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Reconfigurable all-dielectric 
metasurface based on tunable 
chemical systems in aqueous 
solution
Xiaoqing Yang, Di Zhang, Shiyue Wu, Yang Yin, Lanshuo Li, Kaiyuan Cao & Kama Huang

Dynamic control transmission and polarization properties of electromagnetic (EM) wave propagation 
is investigated using chemical reconfigurable all-dielectric metasurface. The metasurface is composed 
of cross-shaped periodical teflon tubes and inner filled chemical systems (i.e., mixtures and 
chemical reaction) in aqueous solution. By tuning the complex permittivity of chemical systems, the 
reconfigurable metasurface can be easily achieved. The transmission properties of different incident 
polarized waves (i.e., linear and circular polarization) were simulated and experimentally measured 
for static ethanol solution as volume ratio changed. Both results indicated this metasurface can serve 
as either tunable FSS (Frequency Selective Surface) or tunable linear-to-circular/cross Polarization 
Converter at required frequency range. Based on the reconfigurable laws obtained from static solutions, 
we developed a dynamic dielectric system and researched a typical chemical reaction with time-
varying permittivity filled in the tubes experimentally. It provides new ways for realizing automatic 
reconfiguration of metasurface by chemical reaction system with given variation laws of permittivity.

All-dielectric metamaterials were emerged as alternatives for constructing NRIM (Negative refractive index 
media) due to their advantages in low loss and symmetric design towards lossy metal-based structure. And their 
two dimensional analogues-metasurfaces were always used for adjusting the operating frequencies, transmissions 
and polarizations of EM wave.

The last decade, tunable metasurfaces for dynamic control EM wave propagation have gained some profound 
progress. They usually consist of a 2-D periodic array of resonator etched of conducting patches/strips printed on 
a dielectric substrate and modulatory elements. Several typical modulatory principles have been more recently 
considered to achieve tunability including tunable lumped elements1, 2, micromechanical devices3, 4, controllable 
liquid crystals5, 6, graphene7, 8, and microfluids/liquid metals9, 10. However, since the existence of metallic parts 
which were prone to breakdown, oxidization and corrosion, they can hardly be applied in complicated circum-
stances. Therefore, it is imperative to develop new types of tunable metasurfaces without using metallic structures.

The study of the application of tunable dielectric metamaterials well solved above-mentioned problems and 
were widely applied to frequency-selective surface11. Barton12, 13 developed genetic algorithms and fast Fourier 
transforms to generate random geometries and successfully tested the all-dielectric FSS. Meanwhile, Lepetit14 
and Wang15 experimental realized left-handed metamaterial in all-dielectric composite cubes/rods. Li16 pro-
posed all-dielectric metamaterial FSS at microwave frequencies based on high-permittivity ceramic resonators. 
By adjusting the geometrical parameters of the ceramic resonator, it can inspire the desired resonant modes for 
designing tunable or reconfigurable metamaterials. Li17 further realized reconfigurable EM responses between 
two adjacent stopbands by mechanically tuning the orientation of the ceramic resonators. With the development 
of all-dielectric metamaterials, tunable or reconfigurable methods were further proposed and realized toward 
high-frequency applications in terahertz18, 19, infrared20, 21 and even optical regions22. However, there always exist 
some defects of these reconfigurable methods, such as high cost, hard processing and difficult to operate in prac-
tice, etc.

Until recently, water, a neglected material, has been employed for negative-index optical metamaterials23, 
acoustic metamaterials24 and EM metamaterials25. Andryieuski26 proposed to use the properties of water for 

School of Electronics and Information Engineering, Sichuan University, Chengdu, 610065, China. Correspondence 
and requests for materials should be addressed to X.Y. (email: corresponding.yyxxqq_mail@163.com)

Received: 20 December 2016

Accepted: 4 May 2017

Published: xx xx xxxx

OPEN

mailto:corresponding.yyxxqq_mail@163.com


www.nature.com/scientificreports/

2Scientific RepoRts | 7: 3190  | DOI:10.1038/s41598-017-03439-9

tunable transmission of EM waves through a system of partially filled water meta-atoms. Tunability was provided 
by the gravity force, which readily reshaped the water volume in each elementary reservoir with rotation of the 
whole system of the meta-atoms. In such configuration, the water-based metamaterials can be definitely consid-
ered as the simplest and potentially the cheapest realization of a tunable transmission of EM waves. Then Mikhail 
Odit27 provided the experimental demonstration of this functional device. However, its tunable range is limited 
to the rotated angle of 90° and it is not applicable for high-efficiency cross-polarization wave conversions, as well 
as for linear-to-circular polarization wave conversions.

In this paper, we proposed a novel reconfigurable method of all-dielectric metasurface by the “chemical 
ways”, which made use of the most common nature-friendly material, namely, water and its solution. Not only 
its superiority of abundance and low price but also the functionality is typically high-permittivity, which serves 
to compensate the lack of free carriers by employing Mie resonances28, 29. Therefore, the fabricated metasurface 
is cheap, easy processing and in good operability. The operating frequencies, transmissions and polarizations 
can be modulated by injection of different volume ratio of mixture solution, which is equivalent to changing the 
complex permittivity. Based on calculated mixture permittivities and experimental measured results, a simplified 
calculated model was derived for predicting the maximum magnitudes and their corresponding frequency shifts 
that related changes of complex permittivity.

According to three filled states of two oriented tubes, the metasurface shows tunable pass-band characteristics 
for incidence of y- or x-polarization wave, as well as tunable linear-to circular polarization or cross-polarization 
conversion characteristics at required frequency. In addition, we developed the chemical reaction with 
time-varying complex permittivity as reconfigurable mechanism and experimentally demonstrated the transmis-
sion curves can spontaneously change as the time progresses without extra control system. This principle provides 
new ways for realizing automatic reconfiguration of metasurface by chemical reaction systems with given vari-
ation laws of permittivity. Hence, the proposed metasurface is easily reconfigurable and multifunctional, which 
provides new ways to manipulate EM wave propagation.

Methods
The design theory of all-dielectric metasurface. High-permittivity dielectric metamaterials working 
in the microwave region, can be designed by effective medium theory and dielectric resonant theory. Due to the 
open circuit state at the dielectric/air interface, when EM waves enter the resonators, they are reflected on the 
inside walls of the dielectric particle and the power can be forced inside the dielectric by the high-permittivity. 
This forms standing waves and results in different resonant modes inside the dielectric resonator16. In fact, the 
transmission characteristics of metasurface are mainly determined by the effective impedance of the metasurface, 
which is, matching in the pass-band while mismatching in the stop-band. Thus, the transmission characteristics 
of all-dielectric metasurface can be adjusted via the resonant modes of the dielectric resonators17. To design FSSs 
with pass-band or stop-band in the considered frequencies, tuning complex permittivity of dielectric resonators 
is equivalent to tune the effective EM impedance. Thus, in the framework, all-dielectric FSSs can be well designed. 
Meanwhile, rotation of this metasurface would have different effect on the circular polarized wave transmissions 
and conversions. Such behavior towards circular polarization can be used for designing Polarization Converters. 
This can be explained by the bianisotropy of the metasurface. However, detailed characterization of the bianiso-
tropic properties of the metasurface is beyond the scope of the Letter.

Simulation and measurement. The proposed metasurface is composed of teflon tubes periodically 
arranged in two orthogonal directions, paralleled to the x-axis and y-axis separately, as seen in Fig. 1(a). The outer 
and inner diameter of teflon tubes are R = 6 mm and r = 5 mm, while the intervals of adjacent tube are Lx = 20 mm 
and Ly = 20 mm respectively. The inner materials of tubes are simply filled with different aqueous solution for 
reconfiguration. Full-wave simulation of the metasurface transmission coefficient upon the plane-wave excitation 

Figure 1. (a) Schematic of the unit cell of teflon tubes. (b) Photograph of the experimental setup.
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was conducted using the frequency domain of CST Microwave Studio solver. Two Bloch-Floquet ports along the 
z direction in the far-field were used. And the unit cell periodic boundary conditions were imposed for single 
element, so that the structure and the incident wave are periodically repeated along x- and y-axis. To demonstrate 
the reconfiguration, the corresponding theoretical value of complex permittivity for different mixture solution 
was substituted into simulation.

The prototype of the tunable aqueous solution metasurface was fabricated manually, without complicated 
and high-precision processing, and experimentally investigated in an anechoic chamber, as shown in Fig. 1(b). 
There are 9 experimental tubes placed on the opposite sides. The front and back tubes are respectively closed to 
transmitting and receiving antennas. And the sample occupies an area of 200 mm × 200 mm. Each termination 
was blanked off by rubber plug and easily opened up for injection of aqueous solution. All tubes were filled up by 
injection of replaceable mixture solutions. The metasurface was supported by antenna pedestal with a stationary 
glass rod. A pair of identical rectangular linear polarized broadband horn antennas (180 × 140 mm2) connected to 
the coaxial ports of an Agilent E8363C Vector Network Analyzer was used to perform emission and detection of 
plane wave. Two LCP-antennas and one RCP-antenna made of helical antennas30 (maximum diameter is 75 mm) 
were fabricated in order to perform and separate circular polarization characterization. Antennas were matched 
in the frequency range of 2–3 GHz. The measured metasurface was located at the distance of 1 m to both the 
transmitting and receiving antennas, which meet the far-field condition.

Complex permittivity of chemical systems in aqueous solution. The ε can be expressed by the 
formulation:

ε ε ε= ′ − ″j (1)

where ε′ and ε″ are the real and imaginary part of the complex permittivity, which respectively affects the reso-
nant properties and reveals the loss of microwave energy.

Based on our previous researches in characterization of dielectric properties in materials31, mixture solution32 
and reaction system33, 34, we divided the tunable chemical systems into two parts, static mixture aqueous solutions 
(time-invariant permittivity) and dynamic chemical reactions (time-varying permittivity).

For static mixture aqueous solutions, we theoretically calculated mixture effective permittivity (εeff) of anhy-
drous ethanol (εi = 7.4581 + j6.6545) and ultra-pure water (εe = 73.1202 + j1.4143) in different mixture propor-
tion by Bruggeman formula35,
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Where α denotes volume ratio of ethanol/ultra-pure water, v equals to 2 in the case of two mixture solutions. 
Fortunately, though the solutions are typically frequency-varying media, their permittivities are slightly linear 
change within the range of 2–3 GHz. For simplification, the frequency-varying permittivity in total range can be 
equivalent to the constant values under 2.45 GHz which is always used for permittivity measurement. As seen in 
Table 1, we have calculated the complex permittivity and their difference of five groups for simulations and exper-
iments, where ε ε ε∆ ′ = ′ − ′mix e , ε ε ε∆ ″ = ″ − ″mix e , with subscript (mix) for the mixture solution and (e) for the 
ultra-pure water. Notably, volume ratio is defined as ethanol over ultra-pure water through full paper.

As for dynamic chemical reactions in aqueous solution, most researches have manifested the complex permittivity 
varies with reaction time due to the concentration change of reactants and products or temperature variation of reac-
tion system. The real part and imaginary part of complex permittivity often appear different variable laws in terms 
of various reaction types. This principle is expected to apply for realizing automatic reconfiguration of metasurface.

Results
Due to the periodic structure that is constructed by front and back array tubes, different filled states of two ori-
ented tubes would emerge heterogeneous EM responses. Considering the symmetries, we manually divided the 
filled states into three types for static mixture solutions:

State 1: Same aqueous solutions were filled both in front and back tubes.
State 2: Variable aqueous solutions just filled in back tubes while front tubes keep filled ultra-pure water.
State 3: Variable aqueous solutions just filled in front tubes while back tubes keep vacuum.

Volume ratio (ethanol/ultra-pure water) ε′ ε″ ε′ ε″

0:1 73.1202 1.4143 0 0

1:25 69.5485 1.8569 −3.5717 0.4426

1:10 64.7185 2.4786 −8.4017 1.0643

1:6 59.9898 3.1135 −13.1304 1.6992

1:4 54.8673 3.8297 −18.2529 2.4154

Table 1. The calculated value and their difference in different volume ratio of ethanol/ultra-pure water 
(2.45 GHz, 25 °C).
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Besides, dynamic chemical reaction system with time-varying permittivity filled in the State 3 was experimen-
tally researched.

State 1. Figure 2 gives an example to explain the resonance characteristics firstly, and then shows the tunability 
of transmissions varied with volume ratio. Figure 2(a) presents the simulated transmission/reflection magnitudes 
of filled ultra-pure water for normally incident of y-polarized plane waves. There is transmission dip at about 
2.78 GHz, which indicates the microwave cannot propagate. The normalized impedance36 shown in Fig. 2(b) 
can explain why the stop-band forms. From 2.2 GHz to 2.6 GHz, the normalized impedance is 1, which indicates 
the system is in good match, so the metasurface is transparent to EM waves. After that, this value drops to the 
minimum due to the strong electric resonance, the impedance matching becomes worse, resulting in reduced 
transmission. The origin of the resonance can be further explained using the dielectric resonator theory. When 
EM waves enter the metasurface, they are reflected upon the dielectric-air interfaces, which forms standing waves. 
The field distribution inside the high-permittivity dielectric can be equivalent to an electric dipole and result in 
electric resonance. Figure 2(c) shows all transmissions reach the maximum firstly and then drop to the minimum. 
The peak magnitudes are downward while the corresponding resonant frequencies are upward with the increase 
of volume ratio. Moreover, the calculated insertion loss is extended from 1.1 dB to 6 dB in the pass-band. The 
insertion loss can be improved by employing low loss solvent, such as methanol, acetic acid and so on. Figure 2(d) 
shows maximum magnitudes and their corresponding frequencies varied linearly with volume ratio.

Thus, a simplified predictive model that relates changes in the complex permittivity to frequency and maxi-
mum shifts can be derived with the respective following matrix form37 as
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The coefficients of the model in (2) are over determined by a set of linear measured datasets in Table 2. The 

least-squares method explained in ref. 36 can be used to approximate the interdependency as
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By substituting the complex permittivity from Table 1 into predictive model, the calculated variations are 
shown in Table 2 as well as the relative error. With the variations of complex permittivity increasing, the absolute 
values of relative error between measurements and calculations get smaller. It indicates that the predictive model 
is more accurate for significant change of complex permittivity. The similar predictive model can be founded for 
state 2 and state 3 by the above-mentioned method. There is no need to repeat in the following sections.

Figure 2. (a) Simulated transmission and reflection for filled ultra-pure water in dB. (b) The normalized 
impedance for filled ultra-pure water. (c) Simulated transmissions for state 1. (d) Simulated (solid) and 
measured (open) maximum magnitudes and their corresponding resonant frequencies vary with volume ratio 
for state 1.
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State 2. The front tubes are set to parallel to x-axis. Figure 3 shows the reconfigurable transmission proper-
ties of linear polarization (E∥y denotes y-polarization and E∥x denotes x-polarization) and circular polarization 
(LCP denotes Left Circular Polarization and RCP denotes Right Circular Polarization). Figure 3(a2,b2) show 
the variable transmissions of y-polarization and x-polarization respectively. Both of them reach the maximum 
firstly and then drop to the minimum. The differences between them are the former keep all the minimums at 
2.78 GHz while the latter maintain all the maximums at 2.54 GHz, no matter what the volume ratios are. By 
increasing the volume ratio of ethanol, the transmission characteristics can be easily reconfigurable, realizing 
the increase of insertion loss and the bandwidth for incidence of different polarization waves. Figure 3(c2) shows 
the cross-polarization (LCP-RCP) transmissions are under 0.4 and co-polarization (LCP-LCP) transmissions 
achieve up to 0.78. It suggests that the metasurfaces have strong ability for circular polarization-conserving trans-
mittances at required frequency. Simulated and measured magnitudes are compared in Fig. 3(d2) at 2.45 GHz 
and they are in good agreement. Transmissions of different incident polarized wave monotonously change with 
volume ratio respectively and the similar predictive model can be founded by the same way illustrated in State 1.

State 3. Likewise, the front tubes are set to parallel to x-axis. Figure 3(a3) shows transmissions of 
y-polarization stay at 0.98 below 2.5 GHz, then drop quickly and split due to transmission characteristics of dif-
ferent permittivity. By tuning the mixture ratio, the metasurfaces can serve as tunable low-pass FSS (Frequency 
Selective Surface). Figure 3(b3) shows transmissions achieve maximum firstly, and then drop to the minimum. 
Differently, they work as tunable band-pass FSS. Figure 3(c3) shows the co-polarization transmissions are under 
0.6 while cross-polarization transmissions achieve up to 0.78. It indicates that the metasurfaces have strong ability 
for cross-polarization conversions at required frequency. Simulated and measured magnitudes are compared in 
Fig. 3(d3) at 2.45 GHz and they are in good agreement. Similarly, it can be good linear fitting for predictive model 
at specific frequency.

The PCR (Polarization Conversions Ratio) is defined to represent the ratio of cross-polarization wave in total 
transmitted wave,

=
+

PCR T
T T( ) (5)

LR

LL LR

2

2 2

TLR represents transmission of LCP-RCP, TLL represents transmission of LCP-LCP. The measured PCRs are shown 
in Table 3 for state 2 and state 3. The cross-polarization conversion ratios nearly monotonously change with 
volume ratio. It suggests that the metasurfaces can be reconfigurable for high-efficiency tunable Polarization 
Converter for cross-polarization conversions at required frequency by tuning the volume ratio or filled state at 
specific frequency.

For charactering its ability of LP-CP (linear-to-circular polarization), the sample was anticlockwise rotated 
45 degree around z-axis as shown in Fig. 1(b). Figure 4(a) presents the reconfigurable transmissions of LP (take 
y-polarization as example) to CP. The Y-LCP transmissions firstly decrease to the minimum and then increase 
while the Y-RCP transmissions behave in the opposite way. The metasurfaces serve as Polarization Converter 
which high-efficiently convert y-polarization to RCP. With the increase of volume ratio, the transmission max-
imums decline while the pass-bands are broadened. Figure 4(b) gives the PCRs (here we denote Y-LCP as TLR 
for calculations) in the whole frequency range. One can see that the converter efficiency is extended from 0.12 to 
0.98. The workable bandwidth is broadened with increase of volume ratio, even out of the measured frequency 
range. As seen in Fig. 4(c), the transmissions of different polarized waves and their PCRs change significantly 
with volume ratio. At 2.4 GHz, the magnitudes of Y-LCP keep small but increase with the volume ratio, while the 
magnitudes of Y-RCP show the opposite trends. At 2.78 GHz, the Y-LCPs drop slightly but Y-RCPs rise signifi-
cantly with the volume ratio increasing. Then we consider the PCRs, which both drastically rise at two different 
frequency. It demonstrates the metasurfaces can be easily reconfigurable for high-efficiency tunable linear to 
circular polarization conversions by tuning the volume ratio.

Chemical reaction system. Since the mixture solutions are time-invariant, it is hard to realize automatic 
time-varying reconfiguration of metasurface by mechanically modulating. Therefore, it is necessary to develop 
a time-varying tunable system filled in the tubes for realizing continuously and automatically reconfigurable 
metasurface. The chemical reaction in aqueous solution is a typical time-varying permittivity system, while the 
variation laws of permittivity can be artificially set by different initial concentrations or reaction conditions. Once 
we obtained the variation laws of various reaction types, the ‘chemical metasurface’ can be applied in specific con-
trolled situation, and meet different requirements of automatic modulation. This principle is expected to provide 

Measurement
Calculation 
(Prediction Model) |Relative Errors|

Δf0 Δ|S21| Δf0 Δ|S21| Δf0 Δ|S21|

0.08 −0.0475 0.0688 −0.0422 15% 11.15%

0.16 −0.09096 0.1627 −0.0925 1.68% 1.69%

0.25 −0.13204 0.2555 −0.1343 2.2% 1.71%

0.36 −0.17269 0.3570 −0.1714 0.83% 0.074%

Table 2. Measured, calculated variations and their relative errors. The relative errors refer to the differences 
between calculation and measurement divided by calculated values.
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new ways for realizing automatic reconfigurable metasurface by using chemical reaction system with specific 
variation laws of permittivity.

In order to prove the feasibility, we selected two typical reactions whose variation laws of permittivity were 
obtained33. The reaction equations are saponification reaction

+ → +CH COOC H NaOH CH COONa C H OH (6)5 2 5 5 2 5

and acetone iodination reaction34

+ + + → + + +KIO 5KI 6HCL 3CH COCH 3CH COCH I 6KCL 3HI 3H O (7)3 3 3 3 2 2

The initial concentrations are same as references and the reaction was performed under 25 °C. The meas-
urement results of the transmissions at various frequencies for y- and x-polarization are shown in Fig. 5. The 
reactants were fast injected and measurements were conducted after 60 s. Data are collected every 10 s, but only 
a few curves representing sample data are plotted. The curves illustrate how the transmissions change as the time 
progresses, which corresponds to the change of the effective permittivity of the solution during the reaction. For 
saponification reaction (6), the shifts of transmission curves are relative small due to the imperceptible changes 
of permittivity, as shown in Fig. 5(a). Such a slow change of less than 5% cannot be any useful in the practical 

Figure 3. (a2,a3) Simulated transmissions of y-polarization for state 2 and state 3. (b2,b3) Simulated 
transmissions of x-polarization for state 2 and state 3. (c2,d2) Simulated conversions of LCP-LCP and LCP-RCP 
for state 2 and state 3. (d2,d3) Simulated (solid) and measured (open) magnitudes vary with volume ratio at 
2.45 GHz for state 2 and state 3.

State/Polarization
Volume Ratio 
PCR 0:1 1:25 1:10 1:6 1:4

State 2
2.45 GHz 0.00523 0.00536 0.04999 0.10818 0.16433

2.78 GHz 0.05487 0.1223 0.60337 0.68925 0.80095

State 3
2.45 GHz 0.70226 0.60607 0.50417 0.44231 0.40164

2.78 GHz 0.82435 0.89172 0.84145 0.75659 0.62507

Table 3. The PCRs of Cross-Polarization at 2.45 GHz and 2.78 GHz for state 2 and state 3.

Figure 4. (a) Simulated transmission of Y-CP (b) Calculated PCRs vary with volume ratio (c) Simulated (solid) 
and measured (open) magnitudes vary with volume ratio at 2.4 GHz and 2.78 GHz respectively.
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applications. Therefore, we further introduced the acetone iodination reaction (7) with significant changes of per-
mittivity over time and measured the transmissions. Figure 5(b,c) show variable transmissions of y-polarization 
and x-polarization respectively with reaction time. The transmission dips are downward in Fig. 5(b) while the 
peaks are upward in Fig. 5(c) as the time progresses. Figure 5(d) shows 10 sets of measured data for dip or peak 
magnitudes and their corresponding frequencies over time. In the case of different incidences, the curves present 
different variation trends for about 400 s. Finally, they remain nearly constant due to stop of reaction. Similarly, 
other chemical reaction can be designed deliberately and meet different reconfiguration requirements by tun-
ing the concentration of reactants or temperature of reaction system. This principle provided new reconfigur-
able ways for wireless communication system by using chemical reaction system with given variation laws of 
permittivity.

Discussion
We proposed and fabricated reconfigurable all-dielectric metasurface consisting of cross-shaped periodic teflon 
tubes based on mixture solution or chemical reaction. The numerical simulations and experimental measure-
ments proved that either linear polarization or circular polarization wave can be easily modulated by tuning the 
complex permittivity of chemical systems. According to three filled states of two oriented tubes, we demonstrated 
the proposed metasurfaces can either sever as tunable FSS or Polarization Converter. The metasurface array 
was linear polarization angle dependent, which shows tunable pass-band characteristic for incidence of y- or 
x-polarization. Moreover, the proposed metasurface can dynamically achieve high-efficiency linear-to-circular/
cross polarization conversions at required frequency range. Furthermore, we developed chemical reaction 
with time-varying complex permittivity as tunable mechanism and experimental demonstrated the ‘chemical 
metasurface’ can automatically modulate of EM wave without extra control system. It provides new ways for 
realizing automatic reconfigurable metasurface by using chemical reaction system with given variation laws 
of permittivity. The potential of automatic modulation can be further studied by other reaction types, such as 
Belousov-Zhabotinsky reaction, which serves as a classical example of non-equilibrium thermodynamics, result-
ing in the establishment of a nonlinear chemical oscillator and realizing of periodically automatic reconfigura-
tion. The main advantages of proposed metasurface are cheap, convenient and easily reconfigurable, as well as 
multi-functional for polarized wave modulation and conversion. It has the potential to realize automatic recon-
figuration and will has promising future in wireless communication systems such as RCS reduction techniques 
and reconfigurable antenna systems.

Similar reconfigurable concepts can be applied to metamaterial absorber, especially high-cost electrolyte solu-
tion that is naturally high-absorption for high-frequency application. It has potential to realize reconfigurable 
absorber of broadband in various products including transparent and conformal materials. Using the plasticity of 
liquid materials, the wearable microwave all-dielectric metamaterial with tunable frequency selective and cloak-
ing effects can also be designed. This reconfigurable technology will benefit many electromagnetic applications, 
such as frequency tuning, polarization conversion, electromagnetic absorption and shielding.

Figure 5. (a) Measured transmission of y-polarization and x-polarization for saponification reaction. 
(b) Variable transmissions of y-polarization for acetone iodination reaction. (c) Variable transmissions of 
x-polarization for acetone iodination reaction (d) Measured data for dips or peaks magnitudes and their 
corresponding frequencies over time.
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