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Predicting the Reliability of Drug-
target Interaction Predictions with 
Maximum Coverage of Target Space
Antonio Peón  1,2,3,4, Stefan Naulaerts1,2,3,4 & Pedro J. Ballester1,2,3,4

Many computational methods to predict the macromolecular targets of small organic molecules have 
been presented to date. Despite progress, target prediction methods still have important limitations. 
For example, the most accurate methods implicitly restrict their predictions to a relatively small 
number of targets, are not systematically validated on drugs (whose targets are harder to predict than 
those of non-drug molecules) and often lack a reliability score associated with each predicted target. 
Here we present a systematic validation of ligand-centric target prediction methods on a set of clinical 
drugs. These methods exploit a knowledge-base covering 887,435 known ligand-target associations 
between 504,755 molecules and 4,167 targets. Based on this dataset, we provide a new estimate of 
the polypharmacology of drugs, which on average have 11.5 targets below IC50 10 µM. The average 
performance achieved across clinical drugs is remarkable (0.348 precision and 0.423 recall, with 
large drug-dependent variability), especially given the unusually large coverage of the target space. 
Furthermore, we show how a sparse ligand-target bioactivity matrix to retrospectively validate target 
prediction methods could underestimate prospective performance. Lastly, we present and validate a 
first-in-kind score capable of accurately predicting the reliability of target predictions.

Target deconvolution of phenotypic screening hits1 consists of identifying the macromolecular targets of small 
molecules exhibiting some kind of phenotypic activity (e.g. whole-cell activity)2. It is a prerequisite to gain mech-
anistic understanding of observable activity and has proven helpful for drug development3, 4. Indeed, the com-
bination of phenotypic screening with target deconvolution constitutes an attractive alternative strategy for the 
discovery of molecularly targeted therapies. However, reliable computational methods for target prediction, also 
known as target fishing or polypharmacology prediction5–9, are crucial for this application. Target prediction tools 
are also used to predict drug side-effects10 and drug repositioning opportunities9.

The need for target prediction methods is exacerbated by the resurgence of phenotypic drug discovery11–13, 
as this trend has boosted the availability of new hits whose phenotypic activities are still to be explained mech-
anistically. A landmark study3 has shown that, despite a more intense focus on target-based drug discovery, 
most first-in-class drug approvals come from phenotypic screens. This realisation has contributed to many more 
research projects using this type of screens (e.g. large-scale empirical screening projects on cancer cell lines14–18 
or pathogen cultures)19, 20. In turn, more phenotypic data has resulted in more accurate in silico models to predict 
new hits, whether this prediction is done from the chemical structure of molecules21–24 or more recently comple-
mented with molecular profiles characterising the system in which the phenotype was measured25–27. Moreover, 
webservers for prospective virtual screening, which implement methods able to identify purchasable molecules 
with the same phenotypes as their template28, are now freely-available29, 30.

Computational methods for target prediction can be classified into two broad categories7: target-centric 
and ligand-centric. Target-centric methods build a predictive model for each target, which is used to estimate 
whether the molecule of interest has activity against the target. Afterwards, this query molecule is evaluated 
by each of these models to provide its set of predicted targets. Each method adopts a particular model type: 
supervised learning (e.g. Naïve Bayes Classifier20, 31, TAMOSIC32, Kernel Classifiers)33, unsupervised learning 
(e.g. SEA34, SuperPred35, ChemProt-2.0)36 or structure-based (e.g. TarFisDock37, INVDOCK38, PharmMapper)39. 
On the other hand, ligand-centric methods are based on calculating the similarity of a very large number of 
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target-annotated molecules to the query molecule. This nomenclature is different from that employed by 
target-centric methods, where query and database molecules are generally referred to as test and training sets, 
respectively. There are fewer methods in the ligand-centric category and these are based on molecular similarity40 
(e.g., ChemMapper41, ElectroShape Polypharmacology server)42 or on the similarity of bioactivity spectra (e.g. 
COMPARE)18. It is worth noting that not all methods employing molecular similarity are ligand-centric. This is 
the case of TAMOSIC32, which learns the optimal similarity cut-off for each target with at least 30 cognate ligands, 
and SEA34, which only builds a statistical model for a target if it is characterised by at least five samples (ligands).

As discussed in a previous study7, we are interested in ligand-centric target prediction methods because they 
provide the maximum coverage of the target space for a given data set. This is an advantage over target-centric 
methods, which can only evaluate the much smaller set of targets for which a predictive model can be built. 
There is an implicit trade-off here: one can make target-centric methods more predictive by only considering 
targets with a higher number of cognate ligands at the cost of reducing the number of targets that the method can 
possibly predict. Another advantage of ligand-centric methods is that they naturally lend themselves to investi-
gate how performance depends on the considered query7. In that study7, we explained that prior validations for 
ligand-centric methods have resorted to using benchmarks borrowed from virtual screening, rather than actually 
building a benchmark suitable to measure performance at target prediction. To fulfil this unmet need, we con-
structed such a benchmark and thus could establish how the performance of ligand-centric methods depends 
on various factors. For example, predicting the targets of clinical drugs is far more challenging than predict-
ing the targets of non-drug molecules7. Here we aim instead at improving the performance of ligand-centric 
methods for target prediction using this recently-built benchmark. With this purpose, we will search for the 
most suitable molecular similarity technique among those freely-available and strongly increase the amount of 
data exploited by the method. Most importantly, we propose and validate a first-in-kind method to predict how 
reliable ligand-centric target predictions are. The latter is highly beneficial in practice, as focusing experimental 
confirmatory tests on the most reliable predictions will lead to much higher hit rates.

Results and Discussion
Experimental design. Figure 1 illustrates how the molecular targets of a query molecule are predicted with 
a ligand-centric target prediction method and how the performance of such a prediction is measured. In a nut-
shell, once the chemical structure fingerprint and associated similarity score is selected (see the Methods section), 
the similarity scores between the query molecule and each of the database molecules are calculated. Similarity 
scores are employed to identify the top k molecules closest to the query molecule (an approved drug out of the 
745 considered in this study). Next, target annotations are extracted from the ChEMBL database43 in order to 
determine the known targets for the query as well as those for the top k hits. The method uses the known targets 
for the top k hit molecules to predict the targets for the query molecule as well as estimate the reliability of each 
predicted target. Lastly, the known targets of the query molecule permit measuring the predictive performance of 
the target prediction method in this binary classification problem.

As usual, predicted targets for the query molecule will be divided into the four categories of the confusion 
matrix: TP is the number of true positive predictions (the predicted target is a known target of the query mole-
cule), TN is the number of true negatives (the target was not predicted and is not known to be a target), FP is the 
number of false positives (the predicted target is not known to be a target, i.e. a false discovery or Type I error) and 

Figure 1. Ligand-centric target prediction workflow. The selected molecular similarity method is used to find 
the top k most similar database molecules to the query molecule (vorinostat in this illustrative example). Known 
targets for the query and the top k hit molecules are retrieved from the ChEMBL database. A novel method is 
introduced to assign a reliability score for each query-target association prediction based on the proportion 
of the query’s top hits binding to the predicted target. Lastly, the known targets of the query molecule permit 
measuring the predictive performance of the method at each reliability level in this binary classification 
problem.
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FN is the number of false negatives (the target was not predicted and it is actually a target, i.e., missed discovery 
or Type II error). From these quantities, we will calculate five performance metrics per query molecule. Accuracy 
(ACC) is the proportion of correct predictions. Precision (PR) is the proportion of correctly predicted targets, i.e. 
how many of the predicted targets are known to be true targets of the query molecule. Recall (RC) accounts for 
the proportion of known true targets that the method has missed. The Matthews Correlation Coefficient (MCC) 
captures both types of error in a single metric, with higher values being better up to +1 (perfect classification). 
Lastly, the Number of Predicted Targets (NPT) will be also reported to investigate how this quantity varies with 
the method’s control parameter k. Average values across the performed queries will be labelled with the prefix 
“Av” in front of the metric (e.g. AvMCC). The Methods section further specifies how each of these metrics is cal-
culated from TP, TN, FP and FN.

Lastly, it is important to bear in mind that a false positive occurs when the predicted target is not known to be 
a target of the query molecule, which is not at all the same as not being a target of that molecule. This unavoidable 
uncertainty is due to ChEMBL bioactivity matrices being sparsely populated and its impact will be discussed later.

Expanding ligand-target knowledge-base. We have previously performed a critical assessment of the 
current performance of ligand-centric methods for target prediction based on a ligand-target knowledge-base7. 
We found out that the targets of approved drugs are generally much harder to predict than those for other types 
of molecules. As virtually all target prediction methods employ test sets that are not entirely formed by approved 
drugs, their performance on this important type of query molecules may be overestimated.

It is both possible and beneficial to expand this knowledge-base by relaxing the data inclusion criteria. For 
instance, Mugumbate and co-workers44 retrieved targets that were proteins and had a target confidence scores 
of at least 7. This is a score in ChEMBL that shows the level of confidence in the target assignment to the ligand 
(scores 7, 8 and 9 indicate direct assignment to protein complexes, homologous single protein and single protein, 
respectively). In addition, there are many ligand-target associations supported by threshold-like experimental 
values such as IC50 < 1 µM, which were missed in Peon et al.7 by only using the relation ‘=‘ in the query, but are 
logically better than 10 µM. Furthermore, we have observed that the functional assay type also contains bio-
activity data for molecular targets. Lastly, data from PubChem confirmatory assays were not included either 
(bioactivity type ‘Potency’). Briefly, in this study ligand-target associations are those ligand-target pairs passing 
the following filters: (i) the activity value was better than 10 µM using published relation “=” or “<”, (ii) the assay 
type was binding and functional, (iii) the bioactivity type was IC50, Ki, EC50, Kd or Potency and (iv) the target 
confidence score was at least 7.

These data inclusion criteria lead to 887,435 known ligand-target associations in the knowledge-base, with 
504,755 database molecules to screen annotated with 4,167 targets verifying the above requirements. This rep-
resents a substantial enhancement with respect to the knowledge-base used in our previous study7: 216% more 
ligand-target associations (from 281,270 to 887,435), 40% more targets (from 2,982 to 4,167) and 175% more 
database molecules (from 183,293 to 504,755). When applied to the set of query molecules (the 745 approved 
drugs), we passed from the 8.3 single-protein targets that were on average known for an approved drug7 to the 
new estimation of 11.5 molecular targets when adding interactions with homologous proteins and protein com-
plexes as well as more bioactivity data as explained above. An early estimate of the degree of drug polypharmacol-
ogy is an average of 6.3 targets per drug based on data containing 5,215 drug-target associations and 557 targets45. 
Owing to using a more complete data set comprising 8,535 drug-target associations and 1,427 targets, we have 
now a more accurate estimation of the average number of targets hitting a drug, which almost doubles the best 
possible estimate nine years ago. Taken together, the results indicate that the true degree of drug polypharmacol-
ogy is even higher than 11.5 targets per drug, as using more data should reveal in the future.

Lastly, while this study exploits the ChEMBL database to build and validate ligand-centric target prediction 
methods as well as their coupled reliability prediction method, any other database with target-annotated mole-
cules of known chemical structure can also be used with this purpose (e.g. PubChem BioAssay46, SureChEMBL47 
or BindingDB)48.

How target prediction performance varies with a new knowledge-base. We have previously eval-
uated the performance of a simple target prediction method, MACCS fingerprints using dice score with k = 10 
and a smaller knowledge-base, on a test set with 745 approved drugs7. Table 1 shows the corresponding results 
using the expanded knowledge-base allowing us to improve predictive performance. It is not trivial to anticipate 
how more data will affect the measured performance of the method because, among other unavoidable biases, 
drugs are more intensively studied than non-drug molecules7. However, the true performance of the method 
should improve as the target annotation of the database molecules becomes more comprehensive. The results of 
expanding the knowledge-base are shown in Table 1.

We can see that using the expanded knowledge-base translates to a substantial increase in the number of 
predicted targets (11.4 vs 7.9), which increases the usefulness of the method. In terms of predictive performance, 
we can observe that both correct and incorrect predictions increase (last four columns in Table 1), although the 

Method avNPT avACC avPR avRC avMCC avTN avFP avFN avTP

Peon et al.7 7.9 0.996 0.296 0.403 0.300 3016.8 5.9 6.3 2.0

This paper 11.4 0.996 0.311 0.384 0.305 4186.1 8.4 8.5 3.0

Table 1. Change in test set performance of the same ligand-centric target prediction method depending on the 
employed knowledge-base. The expanded knowledge-base can be found in the last row.
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overall performance given by avMCC is slightly better when the method uses more data (0.305 vs 0.300). We also 
repeated the calculation using the Tanimoto score instead of the Dice score and appreciate no difference between 
both sets of results. Thus, we decided to employ the more commonly used Tanimoto score for the rest of the study.

Benchmarking chemical similarity methods for ligand-centric target prediction. In this subsec-
tion, we investigate which is the optimal target prediction method by testing a suite of chemical structure finger-
prints in combination with the Tanimoto score. From now on, we exclusively use the expanded knowledge-base, 
as this provides the largest number of predicted targets (i.e. avNPT values).

We started by looking for the optimal value for the k parameter (the number of top hits whose database anno-
tation is used to predict targets). We considered k = 5,10,20,25 because at k = 25 the avMCC of the method has 
strongly declined (data no shown). As avNPT increases with growing k, we selected the lowest k for which avNPT 
is greater than avNKT (the average number of known targets across query molecules). If k was smaller than 10, 
avNPT < avNKT and thus the method would generally predict fewer targets that are known for the target. If k 
was higher, the performance would tend to be worse as target inferences would be drawn from increasingly less 
similar database molecules. Using the top 10 hits to predict targets provides the best compromise between these 
conflictive objectives on average across query molecules.

The results of these ligand-centric methods, all using k = 10, are shown in Table 2 and are sorted by descend-
ing avMCC value. The avACC values are close to the maximum value for all methods. As this is due to correctly 
classifying the very large number of true negatives, avACC is not very useful in practice. Based on the other 
metrics, methods employing Morgan fingerprints (ECFP-like) lead to better results than those with FeatMorgan 
fingerprints (FCFP-like), RDKit fingerprints (Daylight-like) or MACCS fingerprints (SMARTS-based implemen-
tation of the 166 public MACCS keys).

The method employing the Morgan hashed bit vector fingerprint with radius 2 and 2048 bits (Morgan_
hashed_bv_2_2048) obtains the best results (avMCC = 0.339). However, the difference between the best- and 
worst-performing method is rather small (avMCC 0.339 vs 0.305). The avRC is relatively low (0.423), although 
this is partly due to data completeness (e.g. top hits were not tested for the same targets as the query molecule). 
It is also important to note that a ligand-centric methods can exhibit a large variability in RC depending on the 
query molecule7. The avPR represents a large hit rate of 34.8%. More so if we take into account that a false positive 
occurs when the predicted target is not known to be a target of the query molecule, which is not at all the same 
as not being a target of that molecule (99.96% of all the possible ligand-target pairs in the knowledge-base do 
not have measured bioactivity values). Overall, these results are remarkable given that approved drugs are much 
harder to predict than non-drug query molecules7 and the unusually large coverage provided by this type of 
methods (4,167 targets).

Method avNPT avACC avPR avRC avMCC

Morgan_hashed_bv_2_2048 11.7 0.996 0.348 0.423 0.339

Morgan_hashed_bv_2_512 11.7 0.996 0.345 0.421 0.337

Morgan_hashed_bv_2_1024 11.6 0.996 0.345 0.42 0.336

Morgan_bv_2_2048 11.7 0.996 0.342 0.424 0.335

Morgan_hashed_bv_3_512 11.5 0.996 0.346 0.416 0.334

Morgan_hashed_bv_3_1024 11.7 0.996 0.344 0.417 0.334

FeatMorgan_bv_3_512 11.6 0.996 0.347 0.416 0.332

Morgan_bv_2_1024 11.6 0.996 0.341 0.42 0.332

FeatMorgan_bv_3_2048 11.6 0.996 0.345 0.416 0.332

Morgan_hashed_bv_3_2048 11.7 0.996 0.342 0.414 0.332

FeatMorgan_bv_2_2048 11.7 0.996 0.345 0.418 0.331

FeatMorgan_bv_3_1024 11.6 0.996 0.346 0.415 0.331

Morgan_bv_2_512 11.7 0.996 0.341 0.415 0.331

Morgan_bv_3_2048 11.5 0.996 0.343 0.413 0.331

Morgan_bv_3_512 11.5 0.996 0.34 0.412 0.329

FeatMorgan_bv_2_1024 11.7 0.996 0.343 0.414 0.329

Morgan_bv_3_1024 11.5 0.996 0.34 0.41 0.328

FeatMorgan_bv_2_512 11.8 0.996 0.342 0.415 0.328

RDKit_2_7_2048_2 11.8 0.996 0.34 0.4 0.323

RDKit_2_7_1024_1 11.7 0.996 0.336 0.396 0.319

RDKit_2_7_2048_3 11.9 0.996 0.333 0.395 0.318

RDKit_2_7_1024_2 11.5 0.996 0.331 0.392 0.316

MACCS keys 11.4 0.996 0.311 0.384 0.305

Table 2. Performance of the tested ligand-centric methods averaged over query molecules sorted by 
descending avMCC value. Each method is named after the employed fingerprint, as the remaining components 
are common to all methods.
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We also considered the alternative approach of using a similarity cutoff to determine the most similar database 
molecules with which to form the set of predicted targets for the query molecule (instead of using the top 10 most 
similar molecules). Table 3 shows the results for the best method in Table 2 (Morgan_hashed_bv_2_2048) using 
similarity cutoffs 90%, 80%, 70%, 60% and 50%. nNullQueries is the number of query molecules for which no hits 
are found (i.e. no database molecule obtains a similarity score higher than the employed cutoff and thus targets 
cannot be predicted for these drugs). In contrast, nQueries is the number of query molecules for which at least a 
hit is found (thus, performance is now averaged over nQueries). From these results, we can see that a 60% cutoff 
provides the best performance (avMCC = 0.338 leaving 69 drugs without predicted targets), which is slightly 
worse than that from using the top 10 most similar hits (avMCC = 0.339 leaving no drugs without predicted tar-
gets). Taking all these experiments into account, we use for the rest of the study the Morgan_hashed_bv_2_2048 
fingerprint along with the Tanimoto score based on the top 10 most similar hits to predict targets of a given query 
molecule.

Predicting the reliability of drug-target interaction predictions. We have thus far assessed the per-
formance of a panel of ligand-centric target prediction methods spanned by considering four molecular similarity 
techniques and their variants. In this section, we introduce and validate a score to estimate the reliability of a 
predicted target. Every predicted target is by construction a known target of l of the 10 most similar molecules to 
the query molecule, where l ranges from 1 to 10. Our hypothesis is that the likelihood of a predicted target being 
a true positive will be higher if a higher proportion of top hits bind that target. Thus, we define the reliability score 
L of a ligand-target interaction prediction as L = l/10 (L = 0.1 predictions will be assigned minimum reliability, 
whereas L = 1 predictions will be regarded as the most reliable).

Table 4 presents the results of investigating whether this hypothesis holds using the best method identified in 
the previous section (see Table 2). Once the queries were carried out, the resulting set of ligand-target interaction 
predictions was partitioned into 10 categories according to their reliability scores. As expected, the proportion of 
true positives is strongly correlated with the predicted reliability L, which demonstrates the practical importance 
of this score.

Next, we investigate which is the precision associated to a prediction depending on its reliability score. 
Figure 2 demonstrates that the average precision of predictions with a given L increases with the value of L. A 
large variability across query molecules is observed in the first seven groups of target predictions. From L = 0.8, 
this variability is strongly reduced, as it is increasingly harder to find false positives at those levels of reliability.

To the best of our knowledge, this is the first validated reliability score for ligand-centric target prediction 
methods and, as such, it is of great practical importance. Without acquiring further data, we can increase the 

Cutoff (%) nNullQueries nQueries avNHITS avNPT avMCC

90 347 398 2.22 5.07 0.243

80 258 487 4.13 5.69 0.295

70 151 594 9.51 8.06 0.333

60 69 676 21.03 11.66 0.338

50 30 715 54.82 21.43 0.323

Table 3. Performance of the best method in Table 2 (Tanimoto score on Morgan_hashed_bv_2_2048 
fingerprints) using now similarity cutoffs 90%, 80%, 70%, 60% and 50% instead of the top 10 hits. nNullQueries 
is the number of query molecules for which no hits are found. In contrast, nQueries is the number of query 
molecules for which at least a hit is found (thus performance is now averaged over nQueries). AvNHITS is the 
average number of database molecules with similarity scores above the cutoff. The 60% cutoff provides the best 
performance (avMCC = 0.338 leaving 69 drugs without predicted targets), which is slightly worse than that 
from using the top 10 most similar this (avMCC = 0.339 leaving no drugs without predicted targets).

L TP FP TP/FP %TP %FP

0.1 1,080 4,634 0.2 19% 81%

0.2 399 1,000 0.4 29% 71%

0.3 267 378 0.7 41% 59%

0.4 163 154 1.1 51% 49%

0.5 123 65 1.9 65% 35%

0.6 77 39 2.0 66% 34%

0.7 58 25 2.3 70% 30%

0.8 74 12 6.2 86% 14%

0.9 53 5 10.6 91% 9%

1.0 74 7 10.6 91% 9%

Table 4. True-positive and false-positive target predictions for the test set of 745 approved drugs grouped by 
the reliability score L. From L ≥ 0.4, TP is higher than FP. Importantly, %TP is strongly correlated with the 
reliability score L.
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hit rate of experimental validations by only testing the most reliable predictions. For instance, Fig. 2 shows that 
a target predicted with L = 0.4, i.e. 4 out of the 10 most similar molecules are annotated with this target, will be 
on average a true target of the query molecule 50% of the times. By contrast, L = 0.1 are only expected to obtain a 
hit rate of about 20%. Therefore, by prioritising L = 0.4 predictions over L = 0.1 predictions we should obtain 2.5 
times more true positives in confirmatory assays.

Table 5 quantifies the main results visualised in Fig. 2. For instance, there are 81 target predictions of type 
L = 1 in 70 of the 745 queries. Out of these 70 queries, there are only 5 approved drugs for which targets were 
predicted with zero precision. For the remaining 65 query drugs, L = 1 target predictions achieved perfect preci-
sion (PR = 1). Therefore, the average precision over the 70 queries containing L = 1 is 0.929. This means that the 
targets predicted for an approved drug with maximum reliability should be true targets in 92.9% of the cases. This 
represents a large improvement over the 34.8% hit rate that would be expected if a predicted target is selected for 
testing without using the reliability score (Table 2).

The results in Table 5 clearly show that the reliability score L, calculated without using the true targets known 
for the query molecule, is highly predictive of how well these true targets are predicted. In other words, the higher 
L is, the more likely the predicted target is to be a true target (i.e. higher MeanPR).

We cannot stress enough that all the predicted targets of a molecule are provided by the method and 
therefore any of the considered 4,167 targets can be returned. This is because chemical structure similarity of 
target-annotated molecules to the query molecule is the only factor that controls which targets are predicted for 
a given query molecule. In particular, the number of known ligands for a target does not have any influence on 
which targets are predicted.

Case studies. To better illustrate the strengths and limitations of this new method, we focus on the target 
predictions that are predicted to be most reliable (L = 1). From Table 5, we see that there are 81 targets predictions 
predicted with maximum reliability, of which 7 are flagged as possible false positives and 74 were confirmed as 
true positives.

These seven false-positive target predictions were made for five query drugs. The first of these drugs is 
Solifenacin succinate (CHEMBL1200803), which is the succinate salt of its first molecular hit (CHEMBL606901) 
and therefore both compounds should have the same targets. Three targets are annotated in all its hits, which 
are Rattus norvegicus Muscarinic acetylcholine receptors M1 (CHEMBL276), M2 (CHEMBL309) and M3 
(CHEMBL320). On the other hand, the targets of this drug are Homo sapiens Muscarinic acetylcholine receptors 
M1 (CHEMBL216), M2 (CHEMBL211) and M3 (CHEMBL245). Thus, it is very likely that the hits will also bind 

Figure 2. Boxplot showing how the precision of predicted targets varies depending on L (NB: l1 is l = 1 and 
corresponds to L = 0.1). The mean precision for a given L is marked with a blue line, whereas the median is 
given by a red line.

l L
N° query 
molecules

N° Drug- target 
predictions MeanPR MedianPR

1 0.1 662 5,714 0.191 0.1

2 0.2 514 1,399 0.309 0.0

3 0.3 362 645 0.417 0.0

4 0.4 228 317 0.505 0.5

5 0.5 142 188 0.641 1

6 0.6 95 116 0.626 1

7 0.7 65 83 0.714 1

8 0.8 77 86 0.857 1

9 0.9 49 58 0.898 1

10 1.0 70 81 0.929 1

Table 5. Performance results for the best method (quantification of results from Fig. 2). The mean and median 
values for precision (PR) are shown, as well as the number of query molecules with a given l value.
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the highly similar human homologues of these receptors (sequence identity ranging from 91.7% to 98.7%). In that 
case, these three predicted targets would become true targets of Solifenacin succinate.

Second, Neostigmine (CHEMBL278020) and its bromine salt (CHEMBL54126) are the query molecule and its 
first hit, respectively (again both compounds contain the same molecule and hence should have the same targets). 
Its top hits, but not Neostigmine, are all annotated to bind Homo sapiens acetylcholinesterase (CHEMBL220). 
Hence this is apparently a false-positive target prediction. However, Torpedo californica acetylcholinesterase 
(CHEMBL4780) is annotated as a target of Neostigmine and the mechanism of action of this clinically approved 
drug according to the CHEMBL database is “Acetylcholinesterase inhibitor”. Therefore, Neostigmine should also 
bind to the predicted target.

The next query drugs are Citalopram (CHEMBL1200781) and Escitalopram (CHEMBL1200322), which are 
the racemic form and its S enantiomer respectively. All the top hits of each of these drugs bind Rattus norvegicus 
Serotonin transporter (CHEMBL313). Visual inspection of both query molecules and their top hits revealed the 
very high degree of similarity between these, which indicates that the predicted target is very likely to be a true 
target of these two drugs. The latter is further supported by the binding of both drugs to human Serotonin trans-
porter (CHEMBL228), with the S enantiomer being more potent than the racemic mixture.

Taking all this into account, it is reasonable to think that these six apparent false positives will be revealed as 
true targets of their respective drugs once tested.

Next, we study the last of these L = 1 false positives in more detail. This is the prediction of Homo sapiens 
Carbonic anhydrase II (CHEMBL205) as a target of Busulfan (CHEMBL820). While the top 10 hits of Busulfan 
bind this enzyme (Fig. 3), Busulfan itself is not annotated as one of the ligands of this target. Busulfan is an 
alkylating agent used in cancer therapy that forms DNA-DNA intra-strand cross-links between the DNA bases 
guanine and adenine and between guanine and guanine through a SN2 reaction with mesylate groups -OSO2CH3 
as leaving groups49. Mesylate groups are not present in any of the top hits, which are much more similar among 
them than with Busulfan. Therefore, this seems to be a genuine false positive.

Having analysed L = 1 false-positive target predictions, we turn our attention to confirmed L = 1 true posi-
tives. Figure 4 shows a representative example of a L = 1 true-positive target prediction. This is for Bexarotene 
(CHEMBL1023), an antineoplastic agent indicated by the FDA for Cutaneous T cell lymphoma. We can see that 
the query molecule and its top 10 hits are close derivatives of the same core scaffold and hence are highly similar 
among them. Each of these hits binds the human Retinoid X receptor alpha (CHEMBL2061) and thus this target 
is predicted for Bexarotene with maximum reliability. Since Bexarotene is a Retinoid X receptor agonist, this is a 
true-positive target prediction.

Conclusion
We have introduced and rigorously tested a suite of ligand-centric methods for target prediction exploiting an 
unusually large knowledge-base (887,435 ligand-target pairs, 504,755 database molecules and 4167 macromo-
lecular targets). From here, we have verified that an approved drug has on average 11.5 known targets below 

Figure 3. The top 10 hits for the Busulfan query are shown ranked by similarity. The approved drug Busulfan 
(ChEMBL820) is an alkylating agent. All these hits bind to the predicted target, Carbonic anhydrase 2 (target 
CHEMBL205), and hence this is a L = 1 target prediction. Since Carbonic anhydrase 2 is not a known target 
of Busulfan, this is one of the seven L = 1 false positives. This seems to be a genuine false positive due to the 
relatively low similarity of the hits to the query molecule (56.5–31.5%).
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10 µM. This represents a substantially higher degree of drug polypharmacology than what is obtained using sub-
stantially less data7, 45.

We also found that the target prediction methods using the 10 most similar molecules to the query based on 
the Morgan hashed bit vector fingerprint radius 2 and 2048 bits provides the best results. However, the differ-
ence between the best- and worst-performing method is rather small. While the average recall across queries 
of this method is relatively low (0.423), its achieved average precision represents a large hit rate of 34.8% with 
11.7 predicted targets per query. This is a remarkable performance taking into account that approved drugs are 
much harder to predict than non-drug query molecules7 and the unusually large coverage provided by this type 
of methods (4,167 targets). Having said this, it is possible that other types of molecular similarity lead to more 
accurate target prediction methods or at least to complementary methods predicting targets missed by those 
presented in this study. For example, the drug discovery process often generates a large number of molecules with 
a common active chemical scaffold in order to determine the structure-activity relationship. These derivatives of 
the active scaffold are not necessary similar in terms of global molecular similarity. Therefore, partial molecular 

Figure 4. Chemical structures of the 10 most similar database molecules to Bexarotene. This is a L = 1 true 
positive prediction as these molecules bind the predicted target (Retinoid X receptor alpha).
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similarity with a clinical drug as query may be able to identify targets annotated in such derivatives, but missed by 
ligand-centric target prediction based on global molecular similarity.

Most importantly, we have introduced and validated a first-in-kind method to predict the reliability of 
ligand-centric target predictions. Without exploiting further data, we can increase the hit rate of experimental 
validations by only testing the most reliable predictions. In particular, we have estimated that the targets predicted 
for an approved drug with maximum reliability should be true targets in 92.9% of the cases. This represents a large 
improvement over the 34.8% hit rate that would be expected if the reliability score is not used. This validation 
shows that the reliability score L can be employed as the probability of the target prediction being correct.

We have also investigated why 7 of the 81 targets predictions estimated to be predicted with maximum reli-
ability (L = 1) are flagged as possible false positives. These 7 L = 1 false-positive target predictions are for five 
query drugs: Solifenacin, Citalopram, Escitalopram, Neostigmine and Busulfan. Solifenacin, Citalopram and 
Escitalopram are annotated with the human homologue of the predicted target, whereas the hits are annotated 
with the murine homologue of that target. Conversely, a homologue of the Neostigmine’s L = 1 predicted target is 
known to be a target of this drug. Owing to the high sequence identity between these sets of homologue proteins, 
it is highly likely that these six apparent false positives will become targets of their respective drugs once tested. By 
contrast, the seventh false positive seems genuine, as the query drug Busulfan has relatively low similarity to its 
top hits, much more similar among them. On the other hand, the remaining 74 drug-target associations predicted 
with L = 1 were confirmed as true positives. We discussed Bexarotene as a representative example of such L = 1 
true-positive target predictions, which are characterised by the very high molecular similarity between these 
query molecules and their corresponding top 10 hits.

In practice, the performance of the method should be actually higher due to the ligand-target bioactivity 
matrix being sparsely populated (only 0.04% of all the possible ligand-target pairs in the knowledge-base have 
at least a bioactivity value associated). Indeed, a false positive occurs when the predicted target is not known to 
be a target of the query molecule, which is not at all the same as not being a target of that molecule. Data sparsity 
negatively affects the precision of the method in cases where the predicted target is a true target of the drug, but 
no bioactivity value is available for this drug-target pair. Data sparsity negatively affects the recall of the method 
when a known target of the query drug is not predicted because the bioactivity of its top hits for that target has 
not been determined yet. Consequently, the reported performance must be regarded as a worst-case scenario and 
thus we conclude that this method should work better in prospective validations than here estimated.

Methods
Data provenance. We downloaded release 20 of the ChEMBL database43 as a PostgreSQL dump, which 
contains data for 10,774 targets, 1,456,020 ligand molecules with disclosed chemical structure and 13,520,737 
bioactivities curated from 59,610 scientific publications. Relevant data was retrieved using PostgreSQL 9.4.3 que-
ries and all further processing was done with Python 2.7.9. As usual, single-atom fragments were removed and 
the largest molecular fragment of each compound in a salt form was kept. Next, we generated two separated tables 
from this data set, one for the query molecules and another for database molecules, each with their canonical 
SMILES, ChEMBL IDs and annotated targets.

Definitions of target and known ligand-target association. As discussed in the subsection 
“Expanding ligand-target knowledge-base”, a more inclusive definition of known ligand-target association than 
previously used7 was employed here. Specifically, the following filters were applied to identify known ligand-target 
associations from the downloaded data: (i) the activity value for the ligand-target pair had to be better than 10 µM 
using relations “=” or “<” (for target-ligand pairs with multiple activity values, the lower value was used), (ii) the 
assay type was either binding or functional, (iii) the bioactivity type was IC50, Ki, EC50, Kd or Potency (Potency 
comprises IC50, EC50, AC50, GI50 or Ki presented in PubChem46 repositories and marked up as an active concen-
tration from a confirmatory assay) and (iv) the target confidence score was at least 7. The latter means that only 
molecular targets were considered, i.e. those with direct protein complex subunits assigned, homologous single 
protein target assigned and direct single protein target assigned (confidence score 7, 8 and 9, respectively).

Generating data sets for the benchmark. These data sets are derived from the expanded 
knowledge-base. To study how method performance changes with the definitions of known targets, we focused 
on the same 745 approved drugs that were used as query molecules (test set) in a previous study7. These molecules 
collectively contain 1,427 targets spanning 8,535 drug-targets pairs.

The database molecules (training set) were formed by all the molecules passing the filters above except for the 
745 drugs, which were removed to avoid any overlap between query and database molecules. After filtering, there 
were 504,755 database molecules with a total of 4,167 known targets coming from 887,435 known ligand-target 
associations.

Tested target prediction methods. Each ligand-centric target prediction method differently measures 
the similarity of the query molecule to a very large set of target-annotated molecules (the database molecules). 
Such similarity is defined by the adopted description of the chemical structure of each molecule (the fingerprint). 
The fingerprints available at RDKit (http://www.rdkit.org/) were used as the basis of this similarity calculation: 
Morgan fingerprints and FeatMorgan fingerprints50 (ECFP- and FCFP-like fingerprints, respectively) with differ-
ent radius (2 and 3) and encoding lengths (512, 1024 and 2048 bits); HashedMorgan fingerprint with 2048 bits 
and radius 2; RDKit fingerprints with minimum and maximum numbers of bonds (2 and 7, respectively) using 
1024 and 2048 bits and number of bits per hash 1, 2 or 3; and MACCS keys.

Tanimoto score was used to measure the similarity between these fingerprints:

http://www.rdkit.org/
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=
+ +

Tc c
a b c( ) (1)

where a and b are the number of ON bits of the molecular fingerprints A and B, and c is the number of bits in 
common between both fingerprints. The Dice score was also used to compare in a prior method7:

=
+

Dice c
a b

2
( ) (2)

In terms of efficiency, predicting the targets of a query molecule exploiting this knowledge-base of 887,435 
ligand-target associations takes about 30 seconds using a single CPU core. We could therefore comfortably cal-
culate target predictions for our test set of 745 query molecules in this way and thus we were not required to 
implement parallel computation to enable the use of multiple CPU cores.

Measuring classification performance. The performance of each method was evaluated with the follow-
ing metrics: accuracy (ACC), precision (PR), recall (RC), Matthews Correlation Coefficient (MCC) the Number 
of Predicted Targets (NPT). These metrics were introduced in the subsection “Experimental design”. Here we state 
their expressions:

=
+

+ + +
ACC TP TN

TP FP TN FN
( )

( ) (3)

=
+

PR TP
TP FP( ) (4)

=
+

RC TP
TP FN( ) (5)

=
× − ×

+ + + +
MCC TP TN FP FN

TP FP TP FN TN FP TN FN
( )

(( )( )( )( ) (6)

= +NPT TP FP (7)

Data availability statement. The data used for this study is freely available at https://www.ebi.ac.uk/
chembl/.
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