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Immune regulation by oral 
tolerance induces alternate 
activation of macrophages 
and reduces markers of plaque 
destabilization in Apobtm2Sgy/
Ldlrtm1Her/J mice
Lakshmi Narasimha Thota1, Thiruvelselvan Ponnusamy1, Sheena Philip2, Xinjie Lu3 &  
Lakshmi Mundkur   2

Atherosclerosis is the leading cause for cardiovascular mortality. We determined the effect of multi-
antigenic construct expressing three peptides AHC (ApoB100, HSP60 and outer membrane protein 
of chlamydia pneumonia) in stabilizing advanced atherosclerosis in Apobtm2Sgy/Ldlrtm1Her/J mice. 
Atherosclerosis was induced by feeding high fat diet (HFD) to mice for 10 weeks, followed by five 
oral dosing with purified AHC or ovalbumin on alternate days and continued on HFD for another 10 
weeks. Tolerance was associated with significantly higher numbers of regulatory T cells both in aortic 
sinus and spleen with higher mRNA expression of CTLA4 (3 fold), Foxp3 (1.4 folds) and TGF-β (1.62) in 
aorta. Tregs cells were found to induce alternate activation of macrophages to M2 phenotype, with a 
reduction in plaque inflammation. AHC treatment showed evidence of plaque stabilization as observed 
by reduction in plaque necrosis in aortic sinus (35.8%) and in brachiocephalic artery (26%), with reduced 
expression of Tissue factor and MMP9. Macrophage apoptosis was reduced and collagen content was 
enhanced by treatment. Our results suggest that tolerance to atherogenic peptides increases regulatory 
T cells which activate M2 macrophages, prevent T cell proliferation and reduce plaque destabilization 
and inflammatory markers thus providing evidences for plaque stabilization in mice with advanced 
atherosclerosis.

Atherosclerosis, the leading cause for cardiovascular diseases is a chronic inflammatory disease with systemic 
autoimmune etiology1–3. Progressive growth of atherosclerotic plaque obstructs the blood flow in the arteries 
either by constricting the lumen or by formation of thrombus, resulting in a clinical disease manifested as coro-
nary artery disease, stroke or the peripheral arterial diseases4. The disease pathogenesis involves retention of lipo-
proteins inducing a recruitment of immune- inflammatory cells, foam cell formation, apoptosis and necrosis5–7. 
Plaques may remain asymptomatic in a subclinical disease, they may get obstructive as in stable angina or rupture 
causing acute coronary syndrome (ACS)8, which is the most overwhelming cause of mortality worldwide9,10.

Several research groups have shown that immune modulation by restoring tolerance to self antigens is a prom-
ising therapeutic model for atherosclerosis11–18. Oral administration of antigen induces immune tolerance and 
provides a potential for treating autoimmune and inflammatory diseases19–21. Although studies on immune mod-
ulation have been successful in reducing the plaque burden in animal models, its effect on advanced atheroscle-
rosis has not been studied in great detail22–24. Recent advances in the understanding of molecular basis of plaque 
progression has helped us to define the markers related to plaque instability25. The pathophysiology of vulnerable 
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plaque or thin-cap fibro-atheroma (TCFA) includes disturbances in cellular processes such as growth/differenti-
ation, apoptosis, fibrinogenesis, synthesis of extracellular matrix (ECM) and collagen interface26,27. Lower levels 
of collagen in the intimal layer, defective efferocytosis, accumulation of inflammation in the plaque, macrophage 
death, necrosis and degradation of extracellular matrix increase the chances of a plaque to rupture28.

Earlier studies from our lab has shown that a multi antigenic construct expressing peptide epitopes from 
apolipoprotein (ApoB), Heat shock protein (HSP60) and Chlamydia pneumonia outer membrane protein (AHC) 
induces a tolerogenic immune response and reduces the plaque development in mice as well as rabbits18,29,30. In 
the present study, we wanted to understand the curative effect of oral tolerance to AHC protein on stabilizing the 
makers related to plaque destabilization in the double knock out (Apobtm25gyLDLrtm1Her) mice model.

Results
AHC mediated protection in mice with established disease is associated with regulatory 
immune response.  We have earlier shown that oral tolerance increases the number of regulatory T cells 
in the aorta as well as spleen of animals when the treatment is given before disease initiation. To understand if 
the mechanism is active in mice with established atherosclerotic lesions we examined the presence of regulatory 
T cells (CD4+FOXP3 positive cells) in the aortic sinus by immunohistochemistry. The percentage of regulatory 
cells in the aortic sinus was significantly (p = 0.04) higher in the treated group (2.16 ± 0.15%) when compared 
to control group (1.74 ± 0.09%) (Fig. 1A). In corroboration with these results oral immune treatment by AHC 
resulted in 3 fold increases in relative mRNA expressions of CTLA4, 1.4 folds for Foxp3 and 1.62 folds for TGF-β 
suggesting the dominance of Treg cells in aorta of treated animals (Fig. 1B). Any Immune based therapy to disease 
could influence the changes in T cell sub population of peripheral lymphoid system. Therefore we examined the 
changes in Th1, Th17 and Treg cell populations in the spleen. AHC treatment did not shown significant changes 
in the percentage of Th1 and Th17 cells as seen by IFN-γ positive CD4+ cells and IL-17 positive CD4+ in the 
spleen. In contrast, CD4+ CD25+ Foxp3+ cells were significantly higher in number in treated group compared 
to control (2.94 ± 0.35% vs 1.04 ± 0.11%, p = 0.02) (Fig. 1C). We observed a significant (p = 0.007) reduction in 
proliferation of splenocytes to the ApoB peptide in treated group and non significant reduction to HSP60 and 
comparable proliferation to Cpn peptide and concanavalin-A (conA) (Fig. 1D). The regulatory cells purified from 
AHC treated spleen could suppress the proliferation of AHC specific effector T cells in the presence of all three 
individual peptides (APOB, HSP60 and Cpn) but this suppression was not statistically significant (Fig. 1E).

Effect on disease progression upon oral administration of AHC in established disease.  To 
understand if the relative increase in Treg cells can also protect the animals against progression of atherosclerosis 
we then examined the quantity and quality of plaque in the aortic sinus. The experimental design for this study is 
given in Fig. 2A. The base line group of high fat diet fed mice showed 24.5% plaque deposition before the start of 
treatment (Fig. 2B). Oral administration of AHC molecule was found to significantly reduce (P = 0.001) plaque 
necrosis by 35.8% (10.5% ± 0.55 vs 16.48% ± 1.17) as quantified by total acellular area in hematoxylin and eosin 
(H&E) stained aortic sinus in comparison with control group, although the total lesion area was comparable in 
both control (60.8 ± 2.5%) and treated (57.46 ± 2.56%) animals (Fig. 2C). The brachiocephalic artery of treated 
animals showed a significant decrease in lesion area by 28% (39.5 ± 0.78% vs 54.4 ± 1.17%, p = 0.0005) as well 
as necrosis by 26% (17.5 ± 2.53% vs 23.5 ± 2.23%, p = 0.02) in comparison to control group (Fig. 2D). Further 
the morphometric analysis on aortic sinus also shown less number of breaks in the cap of atheroma by AHC oral 
treatment compared to control (Fig. 2E).

Effect of multi-antigenic AHC treatment on decreased plaque instability markers.  The rupture 
of vulnerable plaque leads to the acute phase coronary thrombosis and causes myocardial infractions and sudden 
cardiac death. To understand the effect of multi-antigenic construct in stabilizing the plaque we examined the 
expression of known markers of plaque instability in aortic sinus. Tissue factor (TF) is a cofactor involved in acti-
vation of the coagulation pathway which can lead to the formation of thrombus. The percentage of tissue factor 
(TF) expression in aortic sinus as studied by immunohistochemistry, was significantly lesser in comparison with 
control (0.61 ± 0.03% v/s 0.93 ± 0.04%, p = 0.0001) (Fig. 3A). Matrix metallo proteinase 9 (MMP9) is one of the 
major reason for plaque instability as they digest the collagen in intimal layers. AHC treatment resulted in signif-
icantly lowering the levels of MMP9 in relation to the control group (0.69 ± 0.08% v/s 1.19 ± 0.110%, p = 0.0009) 
(Fig. 3A). In corroboration with lower MMP9 the collagen content was found to be higher (p = 0.002) in the 
treated sinus (67.19 ± 2.71%) when compared to control group (52.2 ± 1.86%) (Fig. 3B).

AHC treatment decreases macrophage apoptosis.  Plaque necrosis is mainly contributed by apoptosis 
of macrophages and smooth muscle cells. We observed significantly lower TUNEL positive area in treated group 
when compared to control group (0.27 ± 0.10% v/s 0.71 ± 0.08%, p = 0.017) suggesting that the decreased acellu-
lar area observed in the plaque could be due to reduction in apoptosis (Fig. 4A). We co stained macrophages with 
activated caspase3 to understand the nature of the cells which are undergoing apoptosis. The overall macrophage 
infiltration to the plaque area was significantly lower for AHC treated group (0.40 ± 0.01% vs 0.57 ± 0.04%, 
p = 0.005). Macrophage apoptosis was significantly lower than the control group (0.63 ± 0.27% v/s 1.49 ± 0.11%, 
p = 0.02) (Fig. 4B).

Possible mechanism of Tregs mediated reduction in plaque instability.  Our results suggest that oral 
administration of AHC molecule increases Tregs cells in the plaque which is a key regulator of inflammation. 
While characterizing the gene expression of different inflammatory mediators in the plaque to understand the 
possible mechanism of this protection, we found a 2.3 fold increase in arginase1 expression, which is known to be 
marker of anti-inflammatory macrophages while the relatively 1.6 folds lower expression of arginase2 which is a 
marker of inflammatory macrophages (Fig. 5A). These results led us to speculate if the Tregs could have a role in 
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Figure 1.  Oral administration of AHC in established disease could induce the tolerance. (A) Representative 
photomicrograph showing immunofluorescence staining of aortic sinus sections with CD4 and Foxp3 and 
co-localised for CD4+FoxP3+. Percentage of CD4, FoxP3 and CD4+FoxP3+ positive area from not less than 
18 sections for each group (n = 6). The scale bar represents 200 µm. (B) mRNA levels of CTLA4, Foxp3, TGF-
β, Arginase1 and Arginase2 in the ascending aorta were quantified using RT-PCR analysis and normalized 
with GAPDH. Fold changes in expression of the AHC immunized mice relative to control mice are shown, 
n = 6 per group. (C) Flow cytometry analysis of splenic lymphocytes from AHC immunized in hyperlipidemic 
conditioned mice group and control mice at the end of the experiment. The graph represents percentage of 
CD25+ Foxp3+ cells within the CD4 population in spleen, and expression of Th1 as seen by IFNγ and Th17 as 
seen by IL-17 within the CD4 population, n = 6 per group. (D) Proliferation of spleen cells in treated mice as 
proliferation index was represented as the percentage BrDU reduction in culture stimulated with ApoB, HSp60, 
Cpn or Concanavalin A (10 ug/ml) relative to control group. *p < 0.05. (E) Splenic effector cells were generated 
from Apob−/LdlR− mice immunized subcutaneously with the peptides. Addition of purified Tregcells from 
oral tolerant mice and control mice to effector cells. Proliferation of effector cells in treated mice as proliferation 
index was represented as the percentage CFSE reduction in culture stimulated with ApoB, HSp60 or Cpn 
relative to control group. *p < 0.05.
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alternate activation of macrophages or change the expression of pro/anti inflammatory markers in the plaque. To 
understand the role of immune regulation of macrophages, we purified CD4+CD25+cells and CD4+CD25− cells 
from AHC treated mice and co-cultured them with CD11b+ monocytes isolated from normal mice. We found 
an increase in expression of markers related to M2 macrophage phenotype in the presence of CD4+CD25+cells 

Figure 2.  Oral administration of AHC in established disease could maintain the Plaque stability. (A) 
Experimental design. Groups of 6 mice (5–6 weeks, 3M + 3F) were given a diet rich in cholesterol (HFD) for 
10 weeks to induce atherosclerosis. Orally dosed with 1 ug of purified recombinant multi antigenic molecule 
(AHC) for 5 days on alternate days after 10 weeks of HFD. HFD was continued for another 10 weeks. (B) 
Representative photomicrographs of baseline aortic sinus (10 week HFD) aortic sinus plaque area stained with 
Elastica van Gieson (EVG) stain. Lesion area was 24.5% in total area. (C) Representative photomicrographs 
of aortic sinus plaque area stained with Elastica van Gieson (EVG) stain and hematoxylin and eosin (H&E) 
(left panels). The hearts were sectioned at the end of the study. The percentages of plaque area in total aortic 
sinus and necrotic core area were measured and quantified (right panel)from not less than 36 sections from 
each group. Triangles point to the acellular necrotic core area: p < 0.001. The scale bar represents 200 µm. (D) 
Representative photomicrographs of aortic sinus plaque area stained with hematoxylin and eosin (H&E). (E) 
Representative photomicrographs of 10X zoomed aortic sinus plaque stained with Elastica van Gieson (EVG). 
Arrows show the thinning and breaks in the cap of plaque.



www.nature.com/scientificreports/

5SCIeNTIfIC REPOrTs | 7: 3997 | DOI:10.1038/s41598-017-04183-w

compared to CD4+CD25− cells as determined by the relative higher expression levels of arginase1 (1.1 folds), 
IL-10 (1.43 folds) and TGF-β (1.45 folds) while lower expression of IL-23 (1.4 folds), iNOS (1.2 folds) and TNF-α 
(2.3 folds) which are predominantly expressed by inflammatory M1 macrophages (Fig. 5B).

Discussion
In this study we show alteration of lesion phenotype by oral administration of a multi-antigenic molecule-AHC as 
a therapy for established atherosclerotic disease in a double knockout mice model (Apobtm25gy Ldlrtm1Her). Several 
Studies have shown the protection against atherosclerosis by modulating the immune system using ApoB and 
HSP60 peptides in early stages of the disease but a curative effect of immune modulation has not been studied so 
far11–18.

We have earlier established that oral treatment with the multi-antigenic construct AHC induces immune tol-
erance and prevents disease development in both mice and rabbit18,30. In the present study, we wanted to under-
stand if tolerance can be induced in animals who have already developed the disease and therefore examined the 
number and functions of Treg cells in treated and control animals in mice with established atherosclerosis. The 
number of Tregs in spleen as seen by CD4+CD25+FoxP3 positive cells were significantly higher in the treated 

Figure 3.  Oral administration of AHC reduces the expression of Plaque rupture markers inturn increases 
collagen. (A) Representative photomicrograph showing immunofluorescence staining of aortic sinus sections 
with Tissue Factor (TF) and MMP9 (left panel). Percentage of TF (p = 0.001) and MMP9 (p = 0.009) -positive 
area from not less than 18 sections for each group (n = 6) were measured using Image Pro Plus software and 
shown in bar graph (right panel). The scale bar represents 100 µm. (B) Representative photomicrographs of 
aortic sinus plaque area stained with picrosirius stain for collagen (left panels). The images were captured by 
polarizing microscopy. The percentages of collagen positive area in total aortic sinus was measured by Image-
Pro Plus software (right panel); p = 0.037.
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animals at the end of the 22 weeks. These Tregs could prevent the proliferation of effector T cells in the presence 
of peptides when compared to control group. The regulatory T cells were also found to infiltrate into the aorta to 
mediate their anti inflammatory response. Although oral administration increased the number of Tregs in aorta 
as well as secondary lymphoid organs, it was not effective in reducing the growth of plaque in the aortic sinus. 
This is in contrast to our earlier observations on plaque reduction by oral tolerance in young animals18. In the 
present study, we allowed the animals to develop atherosclerosis for 10 weeks, which resulted in almost 25% of 
the sinus covered with plaque before inducing immune tolerance. Immune regulation induced by tolerance was 
probably not sufficient to counterbalance the overwhelming inflammation which had already set in by the time 
the treatment was initiated. Another important observation was a significant reduction in plaque area in the 

Figure 4.  Oral administration of AHC to established disease reduces macrophage-mediated apoptosis. (A) 
Representative photomicrograph showing immunofluorescence staining of aortic sinus sections with TUNEL. 
Percentage of TUNEL -positive area from not less than 18 sections for each group (n = 6) were measured using 
Image Pro Plus software and shown in bar graph (right panel). The scale bar represents 200 µm. p = 0.017. (B) 
Representative photomicrograph showing immunofluorescence staining of aortic sinus sections with CD68 
and activated caspase3 (red). Percentage of CD68 (P = 0.05), activated caspase3 and caspase3 positive CD68 
co-localised area (P = 0.02) from not less than 18sections for each group (n = 6) were measured using Image Pro 
Plus software and expressed (right panel). The scale bar represents 200 µm.
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innominate or the brachiocephalic artery (BCA) in the treated animals. In mice, atherosclerotic lesions initiate 
first in the aortic sinus followed by BCA and then in the thoracic and abdominal aorta31,32. Lesions at different 
locations are reported to show variable sensitivity to manipulations as the lesion age is different at each site33. In 
two independent studies on the effect of liver X receptor agonist, for atherosclerosis progression, sampling after 
2 months showed an anti atherosclerotic effect in aortic sinus, while it was observed only in innominate artery 
and not in aortic sinus after 3 months34,35. It is possible that lesions in the aortic sinus become too progressive to 
be affected by any treatment, while innominate artery lesions, which are initiated later, could be more sensitive 
to the manipulation, especially when sampled at late atherosclerosis32. We observed that the morphology of the 
plaque was very different in the treated animals and showed significant reduction in markers associated with 
plaque destabilization. Lesser number of breaks in the fibrous cap of the plaque was also indicative of stability due 
to AHC treatment.

Figure 5.  Oral administration of AHC polarizes the macrophages into M2 phenotype. (A) mRNA levels of 
Arginase1 and Arginase2 in the ascending aorta were quantified using RT-PCR analysis and normalized with 
GAPDH. Fold changes in expression of the AHC immunized mice relative to control mice are shown, n = 6 
per group. (B) mRNA levels of IL-23, Inos, TNF-α, Arginase1, IL-10 and TGF-β monocytes co cultured with 
CD4+CD25+ Tregs and CD4+CD25− T effector cells from AHC treated animals were quantified using RT-PCR 
analysis and normalized with GAPDH. Fold changes in expression of the CD4+CD25+ cultured cells relative to 
CD4+CD25− are shown, n = 6 per group. (C) Flow cytometry dot plot of purified CD11b+ cells from healthy 
animals using CD11b+ microbeads (Miltenyi Biotech) (Right panel). (D) Flow cytometry dot plots of Treg cells 
(CD4+ CD25+) purified from AHC treated animals using regulatory T Cell Isolation Kit (Miltenyi Biotech). 
The purified cells were labeled with Foxp3 (right panel).
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The role of regulatory T cells controlling immune response in atherosclerosis has been shown by several stud-
ies in mice36–38. But the molecular mechanisms by which these cells mediate a protective role are still not com-
pletely understood. Some of the mechanisms by which Tregs exert their protective effect are thought to be due to 
suppression of inflammatory T effector cells39 mediated through anti inflammatory cytokines40 by inhibiting den-
dritic cell maturation41 and by suppressing MCP-1 expression and monocyte recruitment into plaque42. Recent 
studies have also revealed a role of Tregs in cholesterol metabolism and reduction in circulating lipid levels42,43.

To understand the mechanism of protection induced by AHC oral immunotherapy, we studied the mac-
rophage polarization. Accumulation of cholesterol filled macrophages and their balance in the plaque is dynamic 
and that both macrophage numbers and the inflammatory phenotype influence the fate of the plaque44. M1 mac-
rophages express genes, which are pro-inflammatory and cytotoxic including inducible nitric oxide synthase 
(iNOS), IL-12, IL-23, TNF-α, class II MHC, and the chemokines IL-8 and CCL2, participating in killing intra-
cellular parasites and tumor development whereas anti-inflammatory M2 macrophages produce cytokines and 
substances involved in repairing function, typically arginase/ornithine, EGF, VEGF, and TGF-β, IL-10, IL-4 and 
mannose receptor45–48. Co culture of Tregs with monocytes was earlier shown to reduce foam cell formation49. 
We observed an alternate activation of monocytes induced by the regulatory T cells purified from AHC treated 
animals, suggesting that one of the anti inflammatory activities of Tregs could be mediated by the conversion of 
M1 to M2 macrophages. Treg and monocyte coculture from healthy individuals was earlier shown to induce a M2 
phenotype in monocytes50.

M2 macrophages promote tissue remodeling, angiogenensis and immune regulation51. Deleterious effects of 
M1 macrophages are likely to be counterbalanced by the anti inflammatory activity of M2 macrophages as M1 
mcrophages are predominantly found in vulnerable shoulder regions of the lesions52 whereas both M1 and M2 
macrophages are seen in fibrous cap53,54. Metalloproteinases co localize with M1 macrophage markers in human 
atherosclerotic lesions while plaque regression correlates with M2 activation55,56 suggesting that plaque instability 
might be a consequence M1 and M2 imbalance57. Our results further support these hypothesis as we show that 
oral tolerance to atherogenic antigens induces antigen specific Tregs which reduce plaque inflammation by induc-
ing a macrophage polarization to M2 phenotype, reducing matrix metalloproteases, macrophage apoptosis and 
reducing markers associated with plaque instability.

Our study suggests that immune modulation is an effective option to reduce inflammation in advanced ather-
osclerosis. Although this therapy may not drastically reduce the plaque development it can induce a more stable 
plaque. We had earlier reported a reduction in progression of disease in rabbits, wherein at the time of treatment 
12% of sinus was covered with plaque30, suggesting that immune modulation may still reduce the disease progres-
sion if treated at an early stage.

These observations are very critical as in a clinical setting there will always be patients with different stages of 
the disease having variable percentage of plaque already deposited in their coronary artery. The tolerance bought 
by oral immune therapy to a established disease using AHC multi-antigenic molecule can stabilize the plaque and 
also can prevent the plaque rupture of disease which is a very important aspect in clinical therapy.

Methods
Animals.  A group (6–8 animals) of C57BL/6 background mice knocked out for Apobtm2Sgy/Ldlrtm1Her/J 
(Jackson laboratories) were used for all the experiments approved by the Institutional Animal Ethics Committee 
of the Thrombosis Research Institute (Registration Number: 1261/c/09/CPCSEA) in compliance with 
Government of India guidelines and conform to the Guide for the Care and Use of Laboratory Animals published 
by the US National Institutes of Health (NIH Publication, 8th Edition, 2011).

Materials.  Multi-antigenic construct consisting of APOB, HSP60 and chlaymydia pneumonia outer mem-
brane protein and a diet rich in fat termed as HFD (21% anhydrous milk fat and 1.25% cholesterol).The construc-
tion and purification of AHC molecule is described in detail in the supplementary section30.

Generation of multi-antigenic construct AHC.  The multi antigenic construct was constructed as  
described earlier29. The epitope derived from human ApoB100 (peptide sequence: I688EIGLEGKGFEPTLEALFGK707, 
numbered including signal peptide) was linked at the N-terminal of dendroaspin Epitope from hHSP60 (peptide 
sequence: A153ELKKQSKPVT163) was used to replace the dendroaspin loop III. Cpn sequence derived from the 
major outer membrane protein (peptide sequence: G67DYVFDRI74) and polymorphic outer membrane protein 5 
(peptide sequence: Q283AVANGGAI291) was linked at the C terminal of dendroaspin. The construct was cloned in 
pET15b expression vector and purified using anion exchange column as described in the supplementary section.

Generation of atherosclerosis in experimental mice.  Knock out animals aged for 5–6 weeks were fed 
on high fat diet for 10 weeks and orally treated with multi-antigenic construct AHC for five alternate doses (1 µg/
dose) or ovalbumin (1 µg/dose) as control and were continued on HFD for another 10 weeks. Six animals were 
sacrificed after 10 weeks of HFD to serve as baseline before treatment. The design of the experiment is shown in 
Fig. 2A. An overdose of isoflurane inhalant anesthetic (15%) as per American Veterinary Medical Association 
guidelines (June 2007) was used for sacrificing the mice humanely and the organs were collected for histochem-
ical analysis.

Assessment of lesion area.  A transversal cut approximately 4 mm away from the apex with a scalpel on the 
heart which is perpendicular to the ascending aorta was made (approx 45° Inter ventricular septum angle). For 
lesion analysis not less than 6 sections 80 µm apart were stained with Elastica van Geison (EVG) were considered 
for quantification to avoid false positive lesion area. From each animal 25–30 sections could be collected and 
each slide was numbered for convenience. The same slide numbers were taken from each experimental group 
for quantification. The total area of sinus, area covered by lesion and the percentage lesion area were quantified 
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for each section. The average values for each mice was calculated from not less than 6 section. Results for were 
represented as the average of all the animals in the experimental group. Hematoxylin and eosin staining was used 
to quantify the acellular area as necrotic core in the aortic sinus. Image-Pro Plus software (Media Cybernetics, 
Bethesda, USA) was used for morphometric analysis as described earlier18.

Analysis of aortic sinus by Immunohistochemistry.  Immunofluorescence was used to quantify specific 
antigens and cytokines in the aortic sinus. The frozen sections were taken in slides coated with 5% amino-silane 
and permeabilized using 0.2% of triton X 100 for 30 min, fixed with ice-cold acetone, blocked with 5% serum 
incubated with primary antibodies followed by appropriate secondary antibody (Alexa-633 tagged Invitrogen), 
Vector Shield mounted sections were imaged using a Leica DMI 4000 B confocal microscope and the analysis was 
done using Image-Pro software (Media Cybernetics, Bethesda, USA). The antibodies used were specific for tissue 
factor (TF), matrix metalloproteinase 9 (MMP9), TUNEL, CD68, activated caspase3, CD4 and Foxp3 from mice. 
Macrophage apoptosis was quantified by co localization of CD68 and Caspase 3 while Tregs were enumerated by 
CD4 and FOxp3 co staining.

Picrosirius staining for collagen content.  Collagen content within the plaque was measured for treated 
and control group by taking at least six sections per animal. The de-waxed and hydrated sections followed by 
staining with Weighert’s haematoxylin for 8–10 minutes were washed for 10 minutes in running tap water and 
stained with picrosirius red for one hour. The slides were washed, rinsed with acidified water and dehydrated 
in 2–3 changes of 100% ethanol quickly, cleared in xylene and mounted with DPX. Images were captured using 
a polarizing microscope (Olympus BX-51). Quantification was performed Image-Pro Plus software (Media 
Cybernetics, Bethesda, MD).

Flow Cytometry.  Flow cytometry analyses of spleen cells were performed by FACS Canto II using FACS 
DIVA software (Becton–Dickinson, New Jersey, USA) and FLOWJO software (Tree star Ltd, Oregon, USA). The 
antibodies used were as follows: Fluorescein isothiocyanate (FITC)-conjugated CD4 (clone RM4-5), allophy-
cocyanin (APC)-anti CD25 (clone PC61.5), PE- IFN-γ (clone XMG1.2) all from e-Biosciences San Diego, CA, 
USA. APC-Cy™ 7 IL-17A (clone TC11-18H10, BD pharmingen, San Jose, USA), phycoerythrin (PE)-anti-fork 
head box p3 (Foxp3) (clone NRRF-30). Surface and Intracellular staining were performed according to standard 
procedures at a density of 105 cells/100 µL according to the manufacturer’s instructions.

Gene expression analysis of aortic cytokines by RT-PCR.  The total RNA from the ascending part 
of the aorta using TRIzol® Reagent from 6 control and 6 treated mice was isolated and mRNA was reverse tran-
scribed using invitrogen CDNA synthesis kit and polymerase chain reaction (RT-PCR) was performed using 
Superscript® RT-PCR kit (Invitrogen, Carlsbad, USA) using an ABI PRISM 7900HT fast real time PCR system 
(Applied Biosystems, California, USA). The list of primers used for the study was listed in Table 1.

Functional immunoassays and Proliferation assays.  Peptide specific effector T-cells, were generated 
and used as mentioned earlier30. The effector cells were labeled with 10 μM 5,6-carboxyfluorescein diacetate suc-
cinimidyl ester (CFSE) (Sigma chemicals, St. Louis, USA). The spleen cells were isolated from both AHC treated 
and control mice and non adherent lymphocytes were used to discriminate the effector and regulatory popu-
lation using regulatory T Cell Isolation Kit in auto MACS pro (Miltenyi Biotech). Effector T cells (1 × 105) and 

IL23-F CCC GGG TTA GGC TGC CTG GCG GAC A

IL23-R GAG TCA AGC TGT TGG CAC TAA GGG CTC

INOS-F CAG CTG GGC TGT ACA AAC CTT

INOS-R CAT TGG AAG TGA AGC GGT TCG

TGF-β1-F TTG CTT CAG CTC CAC AGA GA

TGF-β1-R TGG TTG TAG AGG GCA AGG AC

IL10-F GTG GCA GTG AAG ACC ATG AAG TTG

IL10-R GAA CTC CGG GAT AGG GAG TCA T

GAPDH-F AAC TTT GGC ATT GTG GAA GG

GAPDH-R ACA CAT TGG GGG TAG GAA CA

TNF-α-F ATG AGC ACA GAA AGC ATG ATC

TNF-α-R TAC AGG CTT GTC ACT CGA ATT

FoxP3-F CCC ATC CCC AGG AGT CTT G

FoxP3-R ACC ATG ACT AGG GGC ACT GTA

CTLA-4-F GCT TCC TAG ATT ACC CCT TCT GC

CTLA-4-R CGG GCA TGG TTC TGGBATC A

Arginase1-F GGA ACC CAG AGA GAG CAT GA

Arginase1-R TTT TTC CAG CAG ACC AGC TT

Arginase2-F ACC AGG AAC TGG CTG AAG TG

Arginase2-R TGA GCA TCA ACC CAG ATG AC

Table 1.  The list of primers used in the study.
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regulatory cells were taken in equal ratio and cultured in 96 well plates in the presence of 10 μg/mL of peptides 
in X-vivo 20 serum free medium (Lonza, Basel, Switzerland). After 5 days of incubation, cells were stained with 
CD4-APC (eBiosciences, California, USA)20. CD4 effector cells proliferation was measured by CFSE dilution 
using flow cytometry. Spleen cell proliferation assay was carried out using Roche cell proliferation BrdU assay 
kit as described earlier18. Spleen cells from the both control and treated group were cultured for 54 h and labeled 
with 10 µl BrdU reagent for the another 18 h of culture. The cells were fixed and the DNA denatured by adding 
FixDenat fixing and denaturation solution, followed by anti-BrdU-POD antibody which binds to the BrdU incor-
porated into the newly synthesized cellular DNA. The immune complexes formed by the tetra methyl benzidine 
(TMB) substrate reaction were dispersed and the absorbance was recorded by an ELISA reader.

Monocyte differentiation to anti-inflammatory M2 macrophages.  The Tregs were isolated from 
spleens of animals treated with AHC. CD4+CD25+ and CD4+CD25− cells were purified using regulatory T Cell 
Isolation Kit in auto MACS pro (Miltenyi Biotech, Cologne, Germany). Mononuclear cells were isolated from the 
spleen of untreated healthy mice. We used healthy male mice since the treatment might have some influence on 
the monocytes. Mononuclear cells from the spleen were pooled from three individual mice and purified using 
CD11b micro beads in auto MACS pro (Miltenyi Biotech, Cologne, Germany). Purified 11b positive cells (1 × 106 
cells) were co-cultured with equal numbers of either CD4+CD25− or CD4+CD25+ cells from AHC treated ani-
mals for 7 days. Loosely adherent T cells were removed from the culture and the adherent macrophages were 
washed twice with PBS. Total RNA from the macrophages was extracted using TRIzol® and the relative gene 
expression of M1 macrophage marker (IL-23, inducible nitric oxide synthase (iNOS) and TNF-α) and M2 mac-
rophage marker (arginase1, TGF-β and IL-10) were studied using QRTPCR.

Statistical Analysis of Data.  Graph Pad prism software version 5.01(GraphPad Software, Inc., La Jolla, CA, 
USA) was employed for statistical analysis and results were expressed as Mean ± SEM. The final data represents 
the average of 6 animals. For each animal multiple sections were quantified to get the mean value. For the quanti-
fication of lesion area, not less than 6 sections per animal were taken for the analysis. The mean area of lesion was 
calculated per mice and the results are represented as the average of 6 mice per group. For immunohistochemical 
analysis, 3–5 sections were taken per mice and the results were computed as average of 6 mice per group. Flow 
cytometry and other in vitro experiments were performed from cells isolated from individual mice and results 
represented as average of 6 mice/group. Mann-Whitney test with statistical significance at P < 0.05 were consid-
ered for showing the differences between control and treated groups.
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