
1SCIeNTIfIC REPOrTS | 7: 3746 | DOI:10.1038/s41598-017-03497-z

www.nature.com/scientificreports

Tamm plasmon modes on 
semi-infinite metallodielectric 
superlattices
Goran Isić   1, Slobodan Vuković2,3, Zoran Jakšić   2 & Milivoj Belić3

We analyze the fundamental properties of optical waves referred to as Tamm plasmon modes 
(TPMs) which are tied to the interface of a semi-infinite two-phase metallodielectric superlattice 
with an arbitrary homogeneous capping medium. Such modes offer new ways of achieving high 
electromagnetic field localization and spontaneous emission enhancement in the vicinity of the 
interface in conjunction with absorption loss management, which is crucial for future applications. 
The homointerface, formed when the capping medium has the same permittivity as one of the 
superlattice constituents, is found to support a TPM whose dispersion overlaps the single-interface 
surface plasmon polariton (SPP) dispersion but which has a cut off at the topological transition point. 
In contrast, a heterointerface formed for an arbitrary capping medium, is found to support multiple 
TPMs whose origin can be traced by considering the interaction between a single-interface SPP and 
the homointerface TPM burried under the top layer of the superlattice. By carrying out a systematic 
comparison between TPMs and single-interface SPPs, we find that the deviations are most pronounced 
in the vicinity of the transition frequency for superlattices in which dielectric layers are thicker than 
metallic ones.

The development of nanofabrication techniques has recently enabled the experimental demonstration of various 
artificial materials consisting of subwavelength metallodielectric elements - metamaterials, designed to exhibit 
peculiar optical properties that are not present in conventional media1. Aimed at gaining control over light prop-
agation, any artificial optical material must rely on a high radiation confinement and low losses in the structure 
composites2. Surface modes on metal-dielectric interfaces offer a high radiation confinement to the surface, but 
the presence of intrinsic dissipation in the metallic component imposes severe restrictions to their applications.

Among a variety of metamaterials that have been designed and fabricated so far, the so-called hyperbolic 
metamaterials (HMMs) have attracted a rapidly growing attention3, as high quality ultrathin metal films can 
be grown4 yielding metallodielectric superlattices that support electromagnetic modes with very high wave-
numbers and large photonic density of states that enables unprecedented ability to access and manipulate the 
near-field coming from a light emitter or a scattering source5,6. HMMs can be composed of alternating metal 
and dielectric layers, of an array of metallic nanowires embedded in a dielectric and different other 2D and 3D 
metal-dielectrics7.

The aim of the present paper is to investigate the fundamental properties of surface plasmon modes localized 
at the planar interface between an arbitrary semi-infinite medium, metal or dielectric, with a semi-infinite met-
allodielectric superlattice. The term superlattice is used to emphasize the periodic arrangement of alternating 
metal and dielectric layers. Because of the analogy with electronic states localized at crystal lattice interfaces, 
we refer to these surface waves as Tamm plasmon modes (TPM). Surface optical waves at an interface between 
a metal and a purely dielectric superlattice (i.e. dielectric Bragg mirror), here referred to as Bragg TPMs, have 
been considered previously8–10. The fact that such Tamm plasmons appear within the dielectric light cones in 
both s- and p-polarization, inside the band gap of the Bragg mirror, makes them interesting for applications in 
lasers11, photodetectors12, engineering of spontaneous optical emission10 and chemical and biological refracto-
metric sensors13,14.
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In contrast to Bragg TPMs, the dispersion curves of metallodielectric TPMs have not been discussed sys-
tematically in literature so far. Metallodielectric TPMs are related to the traditional surface plasmon polaritons 
(SPPs) in that they are in-plane, p-polarized evanescent waves, but they stem from the hybridization of many 
single-interface SPPs of the metallodielectric superlattice and dielectric gap polaritons. The TPMs lie outside the 
dielectric light cone like the conventional SPPs and thus cannot escape from the flat interface, they appear when 
both the dielectric and metal layers are deeply subwavelength and have finite lateral group velocities. An impor-
tant difference between Bragg and metallodielectric TPMs, perhaps crucial for tailoring spontaneous emission, 
is that the later exist even at the interface with air while the former are always buried beneath the interface with 
the Bragg mirror.

The current relevance of metallodielectric TPMs comes from recent reports on spontaneous emission 
enhancement by metallodielectric superlattices15–17 from which it is evident that they strongly affect the photonic 
density of states of an interface although a systematic understanding of their role is still lacking.

We analyze the conditions for the TPM existence for both metallic and dielectric capping layers, and deter-
mine their dispersion, propagation lengths as well as the TPM resonance strength quantified by the reflection 
coefficient residue at the TPM pole, which is proportional to the power a point dipole placed close to the interface 
would emit into the mode18. We also analyze the predictions made within the effective medium approximation 
(EMA), which becomes accurate in the limit of vanishing layer thicknesses.

Two-phase stratified systems.  We start with a reasoning requiring the use of single-interface boundary 
conditions only with minimal technical details. In spite of its deceptively simple appearance, it allows us to reach 
a general result regarding the existance of a particular surface mode in an arbitrary two-phase metallodielectric 
system and offers the explanation for some surprisingly simple properties of homointerface TPMs. A rigorous 
transfer-matrix-based method is then used in the remainder of the paper to confirm the general statements of this 
section for the particular case of a two-phase system involving a semi-infinite metallodielectric superlattice whose 
periodicity allows us to find closed-form solutions at the homointerface.

Starting from macroscopic Maxwell equations in which a dielectric and metallic medium are characterized 
by relative dielectric permittivities εd and εm, the boundary conditions imposed on a p-polarized surface wave on 
the planar interface between two media, with transverse wavevector components qi (i = d, m), are found to imply2
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Assuming that the z-axis is perpendicular to the interface and oriented towards the metallic medium, the 
fields of the surface wave are proportional to exp(−iqdz) and exp(iqmz), in the dielectric and metal medium 
respectively, from which it follows that the imaginary parts of both qi must be positive in order to meet boundary 
conditions at infinity. This case corresponds to a magnetic field whose magnitude has a peak at the interface, as 
indicated by the top curve in Fig. 1(a).

However, Eq. (1) remains fulfilled if qi are both replaced by −qi, corresponding to fields growing exponentially 
away from the local minimum at interface, as depicted by the bottom curve in Fig. 1(a).

Introducing the Fresnel reflection and transmission coefficients as
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Figure 1.  Schematics showing the general properties of stratified two-phase metallodielectric systems with 
an odd number of interfaces. (a) Two possible magnetic field variations which fulfill the interface boundary 
conditions. (b) Definition of Fresnel reflection and transmission coefficients. (c) Magnetic field of a mode 
fulfilling both the interface and boundary conditions at infinity.
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for the opposite incidence, the case of field having the peak at the interface is seen to represent the scattered field 
for an incoming wave from either medium, when |rdm| diverges, which is equivalent19 to Eq. (1).

The analogous explanation of how the solution growing away from the interface arises, is found by assuming 
two waves are incident on the interface, the one from the dielectric side with unit amplitude and the other with 
complex amplitude a, as depicted in Fig. 1(b). By chosing a = rdm/(rdm − 1), the fields going away from the inter-
face cancel out when rdm has a pole, leaving only the incoming components which correspond to the exponential 
growth away from the interface.

The significance of the latter solution to interface boundary conditions becomes apparent when additional lay-
ers with permittivities εd and εm are inserted between the semi-infinite dielectric and metal media, which means 
adding an even number of interfaces to the initial one. Now it is seen that if the boundary conditions at each 
interface are satisfied by alternating field maxima and minima, as depicted in Fig. 1(c), the boundary conditions 
at infinity will also be fulfilled, meaning that the obtained field will represent a surface mode of the multilayer. 
Therefore, any metallodielectric multilayer capped by the semi-infinite dielectric on one side and the metallic 
medium on the other, will have at least one surface mode whose transverse wavevector components fulfill Eq. (1), 
which implies that its dispersion curve is identical with the single-interface SPP dispersion curve

β
ε ε

ε ε
=

+
k ,

(4)
dm 0

d m

d m

where βdm represents the complex amplitude of the longitudinal (parallel to interfaces) wavevector component 
and k0 = ω/c is the free-space wavenumber.

To see the implications of this general result for semi-infinite metallodielectric superlattices, we consider a 
surface wave, henceforth referred to as TPM, with a dispersion given by Eq. (4). The first condition it has to satisfy 
on a semi-infinite superlattice capped by a dielectric, as depicted in Fig. 2(a), is that it decays exponentially to the 
left, meaning that moving to the right, it has to decay in metallic layers and grow in dielectric ones. Denoting by ti 
the layer thicknesses and κi the imaginary part of qi, we see that the field amplitude is multiplied by exp(−κmtm) 
and exp(κdtd) in passing through the metal and the dielectric layer, respectively, meaning that passing through 
one unit cell, its amplitude is multiplied by exp(−κmtm + κdtd). The second condition imposed on this TPM is that 
it decays towards infinity on the right side, therefore a TPM on the dielectric-capped superlattice can exist only if

κ κ< .t t (5)d d m m

Repeating the above reasoning for the metal-capped superlattice, the field amplitude is seen to be multiplied 
by exp(κmtm − κdtd) in passing each unit cell, so a TPM with dispersion given by Eq. (4) will exist if the opposite 
is true

κ κ> .t t (6)d d m m

In the following section we show rigorously that the homointerface supports only the TPMs given by Eq. (4), 
in conjunction with conditions (5) or (6), depending on the capping medium. Under such circumstances, the 
reasoning applied in this section has a purpose of giving an intuitive explanation of several coincidences that 
might not have been expected. One interesting point to note here is that if the two possible homointerfaces of a 
given semi-infinite superlattice are considered, one being capped by the dielectric and the other by the metal con-
stituent medium as in Fig. 2(a) and (b), at any given frequency ω only one of the conditions in Eqs. (5) or (6) can 
be fulfilled, so only one of them can support a TPM. This hints that in drawing the schematics in Fig. 2, different 
values of ω have been assumed for panels (a) and (b).

Figure 2.  Magnetic field variation on homointerfaces for (a) dielectric and (b) metallic capping medium. The 
requirement that the Bloch anvelope, indicated by dashed lines, decays towards infinity on the right, yield the 
condition that κdtd < κmtm and κdtd > κmtm for (a,b), respectively. Note that the values of κd and κm used in 
panels (a,b) differ.
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Homointerface.  The general geometry of the problem is sketched in Fig. 3. The capping medium permittiv-
ity is assumed equal to one of the lattice constituents, ε1, while the second medium permittivity is ε2. This system 
will henceforth be referred to as homointerface. In determining the fields, we follow the transfer-matrix method 
of ref.20 For completeness and due to some minor differences in notation, here we briefly summarize the main 
aspects of the method.

The trasverse field phasor F in the n-th unit cell is represented as a sum of the forward and backward prop-
agating plane wave amplitudes, denoted by an and bn in medium ε1 and by cn and dn in the second medium. F 
corresponds to the electric or magnetic field for a s- or p-polarized wave, respectively. The wave amplitudes an, bn 
of adjacent unit cells are related by the translation matrix
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Here qi represent the complex wavector z-components, related with the longitudinal (in-plane) component β 
via the dispersion relation of each layer

ε β= ± − ≥q k q, Im{ } 0, (12)i i i0
2 2

with ± denoting the sign that gives qi with a non-negative imaginary part. In case of s-polarization, αi = qi while 
for p-polarization αi = qi/εi, as before.

From the above, T is seen to be unimodular for any (real or complex) εi or qi. It further implies that the prod-
uct of its two eigenvalues is unity, so they can be written in the form e±iKL, where L = t1 + t2 and K is the Bloch 
wavenumber. Here we define K so that exp(iKL) corresponds to a wave propagating towards positive infinity, 
meaning that
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where ± denotes the sign giving a non-negative imaginary part of K.

Figure 3.  Schematics of the homointerface geometry used in the transfer-matrix method. The ε1 medium 
extends from left infinity up to the interface at z = 0, after which the superlattice is formed by periodically 
repeating the unit cell comprising a ε2 and ε1 layer.
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Before proceeding further, the basic aspects of dissipation should be clarified. At visible and infrared fre-
quencies, the dominant source of dissipation, by far, are intra- and inter-band electronic transitions in the metal. 
Therefore, we assume that the dielectric has a purely real relative permittivity εd = 6.76, corresponding to titanium 
dioxide, while for metal we use the silver Drude-Lorentz parametrized experimental data from ref.21. A conven-
ient method22 to treat the problem of losses is to introduce a modified dielectric function of the metal via the 
perturbation parameter p

ε ε ε ε ε= + .pRe{ } i Im{ }, (14)p
m mm

( )
m
(1)

m

Setting p to unity recovers the original εm, while reducing it towards zero approaches smoothly the lossless 
case εm

(0) in which the optical eigenmodes can properly be defined. The latter are thus used as a convenient scaffold 
on which quantities calculated with real loss are projected. The eigenmodes of a lossless infinite superlattice, 
henceforth referred to as bulk modes, are defined as solutions of Eq. (13) having both their eigenfrequency ω and 
wavevector k = (β, K) purely real.

Depending on the relative thickness of the dielectric, td, and metal, tm, layers, the band structure of the infinite 
superlattice is known to have one of two possible topologies, corresponding to td > tm and td < tm, as indicated 
by the shaded areas in Fig. 4(a) and (b). In this paper we carry out concrete calculations for one representative 
example from both classes: td = 20 nm, td = 10 nm, shown in Fig. 4(a), and td = 10 nm, tm = 20 nm, in Fig. 4(b).

A general property of the td > tm class is that the upper and lower bulk bands intersect23 at a frequency ωT we 
shall refer to as the transition frequency. In the literature, ωT is sometimes15 referred to as the topological transi-
tion point since the band topology changes when crossing ωT. It can be shown23 that ωT is defined by the condition

ε ε ω+ =t t ( ) 0, (15)d d m m T

which can alternatively be stated as

ε ω =( ) 0, (16)T

with ε|| denoting the average in-plane permittivity (or the in-plane permittivity tensor component in EMA)

ε ηε η ε η= + − = .
t
L

(1 ) , (17)1 2
1

While it is obvious that ωT can be engineered by varying the thickness of layers in the metallodielectric super-
lattice, it is interesting that its value does not depend on the actual layer thicknesses but only on their ratio td/tm.

The bulk bands of the td < tm class are separated by βdm(ω) which lies between them. The band edges shown 
by thin (black) lines in Fig. 4 correspond to solutions having cos(KL) = 1 (inner boundaries) and cos(KL) = −1 
(outer boundaries). In a lossy system, however, there is no strict definition of band edges, but rather a continuum 

Figure 4.  Bulk band structure (shading) and TPMs (thick lines) of one typical example for each the two 
possible band structure topologies. (a) td > tm with ωT < ωspp, leading to an intersection of the bands at ωT. 
Here titanium dioxide and silver are assumed with td = 20 nm and tm = 10 nm. (b) td > tm leading to ωT < ωspp 
meaning that the upper and lower bulk bands do not intersect. Here td = 10 nm and tm = 20 nm is assumed for 
titanium dioxide and silver, respectively.
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of modes in the β − ω plane whose lifetime and propagation lengths increase rapidly around the band edges of 
the lossless system22.

Having defined the bulk bands of the superlattice, we are now ready to discuss the surface modes of the 
semi-infinite superlattice, i.e. the TPMs. By definition, the surface mode at a planar interface must be located 
outside the bulk bands of both the capping medium and the superlattice, meaning that it must be represented by 
a point in the β − ω plane outside both the light line and the shaded regions in Fig. 4.

TPMs are identified as poles of the reflection coefficient r of an incoming wave from the capping layer. The 
reflection coefficient r for the semi-infinite superlattice is determined as the N → ∞ limit of the reflection coeffi-
cient rN of a system comprising N unit cells, such that the ε1 medium of the N-th unit cell is semi-infinite. In that 
case20, aN, bN are related with a0, b0 via TN while rN is defined as the ratio of b0 and a0 when there is no incoming 
wave in the N-th layer. Using the known expression24 for TN, we find
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− −
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with A and C given by Eqs. (8) and (10). Remembering that K has at least an infinitesimaly small positive imagi-
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The condition for the existence of a TPM is that r diverges which happens when

= .A e (21)KLi

Combining Eq. (13) with Eqs. (8) and (11), the necessary condition for Eq. (21) to hold in a non-trivial case 
is found to be

α α+ = .0 (22)1 2

Since this is equivalent with Eq. (1), a TPM can exist only in p-polarization while its in-plane wavenumber 
must be qual to that of the single-interface SPP βTPM(ω) = βmd(ω).

Combining Eqs. (21) and (22) for p-polarization gives

α ε α ε=
−

= − = .K
q t q t

L (23)
2 2 1 1

1 2

Since K has a non-negative imaginary part by definition, we find that a TPM can exist on a homointerface 
only if

α ε α ε− = ≥ .Im{ } Im{ } 0 (24)1 2

For a dielectric-capped homointerface, where ε1 = εd, Eq. (24) requires ε|| to be negative in the lossless limit, mean-
ing that the TPM exist only for frequencies up to ωT, as indicated by the thick solid blue curves in Fig. 4(a) and (b). 
In contrast, the metal-capped homointerface, where ε1 = εm, supports a TPM only above ωT as ε|| must be positive. 
As ωT is below the surface plasmon resonance frequency ωspp (the upper frequency limit for SPP propagation), only 
if td > tm, a TPM on a metal-capped homointerface exists only in the td > tm class of superlattices, as indicated by the 
thick solid red line in Fig. 4(a).

Solving for Eqs. (22) and (24) with loss taken into account yields complex values for βTPM(ω), the real part of 
which is drawn in Fig. 4(a) and (b) by thick dotted lines. We find that, quite generally, at any given frequency ω 
a TPM mode with βTPM(ω) = βmd(ω) exists either on the metal- or dielectric capped superlattice, which is mani-
fested by the fact that taken together, they form the complete SPP dispersion curves βdm(ω) in Fig. 4(a) and (b).  
In the lossy case, some subtleties arise regarding the inequality in Eq. (24), as indicated by the fact that the 
metal-capped td > tm homointerface is found to support a TPM above around 3.82 eV. Such modes, however, exist 
only formally as their lifetimes are way too short to be relevant.

The above transfer-matrix-based homointerface TPM analysis thus shows formally that the TPM eigenmodes 
discussed on general grounds in Section "Two-phase stratified systems" are, in fact, the only possible surface 
modes and that they have properties very similar to single-interface SPPs. Before proceeding with details showing 
the important differences between the two, we briefly look at the problem from the EMA perspective.

In EMA, the layer thicknesses ti are assumed to be negligible relative to any length scale relevant for wave 
propagation, so the superlattice is described by two dielectric permittivities ε|| and ε⊥, with the former having 
been defined previously in Eq. (17) and the latter given by

ε
ε ε

η ε ηε
=

− +
.⊥ (1 ) (25)

1 2

1 2

The reflection coefficient for a p-polarized wave incident from a semi-infinite medium ε1 is
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while the transverse wavenumber in the effective uniaxial medium is
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The dispersion of the surface mode at the interface between ε1 and the uniaxial medium is obtained as
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Replacing ε|| and ε⊥ by expressions given by Eqs. (17) and (25), we find that βema = βdm. Since the divergence 
of rema requires qema = −α1ε||, a comparison with Eq. (23), shows that the perpendicular component of the wave 
in EMA is equal to the Bloch wavenumber

= .K q (29)ema

Therefore, EMA describes correctly not only the dispersion and condition for the existence of the TPM, but 
also its transverse extension into the superlattice quantified by the penetration depth

δ = = .
K q

1
Im{ }

1
Im{ } (30)ema

The overlap of complex dispersion curves βdm(ω), βTPM(ω) and βema(ω), corresponding to the single-interface 
SPP, TPM and the EMA surface wave, is somewhat unexpected considering that it implies an idential modal 
decay dynamics which is known to be determined by how is the modal energy distributed in space22. The fact that 
these three modes have a very different field variation in the direction perpendicular to the interface while sharing 
the same dispersion curve is, evidently, a consequence of the simple rule by which the boundary conditions in a 
two-phase stratified system can be fulfilled, as discussed in Section "Two-phase stratified systems", which allows 
the ratio of the total field energy residing in the dielectric and metal medium to remain invariant upon the inser-
tion of an arbitrary number interfaces (as long as their total number is odd).

The manner in which the presence of a surface mode modifies the optical properties of an interface is deter-
mined by how the reflection coefficient r(β), considered as a function over the complex β plane, behaves in the 
vicinity of the associated pole βpole. For example, ref.18 shows that the power emitted by a dipole located in the 
vicinity of a metal-dielectric interface is proportional to the residue apole of r(β) at βpole, evaluated as

π
β β

β β
=

−γ
∮a r d1

2 i
( ) ,

(31)
pole

pole

where γ denotes a positively oriented contour around βpole in the complex β-plane, sufficiently small so that r(β) 
is analytic within it (i.e. avoiding the branch cuts associated with qi).

The analytic expression for the single-interface SPP residue has been reported in ref.18
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Since the homointerface TPM and the EMA surface wave dispersion curves overlap with the SPP, it is straight-
forward to show that their residues are given by
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where q1 and q2 should be evaluated at βTPM, and
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respectively. The last two equations hold only if the mode exists while in case it does not, the corresponding res-
idue is zero.

Comparing the magnitudes of aspp, aTPM and aema in a td > tm type dielectric-capped superlattice, both |aTPM| 
and |aema| are seen to decrease monotonously as ω is increased towards ωT, Fig. 5(a) (blue line). This happens 
because the argument of the sine function in aTPM in Eq. (33) is, according to Eq. (23), proportional to ε|| and 
thus decreases close to zero (or becomes exactly zero in the lossless limit) at ωT. Since |aema| is the limit of |aTPM| 
for vanishing layer thicknesses (this holds by definition of EMA and is also evident by taking the ti → 0 limit of 
Eq. (33)) it is depicted by dotted lines and indicates the possible trend of the |aTPM| spectra in case the layer thick-
nesses are scaled down. Above ωT, the TPM mode of the dielectric-capped homointerface disappears, meaning 
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that |aTPM| drops to zero. In order to simplify Fig. 5, the curves corresponding to |aTPM| = 0 are omitted, so in 
Fig. 5(a) the blue and red curves are discontinued at ω = ωT. In the lossless limit (not shown), |aTPM| becomes 
exactly zero at ωT.

The opposite trend of |aTPM| is observed for the td > tm type metal-capped superlattice, where |aTPM| starts from 
small values (zero in the lossless limit) at ωT and approaches |aspp| as ω goes to ωspp. The disappearance of the TPM 
resonance around ωT is accompanied with a delocalization of the mode energy across the superlattice, as seen in 
Fig. 5(b). In the lossless limit, the penetration depth δ of the TPM mode diverges at ωT, while in the real lossy case 
shown in Fig. 5(b), δ reaches values up to around 10 microns. The penetration depth of the single-interface SPP 
shown for reference (black line), varies only a bit between 20 and 30 nm over the infrared and visible frequencies, 
up to ωspp where it has a dip.

For the td < tm class of superlattices, a simpler behavior is found, as depicted in Fig. 5(c) and (d). Here |aTPM| 
is only slightly below |aspp|, while the TPM penetrates only slightly more into the superlattice, showing no pro-
nounced spectral variations.

Figures 5(a) and (c) show that the EMA description of homointerface TPMs is not entirely accurate, after all. 
The fact that aema differs from aTPM means that EMA does not account properly for the TPM contribution to the 
reflection coefficient, meaning the it will give an erroneous TPM dispersion if any additional interface is added, 
as it is the case with a heterointerface.

Heterointerface.  A heterointerface is obtained when the capping medium permittivity εa differs from the 
permittivities ε1, ε2 of the two superlattice constituents, as shown in Fig. 6. The notation is chosen so that ε1 
denotes the permittivity of the top layer of the superlattice, which is shown below to play a major role in deter-
mining the types of TPMs supported by the interface. Denoting by a and b the plane wave amplitudes of the 
incoming and scattered wave, the heterointerface reflection coefficient rhet is defined as their ratio for excitation 
from the capping medium. Introducing the auxiliary reflection coefficient

Figure 5.  Left panels: residue at the TPM and SPP mode, drawn for the (a) td > tm and (c) td < tm examples, 
respectively. Righ panels: penetration depths into the superlattice for (a) td > tm and (c) td < tm examples, 
compared with the corresponding SPP penetration depth.
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α α
α α

=
−
+

r ,
(35)a

a

a

1

1

which corresponds to reflection on a single interface between εa and ε1, the total reflection coefficient is obtained 
as

=
+

+
.r

r r q t
r r q t

exp(2i )
1 exp(2i ) (36)

a

a
het

1 1

1 1

The condition for the existence of a TPM mode in the non-trivial case (ra ≠ 0 and r ≠ 0) is that the denomi-
nator vanishes

+ =r r q t1 exp(2i ) 0, (37)a 1 1

where we recognize the typical condition for a cavity resonance, with ra and r being the mirror reflection coeffi-
cients. In ultrathin films considered here, the real part of phase 2q1t1 is much below π, meaning that the hetero-
interface TPMs are not expected to have a Fabri-Perot character but to be formed by the modification of poles of 
either ra or r, as the rapid variation of the reflection phase in their vicinity allows the condition in Eq. (37) to be 
satisfied.

For a given frequency ω, the complex in-plane wavenumber of a TPM fulfilling Eq. (37) will be denoted by 
βn(ω), with n = 1, 2, … enumerating the existing TPMs. In contrast to the homointerface case in which only one 
TPM is allowed while the dependence of βTPM on ω is given by an analytic expression, here multiple solutions may 
exist while βn(ω) cannot, in principle, be expressed analytically. Therefore, we look for TPM modes by evaluating 
rhet(ω, β) in the β − ω plane19 and use the fact that the local density of optical states ρ(ω, β) at the interface is pro-
portional25 to the imaginary part of rhet, so that sharp maxima of |Im{rhet}| signal the presence of a TPM.

Typical rhet maps for td > tm heterointerface types are depicted in Fig. 7(a–d), with lossless single-interface 
ε ε−d m

(0) and ε ε−a m
(0) SPP dispersion curves denoted by βmd(ω) and βam(ω) drawn for reference. In order to 

sharpen the map features, we compare the maps corresponding the actual silver permittivity εm (right panels of 
Fig. 7) with ones obtained by assuming reduced losses, i.e. ε p

m
( ) with p < 1. Here we use p = 0.1, as it is found to be 

sufficient for reliably resolving the TPM dispersion in the β − ω plane. As expected, the |Im{rhet}| has higher val-
ues within the bands, and decreases rapidly with crossing the band edges indicated by thin (black) solid lines. The 
TPM modes show up as dark bands in the β − ω plane outside of the bulk bands.

A formal justification for relating the properties of the two maps is based on perturbation theory22 which 
shows that, up to the first order, the real part of the modal wavenumber Re{βn} is independent on the pertur-
bation parameter g = Im{εm}/εm, while Im{βn} has a linear proportionality. Therefore, the sharp maps in the left 
panels of Fig. 7 are used for estimating the complex βn. The estimated value is then used as a starting guess for 
a Nelder-Mead minimization method26 implemented numerically, which finds the solutions for βn, with high 
accuracy, as the minima of the absolute value of the left-hand side in Eq. (37).

In the case of a metallic top layer of the td > tm heterointerface, two TPM modes, TPM-1 and TPM-2, are iden-
tified, as indicated by thick enumerated (red) lines in Fig. 7(b). The curves representing Re{β1(ω)} and Re{β2(ω)} 
are seen to correspond well to the sharp peaks in the vicinity of βam(ω) and βmd(ω) curves in Fig. 7(a). At first, it 
might apear unusual that we do not consider the dark band in Fig. 7(a) appearing slightly above ωspp,a and having 
a negative slope. We have found that, although formally a TPM mode, it is so far from the real β-axis that the 
associated propagation length is in the nanometer range, which makes it effectively indistinguishable from the 
air-silver surface plasmon resonance. The fact that this band appears as sharp in Fig. 7(a) as TPM-1 and TPM-2, 
while numerical calculations show it is dissipated much more, indicates that the perturbation picture does not 

Figure 6.  Schematics of the heterointerface geometry. It is obtained from the homointerface geometry in 
Fig. 4 by replacing the semi-infinite ε1 medium with a semi-infinite medium εa extending from left infinity up 
to z  = −t1, so that the structure remains invariant for z > −t1. In the text we show that the TPM properties are 
determined by a combined interaction of the newly added εa − ε1 interface at z = −t1 and the homointerface at 
z = 0 buried under the top ε1 layer of the superlattice.
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work well above the top bulk band. Indeed, in the vicinity of ωspp,a the real and the imaginary part of εm have 
comparable magnitudes, meaning that |g| is not small compared to unity as required by perturbation theory22.

The fact that TPM-1 and TPM-2 in Fig. 7(b) arise by a modification of the metal-capped homointerface TPM 
and the single-interface εa − εm SPP, respectively, can be shown by considering Eq. (37). Assuming first that |raex-
p(2iq1t1)| is small around the βTPM(ω) pole of r, so that the β1(ω) pole of rhet is close to βTPM(ω), r can be written as

ω β
β β ω

≈
−

r a( , )
( )

,
(38)

TPM

TPM

which combined with Eq. (37) yields

β ω β ω≈ − .a r q t( ) ( ) exp(2i ) (39)a1 TPM TPM 1 1

This shows that if the heterointerface is obtained by gradually changing the capping permittivity from ε1 to εa, 
the dispersion curve β1(ω) gradually evolves from βTPM(ω), with a deviation increasing as ra increases and with 
a factor proportional to the homointerface TPM residue aTPM. Another important implication of Eq. (39) is that 
using EMA does not yield a correct dispersion of heterointerface TPMs because aema differs from aTPM.

Repeating a similar analysis but now assuming β2(ω) is in the vicinity of βam(ω), we find

β ω β ω≈ − a r q t( ) ( ) exp(2i ), (40)a2 am spp, 1 1

Figure 7.  Maps of |Im{rhet}| drawn in logarithmic scale with the colormap chosen so that all values outside the 
(−3, 2) interval are saturated. Top panels are drawn for superlattices terminated by a metallic layer (ε1 = εm), 
while the bottom ones correspond to a dielectric top layer (ε1 = εd). Left panels: maps obtained by multiplying 
the imaginary part of the silver permittivity by p = 0.1 in order to sharpen the features and render TPMs visible. 
Right panels: maps obtained by taking the loss fully into account. All maps correspond to the td > tm example. 
The two slanted dashed lines represent the εa and εd light lines.
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Figure 8.  In-plane propagation length L|| for TPMs whose dispersion of Re{βn(ω)} is drawn in (a) Figs 7 and 
(b) and 9. The solid lines denoted as SPP and SPPa are the L|| values corresponding to the εd − εm and εa − εm 
interface SPPs.

Figure 9.  Maps of |Im{rhet}| fully analogous to those drawn in Fig. 7, except that here the td < tm example is 
considered.
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which shows that β2(ω) will be very close to βam(ω) if |r exp(2iq1t1)| is small which e.g. is a good approximation 
for t1 = tm = 20 nm, or higher. Equations (39) and (40) thus allow us to classify the heterointerface TPMs into 
homointerface-like (TPM-1) and SPP-like (TPM-2).

The bottom two panels of Fig. 7 show the case in which the td > tm superlattice is terminated by the dielectric 
layer. Here only one solution, TPM-3, exists which evidently originates from the dielectric-capped homointerface 
TPM meaning it falls under the homointerface-like TPM type.

The thick TPM dispersion curves in Fig. 7 show the real part of the modal in-plane wavenumber βn. The cor-
responding imaginary parts determine the lateral propagation length of the mode

β
= .L 1

Im{ } (41)n
n

,

The values obtained for the realistic (lossy) case are shown in Fig. 8(a), together with reference values cor-
responding to SPPs on εd − εm (denoted as SPP) and εa − εm (denoted as SPPa) single interfaces. At lower fre-
quencies, both TPM-2 and TPM-3 are seen to have L|| values between the two single-interface SPP limits. As 
ωT is approached, the propagation length of TPM-3 drops which is a result of the reduced group velocity, cf. the 
reduced slope of TPM-3 in the vicinity of ωT in Fig. 7(d). The L|| value of TPM-2 also drops above ωT, but here the 
reason is that it hybridizes with bulk modes in the superlattice and free space modes in the εa light cone and leaks 
away from the surface, cf. Fig. 7(b) where the thick (red) line denoted by 2 is seen to enter the εa lightcone once 
it enters the upper bulk band. Finally, TPM-1 is seen to have extremely low propagation lengths (below 100 nm) 
over the entire spectrum in which it is supported, which is the concequence of the vicinity of the SPP resonance 
at ωspp.

Analogous rhet maps obtained for the td < tm example are plotted in Fig. 9(a–d). As here ωT > ωspp, 
homointerface-like TPMs appear only in the case of a dielectric top layer, as indicated by the TPM-2 and TPM-3 

Figure 10.  Left panels: residue at the TPM and SPP modes, drawn for the (a) td > tm and (c) td < tm examples, 
respectively. Righ panels: penetration depths into the superlattice for (b) td > tm and (d) td < tm examples, 
compared with the corresponding SPP penetration depth. SPP and SPPa stand for the εd − εm and εa − εm 
interface SPPs, respectively.
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lines in Fig. 9(d). The shape of the TPM band indicated in Fig. 9(c) shows that the effect of replacing titanium 
dioxide by air as the capping medium blueshifts the homointerface TPM and deforms it so that its slope becomes 
zero around β ≈ 35 μm−1 and negative for larger β. This implies that at frequencies slightly above ωspp there are 
two TPM modes, which is confirmed by the numerically found TPM-2 and TPM-3 dispersion curves in Fig. 9(d). 
Here it should be noted that the TPM-3 curve represents −Re{β3}(ω), i.e. the actual dispersion curve lying in the 
β < 0 half-space is folded to the positive sided for a compact representation, see also refs22,23, for further discus-
sion of this topic.

The TPM mode of the td < tm superlattice with metallic top layer is a modified εa − εm single-interface SPP, as 
evident from its dispersion in Fig. 9(a) and (b), where it is seen to closely follow the βam(ω) curve, up until hybrid-
izes with modes from the upper bulk band after which the pole shifts into the εa light cone and starts leaking out 
into both the superlattice and capping layer propagating modes. The propagation lengths of the TPM modes of 
the td < tm example are shown in Fig. 8(b).

The resonance strength and confinement degree of heterointerface TPM modes for the considered two super-
lattice types is summarized in Fig. 10(a–d). Perhaps the most relevant case is that of the td > tm supperlattice with 
a dielectric top layer supporting TPM-3 depicted in Fig. 10(a). Similarly as its homointerface counterpart, by the 
perturbation of which TPM-3 is formed, the resonance strength of this mode is seen to rapidly decrease as ωT is 
approached while it becomes delocalized across the superlattice, as seen in Fig. 10(c).

Summary and conclusion.  This paper presents a systematic analysis of surface waves on two-phase 
semi-infinite metallodielectric superlattices. As their character is determined by the properties of the periodic 
arrangement of unit cells, in analogy with surface electronic states in crystals, these waves are termed Tamm 
plasmon modes.

It is shown that if the capping medium has the same permittivity as one of the superlattice constituents, a case 
referred to as the homointerface, TPM modes can exist only along the single-interface SPP dispersion curve and 
that there exists a critical frequency ωT which represents the upper limit for the TPM existence in the dielectric- 
and the lower frequency limit in the metal-capped superlattice and is determined by the superlattice composition 
and relative layer thicknesses. This fact is particularly relevant if ωT is below the SPP resonance frequency, which 
happens if the dielectric layers are thicker than the metal layers. Both the dielectric- and metal-capped TPMs 
become delocalized across the lattice when ωT is approached, while the strength of the corresponding resonance, 
quantified by residues of the reflection coefficient at the associated poles, dies out.

The heterointerface, where the capping medium permittivity differs from that of the superlattice constituents 
and most relevant in practice as it includes the case of the superlattice exposed to air, is found to be exhibit a 
more complex behavior. We show that the heterointerface TPMs can be analyzed as resulting from either the 
capping-top layer interface, or an homointerface TPM located at the interface between the top layer and the rest 
of the superlattice. The homointerface-like TPMs, originating from the latter group, are found to also exhibit the 
critical behaviour around ωT.

In view of the significance of the effective medium approximation for the ongoing research on hyperbolic 
metamaterials, we have also compared its predictions against the exact theory. Somewhat surprisingly, we find 
that EMA accurately describes several important aspects of homointerface TPMs with arbitrary layer thicknesses, 
including the critical behaviour, but that it fails entirely in the heterointerface case.

These results are important for engineering the optical properties of semi-infinite metallodielectric superlat-
tices which have recently been receiving strong attention in connection with enhanced spontaneous emission into 
the bulk superlattice modes. The analysis reported here should help quantify the individual contributions of the 
bulk and TPM modes in the total optical density of states at the interface and thus tailor the amount of emitted 
light that propagates through the superlattice or stays tied at the interface, respectively.
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