segmentation of the thalamus is difficult and challenging because the structure bounda-
ries may be blurry or even missing, and the surrounding background is full of irrelevant edges. To tackle these 
problems, we propose a novel method for segmenting the thalamus that combines multiple registration methods 
and a level set fusion strategy. The multiple registration methods are implemented by registering multiple atlas 
images to the target image using ANTS and DRAMMS. The incorporation of the level set fusion strategy enables 
the method to segment a thalamus with poor image contrast and to increase the robustness against errors in the 
registration procedure.

Figure 8.  The segmentation results of MICCAI image No. 1025 by our method and five other methods. (a) 
Our method, (b) STAPLE, (c) Spatial STAPLE, (d) Major Voting, (e) Weight Voting, (f) SIMPLE. Automatic 
segmentation results are illustrated in red contour, the manually-delineated thalamus boundary shown by the 
green contour.
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Multi-atlas segmentation is strongly dependent on the accuracy of registration. Using multiple registration 
methods can combine the complementary advantages of the different registration methods and can effectively 
reduce the registration errors. In the level set framework, the image based term guides the level set evolves toward 
the desired boundary of thalamus, the fusion term fuses the propagated labels and the regularization term main-
tains a regular shape. The level set formulation takes into account both the image information and the regularity 
of the thalamus. It can fuse the labels and correct registration errors simultaneously.

The proposed method has been evaluated on a brain MR image database consisting of thirty-five patients and 
was further compared with several state-of-the-art brain MR segmentation algorithms using various evaluation 
metrics. Experimental results demonstrate that: 1) our multi-method outperforms label fusion using single regis-
tration method, and 2) the proposed method consistently achieves higher segmentation accuracy than any of the 
other methods under comparison.

If there is no correspondence between the target images and the atlas images, no label is propagated. This pre-
vents an incorrect label from being introduced into the estimation of the final segmentation. Thus, further work 
is needed to improve the robustness of this level set label fusion method to a large diversity of pathologies and 
anatomical structures, such as lesions or tumors and to use this technique to potentially detect these pathological 
patterns.
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