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Moving Bragg grating solitons in a 
semilinear dual-core system with 
dispersive reflectivity
S. A. M. Saddam Chowdhury & Javid Atai

The existence, stability and collision dynamics of moving Bragg grating solitons in a semilinear dual-
core system where one core has the Kerr nonlinearity and is equipped with a Bragg grating with 
dispersive reflectivity, and the other core is linear are investigated. It is found that moving soliton 
solutions exist as a continuous family of solutions in the upper and lower gaps of the system’s linear 
spectrum. The stability of the moving solitons are investigated by means of systematic numerical 
stability analysis, and the effect and interplay of various parameters on soliton stability are analyzed. 
We have also systematically investigated the characteristics of collisions of counter-propagating 
solitons. In-phase collisions can lead to a variety of outcomes such as passage of solitons through each 
other with increased, reduced or unchanged velocities, asymmetric separation of solitons, merger of 
solitons into a quiescent one, formation of three solitons (one quiescent and two moving ones) and 
destruction of both solitons. The outcome regions of in-phase collisions are identified in the plane of 
dispersive reflectivity versus frequency. The effects of coupling coefficient, relative group velocity in the 
linear core, soliton velocity and dispersive reflectivity and the initial phase difference on the outcomes 
of collisions are studied.

Fiber Bragg gratings (FBGs) are widely used in many applications in optics and optical communications such as 
optical filters, format conversion, sensors and dispersion compensation1–6. FBGs are also promising candidates 
for various nonlinear applications such as optical switching and pulse compression7–11. One of the main charac-
teristics of FBGs are their strong dispersion due to cross-coupling between forward- and backward-propagating 
waves, which can be up to six orders of magnitude greater than the underlying chromatic dispersion of silica12, 13. 
At high intensity, the nonlinear effect of the fiber can balance out the grating induced dispersion, resulting in the 
formation of Bragg grating (BG) solitons (strictly speaking, these pulses are robust solitary waves). BG solitons in 
Kerr nonlinear media have been investigated extensively both theoretically14–16 and experimentally17–20 over the 
past few decades. It has been found that BG solitons form a two-parameter family of solutions that exist through 
out the bandgap of the linear spectrum of the grating13–16. Also, analytical and numerical analyses have shown 
that nearly half of the soliton family is stable against oscillatory perturbations21–23.

An important property of BG solitons is that they can propagate at any velocity in the range zero and the 
speed of light in the medium. This intriguing feature has led to a great deal of experimental efforts to be devoted 
to the generation of slow BG solitons owing to their potential use in various slow light applications such as in 
optical delay lines, optical buffers and logic gates. To date, BG solitons with velocities as low as 23% of the speed 
of light in the medium have been experimentally observed24. Similar solitons have been investigated in more 
sophisticated photonic structures such as waveguide arrays25, photonic crystals26, 27 and dual core systems28–34. 
They have also been explored in diverse nonlinear media such as quadratic nonlinearity35, 36, sign-changing Kerr 
nonlinearity37 and cubic-quintic nonlinearity38, 39. It is worth noting that transitional radiation in an optical lattice 
may prevent the formation of moving solitons40. There are systems where solitons with discrete set of propagation 
velocities can exist due to complete suppression of transitional radiation41, 42. In systems where the dynamics can 
be approximated by coupled counterpropagating waves (e.g. in a Bragg grating), the transitional radiation can be 
exponentially small and therefore moving solitons can exist.

In more complex Bragg grating structures, such as nonuniform gratings, Bragg super-structures43, 44 and grat-
ings written on photonic wires45, reflection spectra may feature broad and inhomogeneous bandgaps. In such 
cases, the effect of nonuniformity needs to be considered and therefore the standard model of BG solitons must 
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be modified. One possible approach, proposed in ref. 46, is to incorporate the contribution of spatial dispersion 
stemming from the random variations of Bragg reflectivity (aka dispersive reflectivity) into the standard model. 
The dispersive reflectivity model is a phenomenological generalization of the standard model, which may be 
applicable to weakly disordered gratings (i.e., gratings with random nonuniformities). It has been shown that 
dispersive reflectivity on the stability has a stabilizing effect on BG solitons46, 47.

Optical fiber couplers, particularly the ones with mismatched or nonidentical cores (e.g., semilinear couplers) 
have been the subject of much interest over the past three decades owing to their potential applications in switch-
ing and signal processing48–55. Dual core systems equipped with Bragg gratings (e.g., grating assisted couplers) are 
strong candidates for optical add/drop elements in WDM systems56–60. In the context of BG solitons, it has been 
shown that semilinear dual core system with an embedded uniform or nonuniform BG only in the nonlinear core 
can support both quiescent (zero velocity) and moving BG solitons32, 34. In another study, it has been numerically 
demonstrated that a grating-assisted semilinear coupler can support very slow BG solitons61. Such structures can 
be produced with current technology by writing a uniform or nonuniform grating in one of the two cores56–58. BG 
solitons in dual core systems can be a potential candidate for various novel optical devices (e.g., all-optical soliton 
diode reported in ref. 62).

Interactions and collision of solitons have been investigated in different systems due to the fact that outcomes 
of collisions provide a better insight into the intricacies of the system63–65. In the case of BG solitons, it has been 
theoretically shown that solitons can be trapped inside a Bragg grating through collisions with an appropriately 
designed localized defect66–68. Other studies have suggested a mechanism to create zero velocity or very slow mov-
ing light pulses through collisions of counter-propagating solitons in a Bragg grating47, 69, 70. It has also been shown 
that collisions and interactions of solitons in Bragg gratings can be exploited to perform optical logic gates71.

In this paper, we investigate the existence, stability and collision dynamics of moving BG solitons in the model 
introduced in ref. 34. In the Section of Results and Discussion, the model and its linear spectrum in the moving 
reference frame are presented and discussed. We then analyze the existence and stability of the moving solitons 
in the model. Next, the outcomes of collisions are analyzed and discussed. Finally, a summary of the results and 
conclusions are provided.

Results and Discussion
The model and its linear spectrum. In ref. 34 a model for a semilinear dual core system was put forward 
which comprised a nonlinear (Kerr) core equipped with a Bragg grating with dispersive reflectivity and a uniform 
linear core. The system is shown schematically in Fig. 1.

Starting from Maxwell’s equation and following the procedure for the derivations of coupled mode equations 
(see for example Chapter 3 in ref. 72) and dispersive reflectivity46, one can arrive at the following system of partial 
differential equations:
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where u and v denote the forward- and backward-propagating waves, respectively, in the nonlinear core, and 
φ and ψ are their counterparts in the linear core. Also, κ is the coefficient of linear coupling between the two 
cores, m represents the strength of dispersive reflectivity and c is the relative group velocity in the linear core with 
respect to the group velocity in the nonlinear core. As the values m > 0.5 may not be physically meaningful47, we 
confine our analysis to the range 0 ≤ m ≤ 0.5 without the loss of generality.

As far as the realization of the model is concerned, two main parameters are the coupling length, Lc, and 
Bragg reflection length, LB which should be of the same order of magnitude. LB is typically ~1 mm. Couplers can 
also readily be manufactured such that Lc ~ 1 mm. Δt = 1 and Δx = 1 correspond to 10 ps and 1 mm in physical 
units. Since the nonlinear coefficient of silica ~2 (kmW)−1, the peak power needed for the formation of solitons 
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Figure 1. Schematic diagram of a semilinear dual-core system where a nonlinear core with a Bragg grating is 
coupled with a linear one.
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is estimated to be ~1 MW. This estimate is actually an upper bound. Experimental studies have shown that con-
siderably less power is needed for the formation of solitons17–20. The above parameter estimates yield a length of 
~10 cm for the dual-core fiber.

In order to find soliton solutions with nonzero velocities, Eq. (1) are first transformed into the moving coor-
dinates using {X, T} = {x − δt, t}, where δ is the soliton velocity and is normalized such that δ = 1 corresponds to 
the speed of light in the medium:
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To characterize the spectral gap within which moving solitons may exist, it is necessary to analyze the system’s 
linear spectrum. Substituting u, v, φ, ψ ∼ − ΩeikX i T into the linearized form of Eq. (1), we arrive at the following 
dispersion relation for Ω(k):
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where Ω is the Doppler-shifted frequency-detuning in the moving frame and is related to ω in the laboratory 
(stationary) reference frame by

ω δΩ = − .k k k( ) ( ) (4)

Note that for δ = 0, dispersion relation (3) reduces to the one given by Eq. (2) in ref. 34. Similar to the quiescent 
case (the model of ref. 34), when c = 0, there exist two disjoint bandgaps that reside in the upper and lower halves 
of the spectrum. Also, for ≠c 0, a central bandgap is formed. However, unlike the quiescent case, these bandgaps 
are not genuine ones because they overlap with one branch of continuous spectrum. Examples of dispersion dia-
grams are shown in Fig. 2.

In the cases where the bandgap is open, the edges of the bandgap Ωm are determined by solving Ω =d k dk( )/ 0. 
However, the equation Ω =d k dk( )/ 0 does not yield an expression that can be solved analytically. Therefore, Ωm 
must be determined numerically. It should be noted that, unlike the quiescent case, the edges of the upper and 
lower gaps never occur at k = 0 when δ ≠ 0. Also, Our analysis shows that the widths of the upper and lower gap 
reduce with increasing δ for fixed values of m and c. Similarly, increasing m for fixed δ and c results in the reduc-
tion of the width of the upper and lower gaps. A noteworthy finding is that there exists a critical velocity δcr at 
which the upper/lower gap closes. Based on the numerical calculations, the following empirical expression for the 
critical velocity has been deduced:

Figure 2. Dispersion diagrams for various values of m and δ. (a) κ = 2, δ = 0.25, and c = 0.2; (b) κ = 5, m = 0.3 
and c = 0.2.
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Figure 3 shows how the width of the upper/lower gap ΔΩm varies with increasing δ for given values of c and m. It 
is worth noting that, consistent with the relation (5), ΔΩm becomes zero exactly at δ = 0.6 (Fig. 3(a)) and δ = 0.75 
(Fig. 3(b)) for c = 0.2 and c = 0.5, respectively. Additionally, it is evident from this figure that ΔΩm is independent 
of m for δ = 0 and δ = δcr.

Soliton solutions and their stability. Soliton solutions of the system of Eq. (2) are sought as
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Substitution of the ansatz (6) into (2) leads to the following system of ordinary differential equations:
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To obtain the moving soliton solutions, Eq. (7) are solved numerically using a relaxation algorithm. It is found 
that, similar to their quiescent counterparts (cf. ref. 34), moving solitons exist only in the upper and lower gaps. 
Also, up to the available numerical accuracy, the soliton solutions form a continuous family of solutions. Another 
interesting feature of the moving soliton solutions is that sidelobes may appear in solitons’ profile in the presence 
of dispersive reflectivity. The formation of sidelobes, however, is dependent on the parameters κ, c, m and δ.

To gain a better understanding as to how various parameters affect the stability of solitons in Eq. (1), we 
first summarize stability characteristics of Bragg gratings solitons in the single-core case. In the case of uniform 
single-core Bragg grating, it has been shown that the stability of the family of moving solitons reported in ref. 16 
is almost independent of the velocity of solitons21, 22. The presence of dispersive reflectivity in the single-core case 
(i.e. the model of ref. 46) results in stabilization of solitons which, in turn, leads to the expansion of the stability 
region within the bandgap. However, in this case, the stability border becomes dependent on the velocity of soli-
tons. In the model of Eq. (1), the coupling between the cores and the group velocity mismatch strongly affect the 
stability of solitons. In particular, the stability analysis shows that the stabilization of solitons due to dispersive 
reflectivity depends on the strength of the coupling coefficient and can be counteracted by soliton velocity and 
group velocity mismatch parameter (see below).

To determine the stability of solitons in the model of Eq. (1), we have conducted a systematic numerical 
stability analysis by simulating their evolution using the symmetrized split-step Fourier algorithm73 for differ-
ent values of κ, c, m and δ. To seed any inherent instability, the moving soliton solutions are initially perturbed 
asymmetrically. The results of the stability analysis are summarized in the (m, Ω) plane for κ = 4 in Figs 4 and 5 
for the upper and lower gaps, respectively. The results for other values of κ (e.g., κ = 2, 5 and 10) are not shown 
separately but are included in Figs 9, 10 and 11. A general trend shown in these figures is that the stabilization 
effect due to dispersive reflectivity is dependent on κ and is more pronounced for large κ (e.g., κ = 10). However, 

Figure 3. Width of the upper/lower gap ΔΩm as a function of velocity δ for different values of m. (a) κ = 10, 
c = 0.2; (b) κ = 5, c = 0.5.
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an increase in c significantly affects the soliton stability for a given κ and δ, particularly in the lower gap (see, for 
example, Fig. 10). Furthermore, for a given c and κ, increasing δ results in the gradual reduction of the area of the 
stable region. An interesting feature of Figs 4 and 5 is that a cusp in the stability border is formed when c = mκ2 
regardless of the soliton velocity. Another notable finding is that, for a given c and δ, the stable region in the lower 
gap expands as κ becomes larger (see Fig. 11).

The unstable solitons do also exhibit interesting dynamics. The evolution of highly unstable solitons (i.e. sol-
itons far from stability border) leads to a significant amount of radiation and subsequent destabilization and 
destruction of the soliton (Fig. 6(a)). The unstable solitons may shed some energy in the form of radiation and 
evolve to another stable moving soliton (Fig. 6(b)). There also cases where instability development results in the 
spontaneous splitting of the soliton into two stable moving ones (Fig. 6(c)).

Collisions of solitons. To investigate the characteristics of soliton collisions, systematic simulations were 
performed by propagating stable counter-propagating moving solitons in the (m, Ω) plane for several values of κ, 
δ and c using the following conditions as initial input:
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where u, v, φ and ψ are the components of the moving soliton solutions and the subscript ±δ denotes the velocity 
at which the counter-propagating solitons are traveling. Also, ΔX is the initial separation and Δθ is the initial 
phase difference between the solitons.

Figure 4. Stability regions corresponding to the upper gap in the (m, Ω) plane for different values of soliton 
velocity (increasing δ from left to right) and relative group velocity (increasing c from top to bottom) for κ = 4. 
The areas which lie outside the gap and consequently do not contain soliton solutions are shown by the diagonal 
lines.
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The results of simulations have shown that the soliton-soliton collisions give rise to some generic outcomes 
that are in common with those in uniform single-core Bragg gratings. More specifically, the collisions may result 
in the generation of a single quiescent soliton, two symmetrically separating solitons whose velocities are smaller, 
larger or the same as the original ones. Also, similar to the case of a single-core Bragg grating with dispersive 
reflectivity47, the collisions may also lead to the formation of a quiescent solitons and two moving ones (i.e. 2 → 3 
transformation). A major difference between collisions in the model of Eq. (1) and those in ref. 47 is that in the 
case of single-core Bragg grating with dispersive reflectivity, the 2 → 3 transformation occurs for strong dispersive 
reflectivity whereas in the dual-core case considered in this paper the 2 → 3 transformation can occur for both 
strong and moderate dispersive reflectivity. Another noteworthy feature of the collisions is that their outcomes in 

Figure 5. Stability regions corresponding to the lower gap in the (m, Ω) plane for different values of soliton 
velocity (increasing δ from left to right) and relative group velocity (increasing c from top to bottom) for κ = 4. 
The areas which lie outside the gap and consequently do not contain soliton solutions are shown by the diagonal 
lines.

Figure 6. Examples of the evolution of the unstable solitons. (a) Ω = 9.86, κ = 10, m = 0, c = 0, and δ = 0.2; 
(b)  Ω = −9.89, κ = 10, m = 0, c = 0.2, and δ = 0.1; and (c)  Ω = 9.69, κ = 10, m = 0.3, c = 0.2, and δ = 0.2.
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Figure 7. Examples of in-phase soliton collisions for κ = 10. (a) Symmetric separation with an increase in 
soliton velocity for δ = 0.2,  Ω= −9.93, m = 0.2 and c = 0.2; (b) symmetric separation with a decrease in soliton 
velocity for δ = 0.2, Ω = −9.93, m = 0.3 and c = 0.2; (c) symmetric separation with unchanged velocity for 
δ = 0.35, Ω = 10.31, m = 0.05 and c = 0.2; (d) Asymmetric separation for δ = 0.1, Ω = 10.31, m = 0.4 and c = 1; 
(e) merger into a zero velocity soliton for δ = 0.1, Ω = −10.10, m = 0.5 and c = 0.2; and (f) generation of three 
solitons with two moving ones and a quiescent soliton for δ = 0.2, Ω = 10.16, m = 0.5 and c = 0. Only |u| is 
shown.

Figure 8. The amplitude spectrum of the collisions corresponding to (a) Fig. 7(e) and (b) Fig. 7(a). Only the 
spectrum for the u-component is shown.
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the upper and lower bandgaps are not the same. These new features occur as a result of the coupling between the 
cores, group velocity mismatch and the initial velocity of solitons. Below, we analyze how the interplay of these 
parameters affects the dynamics of soliton-soliton collisions and their outcomes.

The results of simulations have revealed that high velocity (δ > .∼ 0 4) in-phase (Δθ = 0) collisions are generally 
quasi-elastic and result in the passage of solitons through each other without any conspicuous change in their 
velocities, whereas low velocity in-phase collisions are more inelastic and hence give rise to various outcomes. 
One possible outcome is emergence of two symmetrically separating solitons with increased, decreased or 
unchanged velocities. For example, the velocity of the emerging solitons has increased from 0.2 to 0.25 in Fig. 7(a), 
whereas it has decreased from 0.2 to 0.12 in Fig. 7(b). In both these cases, collisions are accompanied by a large 
amount of energy loss in the form of radiation. Figure 7(c) shows an example of a quasi-elastic collision in which 
soliton velocity remains unaffected as they collide. Another possible outcome is asymmetric separation of soli-
tons, in which solitons undergo multiple collisions with subsequent splitting of solitons into two moving ones 
with unequal velocities (Fig. 7(d)). One of the most interesting outcomes is the formation of a quiescent soliton 
through collisions as shown in Fig. 7(e). As is shown in Fig. 7(f), collisions of solitons may also lead to the gener-
ation of three solitons, i.e. a quiescent one and two moving solitons propagating in opposite directions. A notable 
feature of such outcomes (i.e. 2 → 3 transformation) is that the amount of energy loss is considerably less than the 
other outcomes and the emerging solitons do not exhibit conspicuous breathing. In the case of π-out-of-phase 
collisions, solitons always bounce off each other with reversal in their direction of propagation. The spectra for 
Fig. 7(a,e) are shown in Fig. 8.

In order to analyze the interplay of the parameters and their effect on the outcomes of the collisions, we have 
performed extensive systematic numerical simulations for different values of κ, c and δ. Through these simula-
tions we have been able to identify the regions for various outcomes in the (m, Ω) plane. The results of the simu-
lations for κ = 10 are summarized in Figs 9 and 10. As is shown in Figs 9 and 10, the richest collision dynamics is 
observed when c = 0 and δ = 0.1. In this case, a variety of outcomes may occur depending on the values of and m. 
This may, in part, be attributed to the fact that initially slow solitons have more “time” to interact compared with 
the faster ones. In both upper and lower gaps (Fig. 9), for a given c, increasing δ leads to the shrinkage and even-
tual disappearance of the merger region (region M). It is also worth noting that the region M is more pronounced 
in the lower gap than in its upper counterpart. In the upper gap, region T (i.e. 2 → 3 transformation) occurs for 
c = 0 and 0.2 primarily when dispersive reflectivity is strong. However, in the lower gap, the region T occurs for 
both moderate and strong dispersive reflectivity (see Fig. 10). In both the upper and lower gaps, the region E 

Figure 9. Collision outcome diagrams for in-phase solitons in the upper gap for several values of soliton 
velocity (increasing δ from left to right) and relative group velocity (increasing c from top to bottom) in the case 
of κ = 10. The regions are labeled as fast symmetric separation (F), slow symmetric separation (S), quasi-elastic 
separation (E), temporary bound state followed by separation (B), merger (M), three soliton generation (T) and 
destruction of soliton (D). The shaded areas indicate regions where solitons are unstable. The areas which lie 
outside the gap and consequently do not contain soliton solutions are shown by the diagonal lines.
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becomes more dominant as the velocity of the colliding solitons increases. As for collision-induced destruction of 
solitons (i.e. region D), it occurs only in the upper gap when c is small and δ .0 22.

As was noted above, the collision dynamics are much richer for slow solitons. Therefore, in order to study the 
effect of κ on the outcomes of the collisions, we have set δ = 0.1 and c = 0.2 and simulated in-phase soliton-soliton 
collisions for different values of κ. The results of the simulations are displayed in Fig. 11. By comparing these 
results with those of κ = 10 (i.e., the diagrams corresponding to δ = 0.1 and c = 0.2 in Figs 9 and 10), some inter-
esting characteristics can be extracted. One notable finding is that the merger (region M) and three soliton forma-
tion (region T) regions do not exist in the upper gap when κ = 2, however, these regions emerge as κ is increased 
from 2 to 5 and further expand at κ = 10. Also, in the lower gap, increasing κ from 5 to 10 leads to the emergence 
of the region F (i.e. fast symmetric separation).

In other models of BG solitons (e.g., the model of ref. 39) it has been shown that the collisions leading to 
merger of solitons are very sensitive to the initial phase difference. Our simulations demonstrate that in the 
present model this is not the case. More specifically, a small departure from Δθ = 0 does not essentially pre-
vent merger to occur, rather solitons merge into a very slow moving pulse as a result of collisions. Figure 12(a) 
demonstrates an example in which the collision with an initial phase difference Δθ = 1° leads to fusion of solitons 
into a single soliton which travels at a very low velocity. The collision with an initial phase difference Δθ = 6° in 
Fig. 12(b) still leads to merger, however, in this case, the generated pulse moves at a slightly higher velocity (~2% 
of the speed of light in the medium). A further increase in Δθ (6° → 20°) in Fig. 12(c) gives rise to splitting of 
solitons into two moving ones with unequal velocities.

Conclusions
In this paper, we have studied the existence, stability and collision dynamics of moving Bragg grating solitons in 
a semilinear dual core system where one core has the Kerr nonlinearity and a Bragg grating with dispersive reflec-
tivity, and the other core is linear. It is found that when δ ≠ 0, the width of the upper/lower gap is dependent on 
c, m and δ. An empirical expression for the critical velocity at which the upper/lower gap closes has been deter-
mined. It is found that this critical velocity only depends on c. Moving soliton solutions exist as a continuous 
family of solutions in the upper and lower gaps. In order to determine the stability of the moving solitons, we have 
performed a systematic numerical stability analysis for various values of κ, c, and δ in the (m, Ω) plane. It is found 
that, for a given κ and δ, increasing c generally leads to the shrinkage of the stable region. Also, the area of the 
stable region in the (m, Ω) plane generally tends to reduce when soliton velocity δ is increased.

Figure 10. Collision outcome diagrams for in-phase solitons in the lower gap for several values of soliton 
velocity (increasing δ from left to right) and relative group velocity (increasing c from top to bottom) in the case 
of κ = 10. The regions are labeled as fast symmetric separation (F), slow symmetric separation (S), quasi-elastic 
separation (E), temporary bound state followed by separation (B), merger (M), three soliton generation (T) and 
destruction of solitons (D). The shaded areas indicate regions where solitons are unstable. The areas which lie 
outside the gap and consequently do not contain soliton solutions are shown by the diagonal lines.
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The dynamics and the outcomes of the collisions of counter-propagating solitons has been investigated 
through systematic numerical simulations. In the case of in-phase collisions, we have identified various out-
come regions in the (m, Ω) plane for different values of δ, c and κ. High velocity in-phase collisions are generally 
quasi-elastic and result in the passage of solitons through each other without any conspicuous change in their 
velocities, whereas low velocity in-phase collisions can give rise to a number of interesting outcomes. One note-
worthy outcome is the generation of a zero velocity soliton through merger of solitons or 2 → 3 transformation in 
certain parameter regions. An important finding is that the merger region in the (m, Ω) plane is more prominent 

Figure 12. The effect of initial phase difference on the outcomes of collisions that lead to merger of solitons 
into a quiescent one as a result of in-phase collisions. The parameters are κ = 10, δ = 0.2, Ω = −10.15, m = 0.5, 
c = 0.2. (a) Δθ = 1°, (b) Δθ = 6°, and (c) Δθ = 20°. Only |u| is shown.

Figure 11. Collision outcome diagrams for in-phase solitons for different values of κ and δ = 0.1, c = 0.2. The 
regions are labeled as slow symmetric separation (S), fast symmetric separation (F), quasi-elastic separation (E), 
merger (M) and three soliton generation (T). The shaded areas indicate regions where solitons are unstable. The 
areas which lie outside the gaps and consequently do not contain soliton solutions are shown by the diagonal 
lines.
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in the lower gap than in its upper counterpart. Collisions of solitons can also lead to a decrease or an increase in 
their velocities as they pass through each other. In the case of π-out-of-phase collisions, solitons always bounce 
off each other.

Data availability statement. The datasets generated during and/or analyzed during the current study are 
available from the corresponding author on reasonable request.
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