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Development of a root canal 
treatment model in the rat
Naomichi Yoneda1, Yuichiro Noiri2, Saori Matsui1, Katsutaka Kuremoto1, Hazuki Maezono1, 
Takuya Ishimoto3, Takayoshi Nakano3, Shigeyuki Ebisu1 & Mikako Hayashi1

Root canal treatment is performed to treat apical periodontitis, and various procedures and techniques 
are currently used. Although animal models have been used in the developmental research of root 
canal treatment, little of this research has used small animals such as rats, because of their small size. In 
this study, root canal treatment was performed on the rat mandibular first molar, which had four root 
canals, using a microscope, and the therapeutic effect was evaluated bacteriologically, radiologically 
and histopathologically. By performing root canal treatment, the level of bacteria in the mesial root 
of the treated teeth was reduced by 75% compared with the control. Additionally, the volume of 
the periapical lesions of the treated teeth as measured by micro-computed tomography decreased 
significantly 2 weeks after the root canal treatment when compared with the control. Histological 
evidence of healing was observed in the treatment group 8 weeks after root canal treatment. These 
results suggest that a root canal treatment model using rats can be used in developmental research for 
novel methods of root canal treatment.

Apical periodontitis is an inflammatory disease in the periapical area which results from infection of the dental 
pulp in the root canal system. Root canal treatment aims to remove bacteria from the root canal system, and den-
tists achieve this through mechanical removal of infected dentin and chemical removal of remnant bacteria in the 
root canal. This treatment is based on scientific evidence that germ-free mice do not develop apical periodontitis, 
and bacterial infection of the pulp chamber or root canal can cause apical periodontitis1. The success rate of initial 
root canal treatment is found to be lower than that of pulpectomy, which is the treatment for inflamed dental 
pulps without bacterial infections2. It is difficult to eliminate bacteria from root canal systems, not only because 
of their complex anatomical structure, but also because bacteria are embedded in biofilms. Biofilms are formed 
not only in the root canal system but also on the outer root surface around the apical foramen3–5, where they are 
known as extraradicular biofilms. Extraradicular biofilms lower the success rate of root canal treatment, making 
apical periodontitis refractory6.

The rate of bacteria removal by root canal treatment is not known. Root canal treatment is thought to be an 
aseptic treatment, but the validity of this claim is unknown.

Recently, techniques such as dental microscopy, cone-beam computed tomography (CT) and micro-excavation 
have been introduced into clinical dental practice. These techniques have greatly improved the accuracy of preop-
erative diagnosis and treatment techniques7–9, making it possible to preserve teeth which would previously have 
been extracted. However, refractory apical periodontitis has still not been eradicated, and the development of new 
drugs or treatment methodologies is essential.

Extraradicular biofilm that is present on the apical cementum and over-filled root canals has been implicated 
in the development of persistent apical periodontitis10. We formed extraradicular biofilm experimentally in rats 
and confirmed its influence on the volume of periapical lesions using high resolution micro-CT11. Our novel 
approach to the control and inhibition of biofilm-forming bacteria involved observing the activity of N-acyl 
homoserine lactones which take part in the quorum-sensing system for bacterial cell-to-cell communication. We 
found that three analogues inhibited the biofilm formation of Porphyromonas gingivalis12, and that antimicrobial 
azithromycin controlled P. gingivalis biofilm at sub-minimum inhibitory concentration levels13.
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Although research has elucidated mechanisms and methods for using various medicaments to heal apical 
periodontitis, it is necessary to establish an evaluation system to confirm the efficacy of these methods by using a 
laboratory animal model before they are introduced to clinical practice. Various experiment models using small 
animals which reproduce the condition of a human patient have been used in the study of marginal periodonti-
tis, and a new therapeutic drug and methodology have been developed14–17. However, while a number of small 
animal models have been developed to study the pathology of apical periodontitis18–20, there are no existing 
models for the study of root canal treatment. This is because rodent teeth have been considered to be too small 
for root canal treatment, and they have no teeth that can easily undergo root canal treatment such as the human 
single-rooted permanent incisor or premolar. Consequently, there are no studies worldwide reporting success-
ful treatments of infected root canals in small animals. However, innovations in the therapeutic apparatus of 
endodontic treatment, such as the dental microscope and the micro-excavator, now allow correct diagnosis and 
precise root canal treatment, so that even a small rodent can undergo root canal treatment. Additionally, accurate 
three-dimensional analysis of periapical lesions in small animals has been enabled by high resolution micro-CT, 
along with improved evaluation of the efficacy of the treatment. Therefore, in this study, we aimed to develop a 
small animal root canal treatment model by treating infected root canals of rats using the latest treatment appara-
tus under microscopic observation. We then analysed the periapical lesions three-dimensionally using micro-CT 
over time to evaluate the postoperative progress of the lesions.

Materials and Methods
Ethics statement. This study was approved by the Animal Care and Use Committees of the Osaka 
University Graduate Schools of Dentistry and Engineering (Permit Nos 26-016-0 and 26-1-0). All animal experi-
ments were carried out in accordance with the Guidelines for Animal Experiments of Osaka University, and sur-
gical procedures were performed under sodium pentobarbital anaesthesia, and all efforts were made to minimise 
the animals’ suffering.

Animals. Four 4-week-old and nine 10-week-old male Wistar rats (Clea Japan, Inc., Tokyo, Japan) were used. 
The animals were maintained in the animal facility of the Osaka University Graduate School of Dentistry with a 
12-h light/12-h dark cycle. Food and water were freely available.

Root length/canal width measurement. Four 4-week-old male Wistar rats underwent general anaesthe-
sia with an intraperitoneal injection. The mandibular first molar was scanned with micro-CT (R_mCT2, Rigaku, 
Tokyo, Japan) at settings of 90 kV and 160 µA every week from 4 to 14 weeks. A total of 500 consecutive tomo-
graphic slices, each with a thickness of 20 µm, were acquired. SimpleViewer software (Rigaku) was used for image 
analysis. After the axes were standardised, the length of the mesial root and the width of the mesial root canal (the 
widest dimension of the root canal at a point 1 mm apical to the pulpal floor) were measured.

Root canal treatment in rats. Nine 10-week-old male Wistar rats were used for this experiment, and the 
experiment design is shown in Fig. 1. All surgical procedures were performed under microscopic observation 
(Stemi DV4 SPOT, Carl Zeiss, Oberkochen, Germany). Periapical lesions were induced by exposing the pulp of 
mandibular first molars using a #1/2 (ISO 006) round bur (Dentsply Maillefer, Ballaigues, Switzerland) and elec-
tric engine (VIVAMATE G5, NSK, Tochigi, Japan) and leaving them open to the oral environment for 4 weeks21. 
Maxillary first molars in contact with the experimental teeth were removed at the same time as the pulp exposure 
of the mandibular first molars to prevent tooth fracture. The right mandibular first molars underwent root canal 
treatment as the treatment group, and the left mandibular first molars were left untreated as a control group.

For the treatment group, the tooth was isolated with a custom-made rubber dam clamp (YDM, Tokyo, Japan) 
and rubber dam sheet (Heraeus Kulzer, South Bend, USA) (Fig. 2b,c). The gap between the tooth and the rubber 
dam was blocked using flowable composite resin (MI FLOW, GC, Tokyo, Japan). An aseptic state was estab-
lished by cleaning the test tooth with 70% ethanol. A #1/2 round bur was used to open the pulp chamber and 
remove necrotic coronal pulp, and a micro-excavator (OK Micro-exca, Seto, Ibaraki, Japan) was used to remove 
the infected tooth substance of the pulpal floor and the orifice of the root canal. Root canal enlargement was 
performed to the level of 1.0 as indicated by an electrical root canal meter (Root ZX, J Morita, Tokyo, Japan) 
using K-files (Dentsply Maillefer, Ballaigues, Switzerland) up to a #20 file for the mesial and distal roots and a 
#15 file for the buccal and lingual roots. A nickel-titanium (Ni-Ti) rotary file (Race, FKG, La Chaux-de-Fonds, 
Switzerland) was then used to prepare the root canal. The mesial and distal roots were prepared with a 4% taper, 

Figure 1. Experimental protocol. Root canal treatment was performed 4 weeks after pulp exposure and was 
evaluated by micro-CT scanning, quantification of bacteria, and histological observation.
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and the buccal and lingual roots were prepared with a 2% taper. Root canals were irrigated with 0.5 ml of 2.5% 
sodium hypochlorite (Neo Dental Chemical Products, Tokyo, Japan) using 30-gauge needles (NaviTip, Ultradent 
Products, South Jordan, UT), the flow rate was 1 ml/min. Then canals were dried using sterilised paper points 
(VDW, Munich, Germany), and filled with gutta-percha points (SybronEndo, Orange, CA, USA) and root canal 
sealer (RealSeal SE, SybronEndo) using the single point method. After processing with a bonding system (Clearfil 
Bond SE ONE, Kuraray Noritake Dental, Tokyo, Japan), the pulp chamber was filled with flowable composite 
resin (MI FLOW, GC).

Three-dimensional measurement of the periapical lesion volume. At 4, 5, 6, 7, 8, 10, and 12 weeks 
after pulp exposure, the induced periapical lesions were scanned with a micro-CT scanner (Rigaku). Five rats 
were tested at each time point, and each rat had a control site and an experimental site. After scanning, the image 
data were reconstructed using the Three-Dimensional Reconstruction Imaging for Bone (TRI/3D-BON) system 
(Ratoc System Engineering, Tokyo, Japan) and the volume of the periapical lesion at the mesial root was measured 
as previously described11.

Quantification of bacteria in the root canal. Immediately following the root canal treatment, the rats 
were sacrificed and the mandibular first molars on both sides were extracted. The teeth were cut at the mesial 
root furcation and bacteria were removed from the root surface by curetting with a sterilised spoon excava-
tor (YDM). The mesial root was then frozen in liquid nitrogen and crushed using an SK mill (Tokken, Chiba, 
Japan). Following a previously described method11, DNA extraction was performed on a powdered sample using 
the InstaGene Matrix (Bio-Rad Laboratories, Hercules, CA, USA) according to the manufacturer’s instructions. 
Assays were performed with a 20 µl solution containing 1 µl of DNA extract (Applied Biosystems Power SYBR 
Green PCR Master Mix; Life Technologies, Grand Island, NY, USA) and bacterial universal primers 357 F and 
907R22 (0.5 µl each), prepared in parallel reaction mixtures for each target sequence. The thermal cycling con-
ditions for the Applied Biosystems 7500 Fast Real-Time PCR system (Life Technologies) were 95 °C for 10 min, 
40 cycles at 95 °C for 15 s, and 65 °C for 1 min, with collection of the fluorescence signal at the end of each cycle. 
Melting-curve analysis consisted of a denaturation step at 95 °C for 15 s and a temperature reduction to 60 °C 
for 1 min followed by a temperature increase to 95 °C at a rate of 1%, with continuous fluorescence reading. 
Data were acquired and analysed using Applied Biosystems 7500 system SDS v2.0.2 software (Life Technologies). 
Enterococcus faecalis SS497 was used as a standard curve.

Histological observation. The rats were sacrificed 12 weeks after pulp exposure, which is 8 weeks after 
treatment (n = 5). Mandibular samples containing the first molars were dissected, fixed in 4% paraformaldehyde 
and 0.1% glutaraldehyde for 12 h at 4 °C, and decalcified in 10% EDTA containing 15% glycerol at 4 °C. After 
preparation of 7 µm thick serial sections, some sections were stained with haematoxylin and eosin (HE) and a 
modified Brown and Brenn method23, and observed under a light microscope (Optiphot-2; Nikon Corporation, 
Tokyo, Japan).

Statistical analysis. Welch’s t-test was used to check the statistical significance of changes in the peria-
pical lesion volume between the treatment group and the control group, and Kruskal-Wallis test was used for 

Figure 2. Rubber-dam isolation of the rat mandibular molar. (a) Rat mandibular first molar with four roots and 
a crown with a mesiodistal diameter of approximately 3 mm. (b,c) Isolation of the tooth with a custom-made 
rubber-dam clamp.
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significant difference to 4-week volume of the same group with a critical rate of 5%. Additionally, for bacterial 
quantification, the Steel-Dwass test was used with a critical rate of 5%.

Results
Measurement of root length and root canal width. The mean root length of the mesial root was 
1.7 mm at 4 weeks of age, increasing to 2.6 mm at 8 weeks. The mean root canal width was 0.66 mm at 4 weeks 
of age, but decreased to 0.37 mm at 12 weeks (Fig. 3b). These results confirm that tooth root development in the 
Wistar rat mandibular first molar is complete at 8 weeks of age. We therefore used 10-week-old rats in this experi-
ment because they satisfied two conditions: (1) definite tooth root completion; and (2) proper root canal diameter 
for root canal treatment.

Three-dimensional measurement of the periapical lesion volume. The mean volume of periapical 
lesions at 4 weeks after exposure was 8.04 mm3 in the treatment group and 7.46 mm3 in the control group, and no 
statistically significant difference was found between the two groups. At 10 weeks after exposure (6 weeks after 
root canal treatment), the volume of the entire periapical lesion of the treatment group (2.48 mm3) was signifi-
cantly smaller than that of the control group (4.78 mm3). The periapical lesion volume in the treatment group at 
10 weeks was 33% of the volume at 4 weeks after exposure. In the control group, the minimum periapical lesion 
volume at 10 weeks was 59% of the volume at 4 weeks after exposure (Fig. 4b).

The mean volume of mesial periapical lesions at 4 weeks after exposure was 4.54 mm3 in the treatment group 
and 4.85 mm3 in the control group. No statistically significant difference was found between the two groups. The 
mesial periapical lesion volume in the treatment group was significantly smaller than that of the control group 
at each time point after 6 weeks following exposure. In the treatment group, the mesial periapical lesion volume 
became 20% of the volume at 4 weeks after exposure. Also, control group showed the minimum volume of 44% 
compared to the data of 4 weeks after exposure (Fig. 4c).

The mean volume of distal periapical lesions at 4 weeks after the exposure was 4.69 mm3 in the treatment 
group and 4.55 mm3 in the control group. No significant difference was observed between the two groups. There 
was no significant difference in distal periapical lesion volume between the treatment group and the control 
group at any time point. The distal periapical lesion volume in the treatment group tended to decrease to 59% of 
the volume measured at 4 weeks after pulp exposure, and the control group tended to decrease to 73% (Fig. 4d).

Quantification of bacteria in the root canal. The bacterial level derived from the mesial root imme-
diately after root canal treatment of the infected root is shown in Fig. 5. The number of bacteria in the mesial 
root was significantly lower for the treatment group (0.8 × 107 cells) than the control group (3.2 × 107 cells). 
Additionally, there was no significant difference between the treatment group and sound teeth (0.2 × 107 cells) 
that were not exposed.

Histological observation. In the control group, the periapical lesion contained inflammatory granulation 
tissue and marked inflammatory cell infiltration such as polymorphonuclear leucocytes, lymphocytes and mono-
cytes (Fig. 6a,c). However, there was little granulation tissue in the treatment group; the area of periapical lesion 
decreased and normal periodontal tissue was observed in the apical region (Fig. 6b,d). Modified Brown and 
Brenn staining was undertaken to confirm the residue of root canal bacteria. Bacteria were observed in the root 
canals of the control group (Fig. 6e), but only low levels of residual bacteria were found in the root canals of the 
treatment group (Fig. 6f).

Figure 3. Age-related change in the mesial root of the mandibular first molar. (a) Representative micro-CT 
images of the mesial root of the mandibular first molar at each week of age. (b) Age-related change in root 
length and root canal width. Root length was measured from the pulpal floor to the root apex; the root 
canal width was measured at 1 mm apically from the pulpal floor. Data represent the means of four sample 
measurements; error bars indicate standard deviations.
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Figure 4. Micro-CT analysis of periapical lesions after root canal treatment in rat. (a) Representative micro-CT 
images of experimental teeth in the treatment group, and the control group, at the 4-week and 12-week time 
points. (b–d) Comparison of changes in the volume of periapical lesions (*P < 0.05 indicates significant 
differences compared with the control group at the same time point, Welch’s t-test; †P < 0.05 indicates significant 
differences compared with the 4-week data of the same group, Kruskal-Wallis test). Data represent the means of 
five sample measurements; error bars indicate standard deviations. The volume of the periapical lesions of the 
mesial root for the treatment group were significantly lower than that of the control group at each time point 
after 6 weeks following pulp exposure.

Figure 5. Quantification of bacteria derived from the mesial root immediately after root canal treatment using 
real-time PCR (*P < 0.05 indicates significant differences between the two groups, Steel-Dwass test). Data 
represent the means of four sample measurements; error bars indicate standard deviations.
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Discussion
To elucidate the pathophysiology of apical periodontitis and develop therapeutic methods, pathological condition 
models that experimentally induce periapical lesions in animals have been widely used18–20, 24–26. A diverse range 
of animals have been used, including rats, cats, dogs and monkeys. Large numbers of rats can be studied over a 
short timeframe. The bacterial flora in the infected root canals of the rat differs slightly from human bacterial 
flora, but the ratio of aerobic bacteria to anaerobic bacteria is similar27, so it seems appropriate to use rats as a 
pathological model of apical periodontitis. However, all studies to date investigating infected root canal treatment 
have used large animals rather than rats28–32. It is difficult to establish a root canal treatment model in animals 
because of their small tooth size and the anatomical complexity of the root canal, and there are no studies using 
an animal model in which all four root canals have been treated. This is thought to be one of the causes of delays 

Figure 6. Histologic images at week 12. (a) Periapical areas of the control group stained with haematoxylin 
and eosin. (b) Periapical areas of the treatment group stained with haematoxylin and eosin. (c and d) High-
magnification views of the solid inset in panels a and b, respectively. (e and f) High-magnification views of 
the dotted insets in panels b and e, respectively, stained with a modified Brown and Brenn method. AF, apical 
foramen; GP, gutta-percha point; RC, root canal; C, cementum; D, dentin; PL, periapical lesion; arrow head, 
bacteria; arrow, inflammatory cells.
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in the developmental research into the treatment and medication of infected root canals. Therefore, in this study, 
we tried to establish a model of infected root canal treatment using the dental microscope and other advanced 
equipment developed under modern technological innovation.

The crown of the rat mandibular first molar is approximately 3 mm in diameter mesiodistally, and 2 mm in 
diameter buccolingually, which is about one-fourth of the dimensions of the human mandibular first molar. 
In addition, rat teeth have four roots (buccal, lingual, mesial and distal), and the morphology is different from 
human teeth (Fig. 2a). Therefore, it is difficult to perform root canal treatment with the naked eye using endo-
dontic instruments designed for human teeth. We solved these problems by using a microscope with a maximum 
magnification of ×32, in contrast with the usual maximum magnification of ×20–25 in microscopes used in 
clinical situations. This allowed us to observe and treat the inside of the pulp cavity and the root canal of rat teeth 
under higher magnification than is possible in normal clinical situations. Additionally, we used instruments with 
a tip diameter of 0.15–0.30 mm, which were small enough to be inserted into rat root canals. Given the known 
benefits of rubber dam isolation in root canal treatment33, 34, custom-made rubber dam clamps as used in previ-
ous studies35, 36 were also used in this study to achieve moisture-free aseptic conditions.

Some studies that used an experimental apical periodontitis model to investigate the influence of novel thera-
peutic drugs on the immune response used immature teeth19. Because it was necessary to perform complete root 
canal treatment in our study, we used teeth with completely developed roots, allowing us to maintain the correct 
working length to avoid failures such as overfilling. However, as rats become older, calcification of the teeth 
progresses and the root canal narrows, making it difficult to use files. Therefore, having observed the maturation 
process in sound rat tooth roots over time using micro-CT imaging, 10-week-old rats were chosen for use in this 
experiment.

In the root canal treatment model, the volume of periapical lesions in the control group tended to decrease 
in size after 4 weeks following the pulp exposure. This is consistent with studies that histologically measured the 
area of periapical lesions using Wistar rats37, 38. It is thought that periapical lesions are in an expanding phase until 
4 weeks after pulp exposure in rats in which experimental apical periodontitis is being induced, after which time 
the lesions become chronic and stabilised39, 40. The reduction of periapical lesion volume after 4 weeks in the con-
trol group might be due to the change of the host defence reaction against bacteria at that time. The entire volume 
of periapical lesions in the treatment group tended to decrease compared with the control group, but a statistically 
significant difference was observed only at 10 weeks after pulp exposure (6 weeks after treatment). In contrast, 
when only the mesial root lesions were measured, there was a statistically significant difference between the treat-
ment group and the control group at all time points after 6 weeks following pulp exposure, which is after 2 weeks 
following treatment. Furthermore, when only the distal root lesions were measured, no statistically significant 
difference was observed at any time point. These findings could be related to the complexity of the morphology of 
the distal root, which is relatively flattened with thinner canal walls and a large curvature. It has been reported that 
apical root fracture can occur in human teeth as a result of root canal enlargement or preparation with files41, 42.  
Similarly, in the thin root canal wall of the rat, micro-fracture or perforation of the root canal wall can easily 
occur. It therefore seems that healing of periapical lesions of the distal root was inhibited and the lesion volume 
did not decrease. To establish a model of root canal treatment in rats, it is necessary to minimise differences 
caused by operator variation and root morphology. Therefore, we considered it to be appropriate to target only 
the mesial root of the mandibular first molar in our study.

Removal of infected dentin in the root canal was performed by mechanical removal using endodontic files and 
chemical irrigation with sodium hypochlorite solution. It is important to perform minimal instrumentation in 
order to prevent from root fracture, and to provide a taper for efficient root canal irrigation and tight root canal 
filling. However, to prevent root fracture, final enlargement of the root canal was set at a maximum K-file size of 
#20 with a taper of 4%. In this experiment, the level of bacteria in the mesial root decreased from 3.2 × 107 cells to 
0.8 × 107 cells by performing infected root canal treatment (Fig. 5), and the volume of the periapical lesion in the 
mesial root decreased (Fig. 4c). However, Brown and Brenn staining confirmed that bacteria remained near the 
apical foramen and the lateral branch of the main root canal in the treated group (Fig. 6f). Lateral branches are 
present in approximately 50% of human teeth43, and complete removal of bacteria with Ni-Ti rotary files or man-
ual K-files is considered impossible44, 45. Therefore, in clinical practice, sterile treatment is thought to be impossi-
ble, and aseptic treatment is the current aim. If we can decrease the levels of bacteria in the root canal to a certain 
level and prevent new infections, inflammation of the periodontal tissue around the root apex would decrease or 
disappear. Although residual bacteria were observed in this experiment which observed the healing process up 
until 8 weeks after treatment, we believe that treatment of infected root canals targeting the rat mandibular first 
molar was clinically successful. However, since periapical lesions did not disappear completely throughout the 
experimental period of this study, further longer observation might be needed to conclude about the healing.

Bacterial DNA was detected from sound teeth in the quantitative analysis of bacteria in this study. The con-
tamination during the extraction of teeth might explain this. It is clear that the treatment group significantly 
decreased the amount of bacteria in the root compared to the control group (Fig. 5), and we consider this con-
tamination does not affect the assessment of the bacterial amount in the root because the same level of contam-
ination should be occurred in all groups. To minimise the effect of contamination, we paid close attention not 
to touch the mesial root to the oral mucosa during teeth extraction. Furthermore, the surface of the root was 
curetted using sterilized instruments to remove contaminants as much as possible. Nevertheless, bacteria were 
also detected from sound teeth in this research. Disinfection of the root surface by chemical agents might be the 
solution for this, however we did not perform it in this research since the chemical disinfection may affect bacte-
ria in the root through the apical foramen and change the amount of bacteria we targeted. Although the method 
we used in this study has a problem of contamination while processing samples, we could quantify the bacterial 
number in the whole root including the bacteria which were in the area we could not access by instruments and 
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the data reflects the actual bacterial amount. Among possible methods of measuring bacteria in the root canal at 
the present moment, this is the most practical and useful method we believe.

In this root canal treatment model in which all four root canals were treated, the volume of the lesion in the 
mesial root alone reflected a more precise treatment efficacy when compared with the volume of the entire peri-
apical lesion. This is because the roots of the rat mandibular first molar, except for the mesial root, were easily 
fractured or perforated. However, in our preliminary experiment, three (buccal, lingual and distal) roots except 
for mesial root were performed pulpotomy at the root orifice with MTA cement under the rubber-dam isolation 
at the same time as the pulp exposure, and root canal treatment was undertaken for only the mesial root at 4 
weeks after pulp exposure. We found that there was no significant difference in the lesion volume between the 
treated group and the control group during whole experimental period (data not shown). These results indicate 
the optimal condition for root canal treatment model using 10-week-old rat mandibular first molars by inducing 
apical periodontitis: (1) perform root canal treatment for all four root canals under rubber dam; and (2) evaluate 
the periapical lesions of the mesial root only.

This study confirmed the usefulness of this root canal treatment model in rats which enabled long-term obser-
vation up until eight weeks after treatment using micro-CT imaging. Using this model, which is applied to fully 
developed root canals, we can perform animal experiments to test novel clinical treatment methods or medica-
ments including anti-biofilm agents46, 47, which have previously only been tested in in vitro studies. Additionally, 
by modifying this treatment model, further research can be undertaken to clarify the role of extraradicular bio-
film on the pathological progression of refractory apical periodontitis, and to develop novel treatment methods 
for refractory apical periodontitis induced by extraradicular biofilm.

References
 1. Kakehashi, S., Stanley, H. R. & Fitzgerald, R. J. The effects of surgical exposures of dental pulps in germ-free and conventional 

laboratory rats. Oral Surg. Oral Med. Oral Pathol. 20, 340–349 (1965).
 2. Ng, Y. L., Mann, V., Rahbaran, S., Lewsey, J. & Gulabivala, K. Outcome of primary root canal treatment: systematic review of the 

literature - Part 2. Influence of clinical factors. Int. Endod. J 41, 6–31 (2008).
 3. Tronstad, L., Barnett, F., Riso, K. & Slots, J. Extraradicular endodontic infections. Endod. Dent. Traumatol. 3, 86–90 (1987).
 4. Tronstad, L., Kreshtool, D. & Barnett, F. Microbiological monitoring and results of treatment of extraradicular endodontic infection. 

Endod. Dent. Traumatol. 6, 129–136 (1990).
 5. Sunde, P. T., Olsen, I., Lind, P. O. & Tronstad, L. Extraradicular infection: a methodological study. Endod. Dent. Traumatol. 16, 84–90 

(2000).
 6. Wang, J., Jiang, Y., Chen, W., Zhu, C. & Liang, J. Bacterial flora and extraradicular biofilm associated with the apical segment of teeth 

with post-treatment apical periodontitis. J. Endod. 38, 954–959 (2012).
 7. Mamoun, J. S. A rationale for the use of high-powered magnification or microscopes in general dentistry. Gen. Dent 57, 18–26 

(2009).
 8. Suter, B., Lussi, A. & Sequeira, P. Probability of removing fractured instruments from root canals. Int. Endod. J. 38, 112–123 (2005).
 9. Torabinejad, M., Corr, R., Handysides, R. & Shabahang, S. Outcomes of nonsurgical retreatment and endodontic surgery: a 

systematic review. J. Endod. 35, 930–937 (2009).
 10. Noiri, Y., Ehara, A., Kawahara, T., Takemura, N. & Ebisu, S. Participation of bacterial biofilms in refractory and chronic periapical 

periodontitis. J. Endod. 28, 679–683 (2002).
 11. Kuremoto, K. et al. Promotion of endodontic lesions in rats by a novel extraradicular biofilm model using obturation materials. Appl. 

Environ. Microbiol. 80, 3804–3810 (2014).
 12. Asahi, Y. et al. Effects of N-acyl homoserine lactone analogues on Porphyromonas gingivalis biofilm formation. J. Periodontal Res 45, 

255–261 (2010).
 13. Maezono, H. et al. Antibiofilm effects of azithromycin and erythromycin on Porphyromonas gingivalis. Antimicrob. Agents 

Chemother. 55, 5887–5892 (2011).
 14. Baker, P. J., Dixon, M. & Roopenian, D. C. Genetic control of susceptibility to Porphyromonas gingivalis-induced alveolar bone loss 

in mice. Infect. Immun. 68, 5864–5868 (2000).
 15. Verma, R. K. et al. Virulence of major periodontal pathogens and lack of humoral immune protection in a rat model of periodontal 

disease. Oral Dis 16, 686–695 (2010).
 16. Daep, C. A., Novak, E. A., Lamont, R. J. & Demuth, D. R. Structural dissection and in vivo effectiveness of a peptide inhibitor of 

Porphyromonas gingivalis adherence to Streptococcus gordonii. Infect. Immun. 79, 67–74 (2011).
 17. Settem, R. P., El-Hassan, A. T., Honma, K., Stafford, G. P. & Sharma, A. Fusobacterium nucleatum and Tannerella forsythia induce 

synergistic alveolar bone loss in a mouse periodontitis model. Infect. Immun. 80, 2436–2443 (2012).
 18. Tagger, M. & Massler, M. Periapical tissue reactions after pulp exposure in rat molars. Oral Surg. Oral Med. Oral Pathol. 39, 304–317 

(1975).
 19. Liu, L. & Peng, B. The expression of macrophage migration inhibitory factor is correlated with receptor activator of nuclear factor 

kappa B ligand in induced rat periapical lesions. J. Endod. 39, 984–989 (2013).
 20. Hao, L. et al. A small molecule, odanacatib, inhibits inflammation and bone loss caused by endodontic disease. Infect. Immun. 83, 

1235–1245 (2015).
 21. Kawahara, T. et al. Effects of cyclosporin-A-induced immunosuppression on periapical lesions in rats. J. Dent. Res. 83, 683–687 

(2004).
 22. Favia, G. et al. Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector. Proc. Natl. 

Acad. Sci. USA 104, 9047–9051 (2007).
 23. Taylor, R. D. Modification of the Brown and Brenn gram stain for the differential staining of gram-positive and gram-negative 

bacteria in tissue sections. Am. J. Clin. Pathol. 46, 472–474 (1966).
 24. Torabinejad, M. & Kiger, R. D. Experimentally induced alterations in periapical tissues of the cat. J. Dent. Res. 59, 87–96 (1980).
 25. Moller, A. J., Fabricius, L., Dahlen, G., Ohman, A. E. & Heyden, G. Influence on periapical tissues of indigenous oral bacteria and 

necrotic pulp tissue in monkeys. Scand. J. Dent. Res. 89, 475–484 (1981).
 26. Walton, R. E. & Ardjmand, K. Histological evaluation of the presence of bacteria in induced periapical lesions in monkeys. J. Endod. 

18, 216–227 (1992).
 27. Tani-Ishii, N., Wang, C. Y., Tanner, A. & Stashenko, P. Changes in root canal microbiota during the development of rat periapical 

lesions. Oral Microbiol. Immunol. 9, 129–135 (1994).
 28. Tanomaru-Filho, M., Tanomaru, J. M., Leonardo, M. R. & da Silva, L. A. Periapical repair after root canal filling with different root 

canal sealers. Braz. Dent. J 20, 389–395 (2009).
 29. Ordinola-Zapata, R. et al. The influence of cone-beam computed tomography and periapical radiographic evaluation on the 

assessment of periapical bone destruction in dog’s teeth. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod 112, 272–279 (2011).



www.nature.com/scientificreports/

9Scientific RepoRts | 7: 3315  | DOI:10.1038/s41598-017-03628-6

 30. Farhad, A. R., Razavi, S. M. & Nejad, P. A. The use of aminoguanidine, a selective inducible nitric oxide synthase inhibitor, to 
evaluate the role of nitric oxide on periapical healing. Dent. Res. J. (Isfahan) 8, 197–202 (2011).

 31. Silva, L. A. et al. Antimicrobial photodynamic therapy for the treatment of teeth with apical periodontitis: a histopathological 
evaluation. J. Endod. 38, 360–366 (2012).

 32. Cohenca, N. et al. Tissue response to root canal irrigation systems in dogs’ teeth with apical periodontitis. Clin. Oral Investig. 19, 
1147–1156 (2015).

 33. Van Nieuwenhuysen, J. P., Aouar, M. & D’Hoore, W. Retreatment or radiographic monitoring in endodontics. Int. Endod. J. 27, 
75–81 (1994).

 34. Cochran, M. A., Miller, C. H. & Sheldrake, M. A. The efficacy of the rubber dam as a barrier to the spread of microorganisms during 
dental treatment. J. Am. Dent. Assoc. 119, 141–144 (1989).

 35. Horie, T., Ryu, T., Fujitani, M., Kawai, T. & Senda, A. Effect of direct pulp capping with MTA containing BMP. Jpn. J. Conserv. Dent 
52, 393–401 (2009).

 36. Yamasaki, M., Nakamura, H. & Kameyama, Y. Irritating effect of formocresol after pulpectomy in vivo. Int. Endod. J. 27, 245–251 
(1994).

 37. Yamasaki, M., Kumazawa, M., Kohsaka, T., Nakamura, H. & Kameyama, Y. Pulpal and periapical tissue reactions after experimental 
pulpal exposure in rats. J. Endod. 20, 13–17 (1994).

 38. Kohsaka, T., Kumazawa, M., Yamasaki, M. & Nakamura, H. Periapical lesions in rats with streptozotocin-induced diabetes. J. Endod. 
22, 418–421 (1996).

 39. Okiji, T., Kawashima, N., Kosaka, T., Kobayashi, C. & Suda, H. Distribution of Ia antigen-expressing nonlymphoid cells in various 
stages of induced periapical lesions in rat molars. J. Endod. 20, 27–31 (1994).

 40. Stashenko, P. & Yu, S. M. T helper and T suppressor cell reversal during the development of induced rat periapical lesions. J. Dent. 
Res. 68, 830–834 (1989).

 41. Liu, R. et al. Incidence of apical root cracks and apical dentinal detachments after canal preparation with hand and rotary files at 
different instrumentation lengths. J. Endod. 39, 129–132 (2013).

 42. Capar, I. D., Uysal, B., Ok, E. & Arslan, H. Effect of the size of the apical enlargement with rotary instruments, single-cone filling, 
post space preparation with drills, fiber post removal, and root canal filling removal on apical crack initiation and propagation. J. 
Endod. 41, 253–256 (2015).

 43. Ricucci, D. & Siqueira, J. F. Jr. Fate of the tissue in lateral canals and apical ramifications in response to pathologic conditions and 
treatment procedures. J. Endod. 36, 1–15 (2010).

 44. Dalton, B. C., Orstavik, D., Phillips, C., Pettiette, M. & Trope, M. Bacterial reduction with nickel-titanium rotary instrumentation. J. 
Endod. 24, 763–767 (1998).

 45. Shuping, G. B., Orstavik, D., Sigurdsson, A. & Trope, M. Reduction of intracanal bacteria using nickel-titanium rotary 
instrumentation and various medications. J. Endod. 26, 751–755 (2000).

 46. Kagan, S. et al. Anti-Candida albicans biofilm effect of novel heterocyclic compounds. J. Antimicrob. Chemother. 69, 416–427 (2014).
 47. Ma, H., Darmawan, E. T., Zhang, M., Zhang, L. & Bryers, J. D. Development of a poly (ether urethane) system for the controlled 

release of two novel anti-biofilm agents based on gallium or zinc and its efficacy to prevent bacterial biofilm formation. J. Control. 
Release. 172, 1035–1044 (2013).

Acknowledgements
This work was supported by JSPS KAKENHI Grant Number JP15H05021. We declare that we have no conflicts of 
interest with respect to the research described in this article.

Author Contributions
N.Y., Y.N., T.I., T.N., S.E. and M.H. conceived experiments; N.Y., S.M. and K.K. performed the experiments; N.Y. 
and S.M. analysed the data; N.Y., H.M. and Y.N. wrote the manuscript; all authors reviewed the manuscript.

Additional Information
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://creativecommons.org/licenses/by/4.0/

	Development of a root canal treatment model in the rat
	Materials and Methods
	Ethics statement. 
	Animals. 
	Root length/canal width measurement. 
	Root canal treatment in rats. 
	Three-dimensional measurement of the periapical lesion volume. 
	Quantification of bacteria in the root canal. 
	Histological observation. 
	Statistical analysis. 

	Results
	Measurement of root length and root canal width. 
	Three-dimensional measurement of the periapical lesion volume. 
	Quantification of bacteria in the root canal. 
	Histological observation. 

	Discussion
	Acknowledgements
	Figure 1 Experimental protocol.
	Figure 2 Rubber-dam isolation of the rat mandibular molar.
	Figure 3 Age-related change in the mesial root of the mandibular first molar.
	Figure 4 Micro-CT analysis of periapical lesions after root canal treatment in rat.
	Figure 5 Quantification of bacteria derived from the mesial root immediately after root canal treatment using real-time PCR (*P < 0.
	Figure 6 Histologic images at week 12.




