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Vegetation changes and land 
surface feedbacks drive shifts in 
local temperatures over Central 
Asia
Xiuliang Yuan   1,2,3,4, Wenfeng Wang1, Junjie Cui1,2, Fanhao Meng1,2, Alishir Kurban1,4 & 
Philippe De Maeyer   3,4

Vegetation changes play a vital role in modifying local temperatures although, until now, the climate 
feedback effects of vegetation changes are still poorly known and large uncertainties exist, especially 
over Central Asia. In this study, using remote sensing and re-analysis of existing data, we evaluated 
the impact of vegetation changes on local temperatures. Our results indicate that vegetation changes 
have a significant unidirectional causality relationship with regard to local temperature changes. 
We found that vegetation greening over Central Asia as a whole induced a cooling effect on the local 
temperatures. We also found that evapotranspiration (ET) exhibits greater sensitivity to the increases 
of the Normalized Difference Vegetation Index (NDVI) as compared to albedo in arid/semi-arid/semi-
humid regions, potentially leading to a cooling effect. However, in humid regions, albedo warming 
completely surpasses ET cooling, causing a pronounced warming. Our findings suggest that using 
appropriate strategies to protect vulnerable dryland ecosystems from degradation, should lead to 
future benefits related to greening ecosystems and mitigation for rising temperatures.

Recent studies indicate that the Earth is experiencing a profound greening trend as a result of elevated CO2 
fertilization, climate change and land cover change1, 2. Coincident with vegetation greening, evapotranspiration 
(ET) has been increasing over the past three decades at a rate of ~0.88 mm year−1, and more than half of the solar 
energy absorbed by land surfaces has been dissipated3, 4. Today, the Northern Hemisphere would be 15–25 °C 
warmer if the terrestrial ET was zero5, implying that an increase in ET associated with vegetation greening has a 
strong influence on locally cooling temperatures. In contrast, vegetation greening can also warm local tempera-
tures by reducing albedo6. Since the presence of forests can warm local temperatures by 12 °C in April and by 5 °C 
in July in Arctic and sub-Arctic regions, the climate effects of these albedo changes are substantial7. Therefore, 
understanding the feedbacks of vegetation changes and their capacity to influence local temperatures is helpful 
to further identify global warming and the development of appropriate strategies required to protect ecosystems.

The potential effects of vegetation changes on local temperatures due to alterations in energy storage and 
transfer have been investigated for a long period of time. Research obtained from the afforestation programme 
in northern China indicates that increases in vegetation coverage have a cooling effect and that the range of the 
identified temperatures could possibly be mediated based on the Granger causality test8. Another study indicates 
that due to increased nighttime temperatures, in relation to decreased daytime temperatures, afforestation in 
China has resulted in a net warming within the arid and semiarid regions9. Agricultural practices can also have 
an influence on temperatures. A recent study suggested that agricultural intensification increased the potential 
for ET, leading to cooler temperatures10. Negative feedbacks on growing season temperature due to increases in 
vegetation productivity have also been observed on the Tibetan Plateau11. Based on land surface model simula-
tions, there was found that albedo changes have a positive feedback on climate change, especially in high latitudes. 
Positive forcing induced by decreases in albedo were determined to be capable of offsetting the negative forcing 
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that had been anticipated from carbon sequestration in many boreal forest areas12, 13. However, since the climate 
implications of ecosystem feedbacks tend to be local, conclusions from the studies mentioned above are diver-
gent. Some are even contradictory. Given the spatial heterogeneity of the natural environment, the net forcing of 
vegetation changes in various geographical locations remains uncertain and difficult to determine. Thus, a com-
prehensive understanding of the feedbacks of vegetation changes on local temperatures for various geographic 
categories is required.

Central Asia is located deep inside the Eurasian continent and includes Kazakhstan, Kyrgyzstan, Tajikistan, 
Turkmenistan, Uzbekistan, and the Xinjiang Province of China14, 15. The area contains a large fraction of dryland 
(75%) which consists of desert, shrub, and other water stressed plant communities. The area also contains a large 
fraction of relatively humid regions (25%) such as needleleaf forests, broadleaf forests, and croplands, largely 
near mountainous areas. In recent decades, Central Asia has experienced a vegetation greening, as well as rapidly 
increasing temperatures16. The annual mean temperatures in the region have been increasing at an average rate 
of 0.39 °C decade−1 from 1979 to 2011; this is larger than the average rate for global land areas (i.e., 0.27–0.31 °C 
decade−1 from 1979 to 2005)14. Horton, et al.17 found that these thermodynamic contributions are largely inde-
pendent of atmospheric circulation and potentially related to surface processes such as land cover change, factors 
that allowed us to investigate the climate effects of vegetation change feedbacks.

The major questions addressed in this study were the following:

	(1)	 How has vegetation changed during the period from 2000 to 2014?
	(2)	 Do vegetation changes influence local temperatures significantly?
	(3)	 If so, how do these influences vary in different geographical regions?
	(4)	 How much do ET and albedo, associated with vegetation changes, contribute to local temperatures 

changes?

Results
The Normalized Difference Vegetation Index (NDVI), derived from the contrast between the red and 
near-infrared reflection of solar radiation, has commonly been used to reflect the growth conditions of the veg-
etation activity (photosynthesis and vegetation coverage)18. Due to this fact, we first investigated the spatial dis-
tribution of long-term changes in growing season NDVI across Central Asia. Large areas of Central Asia (55%) 
have undergone greening from 2000 to 2014 (Fig. 1a), with 19% of the positive pixels being significant (p < 0.05). 
Approximately 45% of Central Asia has undergone a decrease in NDVI, with 13% of the negative pixels being 
significant, largely within the northwestern portion of Central Asia. Nearly the entire area of Central Asia has 
experienced warming, with 38% of pixels being significant (Fig. 1b).

For the purpose of our experiment, we hypothesized that vegetation greening influences local temperatures 
due to land surface feedbacks. Further, we postulated that an increase in temperatures occurs due to a reduction 
in surface albedo and a decrease in temperatures by increase of ET. To test this hypothesis, a regression relation-
ship was first employed for establishing the strength of the association between the NDVI trend (NDVItrend) and 
the temperature trend (Ttrend) so that we could form an initial description of potentially relevant relationships. 
A negative correlation was found (r = −0.46, p < 0.05) (Fig. 2a), implying that a reduction in temperature with 
rising ET dominated increases in temperature due to a reduction in surface albedo. However, the regression rela-
tionship does not allow us to formulate a cause-and-effect relationship. To address this issue, convergent cross 
mapping (CCM) was used to identify causality and the direction of causality in the presence of system feedbacks. 
Our results indicated that unidirectional causality for the NDVItrend provided stronger control over the Ttrend 

Figure 1.  Spatial linear trends for the growing season Normalized Difference Vegetation Index (NDVI) (a) and 
temperature (T) (b) in Central Asia from 2000–2014. The insets indicate pixels that are statistically significant 
at p < 0.05. Maps were generated by using free software R (R Core Team (2015). R: A language and environment 
for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-project.
org/).

https://www.R-project.org/
https://www.R-project.org/
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(p < 0.05) (Fig. 2b) for the “NDVItrend causes Ttrend” than for the “Ttrend causes NDVItrend”. Furthermore, CCM did 
not show significant causality for the “Ttrend causes NDVItrend” (p = 0.48).

To further explore the dependency of the Ttrend on the NDVItrend at any given location, we calculated the 
Ttrend sensitivity coefficients for NDVItrend across Central Asia and grouped the results into four aridity categories 
(arid, semi-arid, semi-humid, and humid). A notable downward unimodal pattern for coefficient distribution 
was observed, with peak values occurring within the semi-humid region (0.5 < AI < 0.6) where the mean grow-
ing season for the NDVI was approximately 0.4 (Fig. 3a). In the arid, semi-arid, and semi-humid categories, the 
data displayed negative sensitivity coefficients and the values decreased significantly. The sensitivity coefficients 
rapidly increased from a minimum value and changed into a positive for humidity, reflecting different sensitivities 
for the Ttrend in relation to the NDVItrend over Central Asia across hydroclimatic variations.

Vegetation greenness increases the amount of absorbed solar radiation at the land’s surface and this extra 
energy is largely dissipated by ET associated with surface cooling. To quantify the relationship between veg-
etation greenness and temperature, we performed a linear regression analysis with ET or land surface albedo 
set as the dependent variable and the NDVI was set as the independent variable. Our results indicated that the 

Figure 2.  The linear regression (a) and convergent cross mapping (CCM) causality (b) relationship between 
the linear trend of the NDVI (NDVItrend) and temperature (Ttrend). Shadows on either side of the CCM curves 
represent ±standard error. The library length, L, is the number of observations (pixels with significant trend 
(p < 0.05) for NDVI or temperature). The NDVItrend-reconstructed Ttrend gradually converges to a large positive 
correlation coefficient (r = 0.35) whereas the Ttrend-reconstructed NDVItrend displays flat curves with a low 
correlation coefficient, suggesting that the NDVItrend has a significant unidirectional causality relationship with 
the Ttrend.

Figure 3.  Sensitivity of the temperature trend to NDVI trend (a) and temperature sensitivity of 
evapotranspiration (ET)/albedo to the NDVI changes (every 0.1 increment) across hydroclimatic regimes (b). 
In (a), the color for each bar indicates the mean growing season NDVI. Hydroclimatic regimes are represented 
by the aridity index. Pixel values were averaged using a bin (0.1) for the aridity index. The value for each bar 
was calculated using the mean sensitivities for each bin, with statistical significance at p < 0.05. The solid line 
represents the least squares regression. The labeled slopes indicate change in sensitivity of the temperature 
trend to NDVI trend corresponding to per 0.1 increase in aridity index, and that with an asterisk are significant 
(p < 0.05).
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regression slopes were all positive for ET and negative for albedo. Converting the unit for the regression slopes 
to temperature according to Shen, et al.11, indicates that the ET-induced cooling effect was larger in the eastern 
and northwestern Central Asia, largely humid areas (Fig. 4). In the northwestern region, which is largely arid, 
the ET-induced cooling effect was lower. In a similar manner, albedo-induced warming effects were larger for 
eastern regions than for southwestern regions. In arid, semi-arid, and semi-humid regions, the ET-induced cool-
ing effect due to vegetation greening was larger than the warming effect induced by albedo; it was the inverse in 
humid regions (Fig. 3b). Extra radiation values for absorption due to vegetation greenness were approximately 
0.32 ± 0.05 °C, 0.28 ± 0.09 °C, 0.34 ± 0.09 °C, and 0.47 ± 0.12  °C, and those for dissipation due to ET were approx-
imately 0.40 ± 0.11 °C, 0.46 ± 0.14 °C, 0.52 ± 0.19 °C, and 0.37 ± 0.16 °C in response to a NDVI increment of 0.1 
for arid, semi-arid, semi-humid, and humid regions, respectively (Table 1). Extra energy absorbed by albedo 
was less than the extra energy dissipated by ET, resulting in a cooling effect for arid, semi-arid, and semi-humid 
regions. On the contrary, the amount of energy absorbed by albedo exceeded that dissipated by ET, resulting in a 
warming effect for humid regions.

Discussion
Changes in vegetation greenness reported at regional and continental scales have been associated with the effects 
of CO2 fertilization, climate change and land use19, 20. However, the feedbacks of vegetation changes on climate 
remain poorly known and uncertain, especially within Central Asia, which is sensitive and susceptible to climate 
change and environmental degradation21 and consists of large arid and semi-arid regions (75%). A previous study 
indicated that transpiration within arid regions ranges from 70–80% of ET22. As a result, vegetation greenness 

Figure 4.  The spatial distribution of the sensitivity of evapotranspiration (ET) (a), albedo (b) to the NDVI 
changes (every 0.1 increment), and the spatial distribution of the aridity index (c). The map was generated 
by using free software R (R Core Team (2015). R: A language and environment for statistical computing. R 
Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/).

Sensitivity (°C) Arid Semi-arid Semi-humid Humid

ET 0.40 (±0.11) 0.46 (±0.14) 0.52 (±0.19) 0.37 (±0.16)

Albedo 0.32 (±0.05) 0.28 (±0.09) 0.34 (±0.09) 0.47 (±0.12)

Difference 0.08* (±0.07) 0.18* (±0.11) 0.18* (±0.11) −0.1* (±0.13)

Table 1.  The sensitivity (mean ± standard deviation) of evapotranspiration (ET)/albedo to NDVI changes 
(every 0.1 increment). “*”indicates a significant difference at the confidence level of p < 0.05.

https://www.R-project.org/
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increases the potential for ET that can modify temperatures through alterations in surface energy. In this work, 
we investigated the impacts of the NDVItrend on the Ttrend and found that the NDVItrend had a significant nega-
tive influence on the Ttrend over Central Asia. The result indicates the dominance of ET-induced cooling over 
albedo-induced warming for cases of increased vegetation greenness. Our results are consistent with previous 
studies for middle latitudes within the Tibetan Plateau11 and the US Midwest10, but contradict studies for Artic 
regions7, 23. Here, we note that Arctic temperatures are relatively lower than those within middle latitude regions, 
resulting in lower ET.

In addition to a statistical correlation, the test of CCM causality also indicated that the NDVItrend can cause the 
Ttrend to be significant, but that the Ttrend cannot significantly influence the NDVItrend. Since a previous study has 
reported that vegetation greenness increases water vapor within water-limited regions8, unidirectional causality 
is not surprising and may be one of the main factors influencing air temperatures. Such a hypothesis is reason-
able for our study area given that increased water vapor caused by increased vegetation dissipated more energy 
than that absorbed by decreasing albedo within arid, semi-arid, and semi-humid regions. Since the warming 
trend increased within Central Asia, increasing temperatures may have caused a larger water deficit due to ET 
losses, thereby increasing plant water stress and desiccation and impacting vegetation growth through photo-
synthesis. One would also expect that the warming trend could lead to the decrease of NDVI. However, due to 
long-term limits induced by extreme aridity and high temperatures, vegetation in dry land regions has evolved 
into rich and deep root systems and high root/shoot ratios24, which could mitigate the effect of increased temper-
atures on the NDVI. Such a finding further supports our suggestion that the Ttrend cannot significantly cause the 
NDVItrend. Additionally, after the collapse of the Union of Soviet Socialist Republics (USSR), the Central Asian 
countries experienced large changes in land-use followed by socio-economic disturbances (e.g. policy changes 
and economic crises)25. Millions of hectares of farmland were abandoned in northern Central Asia26, which likely 
contributed to the decline of vegetation greenness in these regions. However, to alleviate environment damage 
resulting from the over-extension of irrigated areas, actions have been taken to rehabilitate abandoned croplands 
and to plow rain-fed crops in southern and eastern Central Asia25. Therefore, precipitation, and not temperatures, 
has been determined to be highly and positively correlated with vegetation greenness in these areas16.

Given the spatial heterogeneity of the natural environment, determining net forcing within various geograph-
ical locations is insufficient because the feedback mechanisms of vegetation changes and its relationship to local 
temperatures are complicated. However, in contrast to the examined arid, semi-arid, and semi-humid regions, 
our results indicate that in humid regions the increased NDVI (13% of Central Asia) amplifies local warming. 
Here, it should be noted that humid regions generally have a higher soil moisture, leading to more potential heat 
storage during the day, more heating during the night, and the offset of ET-induced cooling during the day9. 
Additionally, humid regions have higher vegetation coverage, as represented by the mean growing season NDVI 
in Fig. 3a, and have a more stable stratification and, thus, less turbulence, known to remove water vapor23, as com-
pared to dry land with lower vegetation coverage. Furthermore, precipitation occurs more frequently in humid 
regions within Central Asia27 and is associated with more cloud formation that may result in more downward 
longwave radiation received from the atmosphere and less outgoing longwave radiation than that for dry lands9.

The unimodal patterns of sensitivities for the Ttrend to the NDVItrend, across the aridity gradient, are impor-
tant and unique findings in this study. The result implies that feedbacks of vegetation change for local tempera-
ture changes follow hydroclimatic variations, from negative to positive. Within the scientific literature, similar 
results have been verified for other regions. For example, vegetation greenness within the arid/semi-arid zones of 
northern China has a negative influence on temperature8. Within the drylands of the mid-western US, increased 
cropland intensification is associated with cooling10. For the Tibetan Plateau, with large semi-arid/semi-humid 
areas, increased vegetation productivity caused a negative feedback on temperature11. However, increasing veg-
etation activity is estimated to warm local climates within the arctic under relatively humid environments23. A 
recent report has projected an accelerated dryland expansion, and dryland areas have been projected to increase 
by 11–23% by the end of the century28. Our results indicate that vegetation greenness will mitigate increasing 
temperature trends in these areas. Therefore, protecting native vegetation from degradation and afforestation will 
be beneficial to control global warming effects.

We used MODIS products (ET and Albedo) for assessing the contributions of each component on tempera-
ture variations. However, remote sensing data have limitations including instantaneous signals, optical-infrared 
constraints over cloudy regions, and transducer sensitivity29, 30. Nevertheless, in this work, we have provided 
important insight regarding the feedback of vegetation greenness on temperature changes. To explore the relevant 
physical mechanisms, long-term observations should be undertaken.

Conclusion
Since the beginning of 21st century, Central Asia has undergone significant vegetation changes. In this work, 
we conclude that vegetation greenness can cause significant temperature changes and that greening has a cool-
ing impact on local warming over the entire Central Asia region. However, feedbacks for vegetation greenness 
in regards to local temperatures differ for different hydroclimatic geographical zones. A contrasting response 
for vegetation greenness on temperature changes exists between the arid/semi-arid/semi-humid and the humid 
regions and can be attributed to differences in the magnitudes of ET-induced cooling and albedo-induced warm-
ing. In arid/semi-arid/semi-humid regions, ET-induced cooling was found to dominate albedo-induced warm-
ing, while the result was the inverse for humid regions. Due to nonlinear interactions, temperature changes are 
therefore the result of multiple factors in complicated systems. For this study, we largely focused on ET and albedo 
changes as a result of vegetation greenness, two of the major factors influencing local temperatures within our 
study area that is located deep inside the Eurasian continent. More comprehensive, localized and in-depth anal-
yses are required in the future.
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Methods
Datasets.  The collection 5 MODerate resolution Imaging Spectroradiometer (MODIS) NDVI dataset, at a 
spatial resolution of 0.05° and with a 16-day time-step from 2000–2014, was used to characterize vegetation 
changes. The dataset is well known for its high quality and has been widely used in previous studies9, 11. The 
monthly mean temperature dataset CRU 3.24, a climate dataset with a spatial resolution of 0.5° spanning 2000 to 
2014, was obtained from the Climatic Research Unit (CRU) at the University of East Anglia31. We used global val-
idated MODIS products for ET and albedo. Monthly MODIS ET data (MOD16), from 2000 to 2014, with a spatial 
resolution of 0.05°, have been previously examined using both global and local eddy flux towers, and have pro-
vided critical information regarding global terrestrial water and energy cycles and environmental changes. From 
2000 to 2014, MODIS albedo (MCD43B3) products had a temporal resolution of 8 days and a spatial resolution 
of 1 km32. White sky albedo was used for our study. To understand the dependency of climate feedback effects 
on vegetation changes across hydroclimatic regimes, the aridity index (AI) was used to define geographic cate-
gories (i.e., ‘arid’: 0.03 < AI < 0.2, ‘semi-arid’: 0.2 < AI < 0.5, ‘semi-humid’: 0.5 < AI < 0.65, ‘humid’: AI > 0.65) 
according to the United Nations Environment Programme33; and was calculated using the following equation: 
AI = MAP/PET (MAP: Mean Annual Precipitation; MAE: Mean Annual Potential ET).

Data processing.  The original MODIS data were filtered based on the Quality Control (QC) layers. After 
filtering out low-quality pixels, gaps were filled using linear interpolation through two adjacent data points. Time 
series with more than two consecutive gaps were excluded from further analyses. Over the entire study area and 
over a 15 year time period, a total of 1.6% and 2.3% of all of the data were gap-filled for EVI and albedo data, 
respectively. To match CRU data, all of the data were interpolated to 0.5°. Annual mean values for MODIS NDVI 
pixels less than 0.1 were ignored so that non-vegetated regions were eliminated8. In order to eliminate the poten-
tial influence of autocorrelation in the NDVI and temperature time series on trend-detection, the t-test was first 
applied to test the significance of the lag 1 autocorrelation coefficient r1. If the autocorrelation exist under the 
confidence level, p < 0.05, the lag 1 autoregressive (AR(1)) process by pre-whitening was applied to remove auto-
correlation from the time series of the NDVI and temperature according to Yue and Wang34, using the following 
equation

′ = − × −X X r X1 (1)t t t 1

where r1 is the lag 1 autocorrelation coefficient, X is the data value (i.e., NDVI, T), and t is the length of the time 
series.

Analysis.  Firstly, a linear regression analysis was used for establishing the strength of association between the 
linear trend of NDVI and temperature, in order to help form an initial description of the potential relationships. 
To quantify the feedback of vegetation changes on ET and albedo during the growing season (April through 
October), we performed a linear regression analysis in which the NDVI was set as the independent variable and 
ET or albedo was set as the dependent variable for each pixel. The slope of the regression function was considered 
to be the sensitivity coefficient. Since MODIS data shared model covariates across products, potentially resulting 
in autocorrelation in linear regression models, the Breusch-Godfrey test35 was used to determine the significance 
of autocorrelation. If autocorrelation existed under the confidence level, p < 0.05, the generalized least squares 
(GLS) method was used to eliminate autocorrelation according to the following equation of Hansen36:

ρ β ρ β ρ− = − + −− −y y x x(1 ) ( ) (2)t t t t1 0 1 1

where yt, and xt are the dependent and independent variables, respectively, and β0, β1, and ρ are the intercept, 
slope, and autocorrelation coefficient, respectively, of an estimated linear regression equation. The GLS analysis 
was implemented by using the free nlme package in the R language environment37.

Figure 5.  Prediction skill (correlation coefficient between actual and predicted values, r) as a function of the 
embedding dimension (E) using the simplex projection method of Sugihara and May40.



www.nature.com/scientificreports/

7Scientific Reports | 7: 3287  | DOI:10.1038/s41598-017-03432-2

The convergent cross mapping (CCM) method38 was used to detect causal relationships between the NDVI 
trend and the temperature trend. The CCM is based on the theorem proven by Takens39 which states that the 
essential information of a multidimensional dynamical system is retained within the time series of any single 
variable of that system and that the extent of historical registrations in one variable can consistently approximate 
a second variable. If variable x is influenced by y, then causality is established if a causal variable x can be recov-
ered from a variable y. The CCM method checks for causation by measuring the potential correlation between 
predictions and actual observations. Simplex projection40 was applied in order to reconstruct the dynamics of one 
process from another. Reconstruction was performed using an embedding dimension, E, that should have the 
highest skill for prediction. In our analysis, E was 3 for the NDVI trend and 5 for the temperature trend (Fig. 5). 
In general, causal relationships were suggested if convergence was present and if the Pearson’s correlation was 
greater than zero, while non-causal relationships were illustrated if a flat curve was present. The variable with 
the highest Pearson correlation coefficient at the point of convergence indicates the strongest controlling var-
iable. Detailed information can be obtained from a short instructional animation: https://www.youtube.com/
playlist?list=PL-SSmlAMhY3bnogGTe2tf7hpWpl508pZZ. The CCM analysis was implemented by using the free 
multispatial CCM package within the R language environment41.
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