
1Scientific RepoRts | 7: 3189  | DOI:10.1038/s41598-017-03363-y

www.nature.com/scientificreports

A Metric on the Space of kth-order 
reduced Phylogenetic Networks
Juan Wang1 & Maozu Guo2

Phylogenetic networks can be used to describe the evolutionary history of species which experience 
a certain number of reticulate events, and represent conflicts in phylogenetic trees that may be 
due to inadequacies of the evolutionary model used in the construction of the trees. Measuring 
the dissimilarity between two phylogenetic networks is at the heart of our understanding of the 
evolutionary history of species. This paper proposes a new metric, i.e. kth-distance, for the space of 
kth-order reduced phylogenetic networks that can be calculated in polynomial time in the size of the 
compared networks.

Phylogenetic networks play a vital role in the description of the evolutionary history of species, and are especially 
appropriate for datasets whose evolutions contain significant amounts of reticulate events caused by recombina-
tion, hybridization, horizontal gene transfer, gene duplication, gene conversion and loss1–7. Even for the species 
which have evolved based on a tree-like model of evolution, phylogenetic networks can be used to represent 
conflicts in phylogenetic trees that may be caused by inadequacies of an used evolutionary model. So far, there 
have been many algorithms and programs for constructing phylogenetic networks. The assessment of the algo-
rithms for constructing phylogenetic networks is mainly by means of the comparison of the networks, for exam-
ple, comparing the constructed network with simulate network or actual network. In addition, comparing two 
phylogenetic networks can help us to understand the evolutionary history of species. Recently, researchers have 
shown an increased interest in definition of metrics for computing the dissimilarity between a pair of phyloge-
netic networks.

A measure d is called a metric on a space S if it satisfies four properties: for any a, b, c ∈ S:

•	 d(a, b) ≥ 0 (nonnegative);
•	 d(a, b) = 0 if and only if a = b (i.e. a and b are isomorphic) (reflexivity);
•	 d(a, b) = d(b, a) (symmetry);
•	 d(a, b) + d(b, c) ≥ d(a, c) (triangle inequality).

In general, it is much easier to prove a defined measure to satisfy the above-mentioned properties except the 
reflexivity. For a metric, if two phylogenetic networks are isomorphic, the distance between them computed 
by the metric is 0, otherwise it is 1; then we say that the metric is trivial. A trivial metric satisfies obviously 
above-mentioned properties, but it doesn’t show other information about evolutionary history implied by the 
two phylogenetic networks. Accordingly, in addition to these four properties, it is desired that the metric can give 
us some information on the dissimilarity of the evolutionary histories expressed by the phylogenetic networks 
being compared8–13.

Up to now, several metrics have been designed and proven that each one of them is a metric on a certain 
subspace of rooted phylogenetic networks, for example, μ-metric on the space of tree-sibling phylogenetic net-
works14, the tripartition metric on the space of tree-child phylogenetic networks15–18, the m-distance on the space 
of reduced phylogenetic networks19, and the de-distance on the space of partly reduced phylogenetic networks20. 
The largest one among those subspace is the partly reduced phylogenetic networks, so the de-distance is also the 
metric on the subspaces of tree-child phylogenetic networks, tree-sibling phylogenetic networks and reduced 
phylogenetic networks. The paper will introduce a new metric, denoted by kth-distance, on space of kth-order 
reduced phylogenetic networks (will be discussed in the following sections), and the metric is polynomial-time 
computable. The space of kth-order reduced phylogenetic networks is larger subspace of rooted phylogenetic 
networks than any one subspace on which has been defined a metric. If no special instructions, the rest of paper 
will use the network to denote the rooted phylogenetic network.
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Preliminaries
Let   be a set of taxa. A rooted phylogenetic network N = (V, E) on   is a directed acyclic graph (DAG for short), 
with one root node, and its leaves labelled as   by a bijection f.

For a network N = (V, E) and a node u ∈ V, if:

•	 indeg(u) = 0, then u is the root;
•	 indeg(u) ≤ 1, then u is a tree node;
•	 indeg(u) ≥ 2, then u is a reticulate node;
•	 outdeg(u) = 0, then u is a leaf;
•	 outdeg(u) ≥ 1, then u is an internal node.

Sometimes we use the notation N = ((V, E), f) to denote the network N, and VN to denote the leaf set of N. 
Given two nodes u, v ∈ V. If (u, v) ∈ E, then we say that v is a child of u or u is a parent of v. If there exists a directed 
path from u to v, then we say that v is a descendant of u or u is an ancestor of v.

The height of a node u is the length of a longest directed path beginning from u and ending with a leaf. The 
non-existence of cycles indicates that all nodes of N can be categorized by height: the nodes with height 0 are 
the leaves; for a node u with height a > 0, each child of u has height m < a and there exists at least one child with 
height exactly a − 1.

The depth of a node v is the length of a longest directed path beginning from the root and ending with v. In 
the same way, the non-existence of cycles indicates that all nodes of N can be categorized by depth: the only node 
with depth 0 is the root; for a node v with depth b > 0, each parent of v has depth m < b and there exists at least 
one parent with depth exactly b − 1.

Definition 1. For two networks N1 = ((V1, E1), f1) and N2 = ((V2, E2), f2), they are isomorphic if and only if there 
exists a bijection H from V1 to V2 such that:

•	 (u, v) is an edge in E1 if and only if (H(u), H(v)) is an edge in E2;
•	 for each leaf w ∈ V1, f1(w) = f2(H(w)).

Although the subspace defined by the de-distance is the largest one among all defined subspaces, there exist a 
large number of networks that aren’t measured by the de-distance. For example, the two networks in Fig. 1 (from 
the paper20) are not isomorphic, while the de-distance between them is 0. Even for two non-isomorphic networks 
whose de-distance is not 0, the distance is usually maximal value 1. For example the networks in Fig. 2, there is a 
certain resemblance between them, so it is desired that the distance between them is less than 1. However, their 
de-distance is maximal value 1. On the other hand, for any two networks N1 on 1 and N2 on 2, the de-distance 

Figure 1. N1 and N2 are not isomorphic.
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between them is 1 as long as  ≠1 2. When  ⊂1 2, the two compared networks may share some information 
(see Fig. 3).

Methods
Let N = ((V, E), f) be a network. Now we begin to give several definitions for the same network.

Definition 2. Two nodes u, v ∈ V (not necessarily different) are called first-order equivalent, denoted by u ≡ 1v, if

•	 u, v ∈ VN and f(u) = f(v), or
•	 node u has l(≥1) children u u u, , , l1 2 , node v has l children v v v, , , l1 2 , and ui ≡ 1vi for 1 ≤ i ≤ l.

Example 1. Consider the network N1 in Fig. 1. Each node of N1 is first-order equivalent with itself, and C ≡ 1E, 
D ≡ 1F, H ≡ 1J.

Definition 3. Given an even number k ≥ 2. Two nodes u, v ∈ V (not necessarily different) are called kth-order 
equivalent, denoted by u ≡ kv, if u ≡ k−1v, and:

•	 u, v are the root, or
•	 node u has l(≥1) parents u u u, , , l1 2 , node v has l parents v v v, , , l1 2 , and ui ≡ kvi for 1 ≤ i ≤ l.

Figure 2. N1 and N2 on  = {1, 2, 3, 4, 5, 6} are not isomorphic.

Figure 3. N1 is on the = {1, 2, 3, 4, 5}1 ; N2 is on the = {1, 2, 3, 4, 5, 6}2 .
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Definition 4. Given an odd number k ≥ 2. Two nodes u, v ∈ V (not necessarily different) are called kth-order 
equivalent, denoted by u ≡ kv, if u ≡ k−1v, and:

•	 u, v ∈ VN, and f(u) = f(v), or
•	 node u has l(≥1) children u u u, , , l1 2 , node v has l children v v v, , , l1 2 , and ui ≡ kvi for 1 ≤ i ≤ l.

Example 2. Consider the network N1 in Fig. 1 again. Each node of N1 is second-order equivalent with itself, and 
H ≡ 2J. Each node of N1 is only kth-order equivalent with itself (k ≥ 3).

Lemma 1. Here k is an odd number. Given nodes u1, u2, , us in a network, if each ui has l children, and each child 
of ui is only kth-order equivalent with itself (1 ≤ i ≤ s). Then u1 ≡ ku2 ≡ k 



  ≡ kus if and only if u1, u2, , us have the 
same children (refer to the Fig. 4).

Lemma 2. Here k is an even number. Given nodes v1, v2, , vs in a network, if each vi has l parents, and each parent 
of vi is only kth-order equivalent with itself. Then v1 ≡ kv2 ≡ k 



 ≡ kvs if and only if v1, v2, , vs have the same parents 
(refer to the Fig. 5).

Lemma 3. For all leaves, the root and the nodes with height 1 in a network, each of them is kth-order equivalent with 
itself (for any k).

The proofs of Lemmas 1, 2 and 3 aren’t listed here. It can be concluded from these definitions that each 
kth-order equivalence is an equivalence relation, i.e. it is transitive, reflexive and symmetric. It can be easily 
proved that all the first-order equivalent nodes have the same height and all the kth-order equivalent nodes 
(k ≥ 2) have the same height and depth (refer to the literature20).

If a node u is kth-order equivalent with other nodes except itself, we say that u has non-trivial kth-order 
equivalent nodes. For a network, after deleting the non-trivial kth-order equivalent nodes of each node, as well 
as the nodes with indegree 1 and outdegree 1, the resulting network is called the kth-order reduced phylogenetic 
network. All the kth-order reduced phylogenetic networks form the space of kth-order reduced phylogenetic 
network. So a network N is in the space of kth-order reduced phylogenetic networks, if and only if each node of 
N is only kth-order equivalent with itself.

The space of first-order reduced phylogenetic networks is the space of reduced phylogenetic networks defined 
in the paper19. The space of second-order reduced phylogenetic networks is the space of partly reduced phyloge-
netic networks defined in the paper20. Figure 6 shows the relationship of these subspaces.

Figure 4. The topology relation of odd-order equivalent nodes.

Figure 5. The topology relation of even-order equivalent nodes.
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Figure 6. A is the space of rooted phylogenetic networks; B is the space of kth-order reduced phylogenetic 
networks (k ≥ 2); C is the space of partly reduced phylogenetic networks; and D is the space of reduced 
phylogenetic networks.

Figure 7. N is a rooted phylogenetic network.
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The space of kth-order reduced phylogenetic networks is not equals to the space of rooted phylogenetic net-
work. For example the network N in Fig. 7, for any k, each node of N is kth-order equivalent with itself, and 
A ≡ kB. So N isn’t the kth-order reduced phylogenetic network, i.e. not in the space of kth-order reduced phyloge-
netic networks.

In order to compute the dissimilarity of the networks, we will extend the above concepts defined in a network 
to two networks in the following sections. Let N1 = ((V1, E1), f1) and N2 = ((V2, E2), f2) be two networks.

Definition 5. Two nodes u ∈ V1, v ∈ V2 are called first-order equivalent, denoted by u ≡ 1v, if

•	 ∈ ∈u V v V,N N1 2
, and f1(u) = f2(v), or

•	 node u has l(≥1) children u1, u2, , ul, node v has l children v1, v2, , vl, and ui ≡ 1vi for 1 ≤ i ≤ l.

Definition 6. Given an even number k ≥ 2. Two nodes u ∈ V1, v ∈ V2 are called kth-order equivalent, denoted by 
u ≡ kv, if u ≡ k−1v, and:

•	 u, v are the root, or
•	 node u has l(≥1) parents u1, u2, , ul, node v has l parents v1, v2, , vl, and ui ≡ kvi for 1 ≤ i ≤ l.

Definition 7. Given an odd number k ≥ 2. Two nodes u ∈ V1, v ∈ V2 are called kth-order equivalent, denoted by 
u ≡ kv, if u ≡ k−1v, and:

•	 ∈ ∈u V v V,N N1 2
 and f1(u) = f2(v), or

•	 node u has l(≥1) children u1, u2, , ul, node v has l children v1, v2, , vl, and ui ≡ kvi for 1 ≤ i ≤ l.

Let u, u0 be two nodes from two networks or the same network. From these definitions, it follows that if there 
exists a positive integer k1, such that u ≢ uk

0
1 , then for any k > k1, u ≢ ku0. Given two networks N1 = (V1, E1) and 

N2 = (V2, E2). We use the following processes to compute the kth-order unique nodes of N1, denoted by Lk(N1). 
First Lk(N1) = ∅. Then for each node u ∈ V1, if there has no node u0 ∈ Lk(N1) such that u ≡ ku0, add u to Lk(N1). 
Similarly, we can compute Lk(N2). For each node u ∈ Lk(N1), e u( )N

k
1

 denotes the number of nodes which are 
kth-order equivalent with u, i.e. = ∈ ≡e u v V v u( ) { : }N

k k
11

. Similarly, we can define e u( )N
k

2
 for each node 

u ∈ Lk(N2). For the sake of simplicity, we drop the subscript of e. Here ek(∅) = 0.

Lemma 4. Given two networks N1 = (V1, E1) and N2 = (V2, E2). For u1, u2 ∈ V1, v1, v2 ∈ V2, and u1 ≡ kv1, u2 ≡ kv2. 
Then, u1 ≡ ku2 if and only if v1 ≡ kv2.

Proof. Refer to the proof of the Theorem 15 in the paper20. ◽

A Metric
Definition 8. For two networks N1 = (V1, E1) and N2 = (V2, E2), the kth-distance dk(N1, N2) equals

∑ ∑ ∑
+
















− ′ + − ′













= ∈ ∈k n n

max e v e v max e u e u1
( )

{0, ( ) ( )} {0, ( ) ( )}
(1)i

k

v L N

i i

u L N

i i

1 2 1 ( ) ( )i i
1 2

where v′ (or u′) is a node in Li(N2) (or Li(N1)) that is ith-order equivalent to v (or u), and if no such node exists, 
then v′ = ∅ (or u′ = ∅). n1 and n2 are the number of nodes in N1 and N2 respectively.

For each i (1 ≤ i ≤ k), the maximal value of ∑ − ′ + ∑ − ′∈ ∈max e v e v max e u e u{0, ( ) ( )} {0, ( ) ( )}v L N
i i

u L N
i i

( ) ( )i i
1 2

 
is n1 + n2, so the formulate 1 has maximal value 1 and minimal value 0. For a give i (1 ≤ i ≤ k), if the value of 

Figure 8. The results of m-distance and kth-distance.
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∑ − ′ + ∑ − ′∈ ∈max e v e v max e u e u{0, ( ) ( )} {0, ( ) ( )}v L N
i i

u L N
i i

( ) ( )i i
1 2

 is d, then for any j (i + 1 ≤ j ≤ k), the value of 
∑ − ′ + ∑ − ′∈ ∈max e v e v max e u e u{0, ( ) ( )} {0, ( ) ( )}v L N

j j
u L N

j j
( ) ( )j j

1 2
 is more than d.

From the definition 8, it follows that the 1st-distance is the m-distance defined in the space of reduced phy-
logenetic networks, and the 2nd-distance is the de-distance defined in the space of partly reduced phylogenetic 
networks.

Lemma 5. If dk(N1, N2) = 0. Then |V1| = |V2|, and there exists a node v0 ∈ Li(V2) for each node v ∈ Li(V1), such that 
v0 ≡ iv and ei(v0) = ei(v) (1 ≤ i ≤ k).

P r o o f .  F r o m  d k ( N 1 ,  N 2 )  =  0 ,  i t  f o l l o w s  t h a t  ∑ − ′ =∈ max e v e v{0, ( ) ( )} 0v L N
i i

( )i
1

 a n d 
∑ − ′ =∈ max e u e u{0, ( ) ( )} 0u L N

i i
( )i

2
 (1 ≤ i ≤ k). So max{0, ei(v) − ei(v′)} = 0 for each node v ∈ Li(N1). Suppose that 

t he re  e x i s t s  a  no d e  v  ∈  L i( N 1)  su ch  t hat  e i( v )  −  e i( v ′ )  <  0 ,  t he n  e i( v ′ )  −  e i( v )  >  0 .  S o 
∑ − ′ >∈ max e u e u{0, ( ) ( )} 0u L N

i i
( )i

2
. It contradict ∑ − ′ =∈ max e u e u{0, ( ) ( )} 0u L N

i i
( )i

2
. Therefore, for each node 

v ∈ Li(N1), we have ei(v) − ei(v′) = 0, i.e. ei(v) = ei(v′). Similarly, for each node u ∈ Li(N2), ei(u) = ei(u′). Accordingly, 
|V1| = |V2|. ◽

Lemma 6. Given two kth-order reduced phylogenetic networks N1 = (V1, E1) and N2 = (V2, E2). Then dk(N1, N2) = 0 
if and only if N1 and N2 are isomorphic.

Proof. If N1 and N2 are isomorphic, obviously dk(N1, N2) = 0. The converse conclusion will be proven as follows.

Lemma 5 tells us that |V1| = |V2|. From the property of the kth-order reduced phylogenetic networks, it follows 
that each node u in V1 is just kth-order equivalent with itself and u ∈ Lk(V1). Similarly, each node v in V2 is just 
kth-order equivalent with itself and v ∈ Lk(V2). Moreover, for each node u ∈ V1, there exists the only one node 
v ∈ V2 such that u ≡ kv. So we define a mapping H from V1 to V2, for each node u ∈ V1, H(u) = u′, where u′ ∈ V2 
and u′ ≡ ku.

First we prove that the mapping H is a bijection. For any two different nodes u1, u2 ∈ V1, there exist two nodes 
′ ′ ∈u u V,1 2 2, such that = ′H u u( )1 1 and = ′H u u( )2 2. Here ′u1 and ′u2 are not the same nodes. If not, then u1 ≡ ku2. 

It contradict that each node u ∈ V1 is just kth-order equivalent with itself. So H is injective. Due to |V1| = |V2|, we 
have that H is a surjection.

Then we prove that if (u, v) ∈ E1, then (H(u), H(v)) ∈ E2. Let u0 = H(u) and v0 = H(v), i.e. u0 ≡ ku and v0 ≡ kv. If 
k is an odd number, then the children of u are kth-order equivalent with the children of u0 respectively. Thus, v is 
kth-order equivalent with a child v′ of u0, i.e. v′ ≡ kv ≡ kv0. Since every node is only kth-order equivalent with itself, 
v′ and v0 are the same nodes, i.e. v0 is a child of u0. Therefore, (u0, v0) ∈ E2. Similarly, we can come to the conclusion 
when k is an even number.

The mapping H also preserves the labels of the leaves from the definition of kth-order equivalence. In conclu-
sion, N1 and N2 are isomorphic.

Lemma 7. For any one pair of networks N1 and N2, dk(N1, N2) = dk(N2, N1).

The distance dk(N1, N2) can be viewed as the symmetric difference of the same set of elements 
∪ ∪= L N L N{ ( ) ( )}i

k i i
1 1 2 . From the property of the symmetric difference21, it follows that the following triangle 

inequality holds:

Lemma 8. For any three networks N1, N2 and N3, dk(N1, N2) + dk(N2, N3) ≥ dk(N1, N3).

From Lemmas 6, 7 and 8, we have the following result:

Theorem 9 The kth-distance defined by the formula 1 is a metric on the space of kth-order reduced phylogenetic 
networks.

Let k = 3 and nj the number of nodes of network Nj (j = 1, 2). Consider the two networks in Fig. 1. For i = 1 and 
2 ,  ∑ − ′ + ∑ − ′ =∈ ∈max e v e v max e u e u{0, ( ) ( )} {0, ( ) ( )} 0v L N

i i
u L N

i i
( ) ( )i i

1 2
.  F o r  i  =  3 , 

∑ − ′ + ∑ − ′ = +∈ ∈max e v e v max e u e u n n{0, ( ) ( )} {0, ( ) ( )}v L N
i i

u L N
i i

( ) ( ) 1 2i i
1 2

. So the d(N1, N2) = 1/3.
Consider two networks in Fig. 2. The nodes R, B, E, F, K in V1 don’t exist first-order equivalent nodes in V2, 

while the nodes R, B, F in V2 don’t exist first-order equivalent nodes in V1. Everyone else has only one first-order 
equivalent node. So ∑ − ′ + ∑ − ′ =∈ ∈max e v e v max e u e u{0, ( ) ( )} {0, ( ) ( )} 8v L N u L N( )

1 1
( )

1 1
1

1
1

2
. For i = 2 and 3, 

e v e r y  n o d e  i n  V 1  d o e s n ’ t  e x i s t  i t h - o r d e r  e q u i v a l e n t  n o d e s  i n  V 2 .  S o 
∑ − ′ + ∑ − ′∈ ∈max e v e v max e u e u{0, ( ) ( )} {0, ( ) ( )}v L N

i i
u L N

i i
( ) ( )i i

1 2
= + = + =n n 13 15 281 2 . Accordingly d(N1, 

N2) = (8 + 28 + 28)/(3 × 28) = 16/21.
Consider two networks in Fig. 3. The nodes R, B, F in V1 don’t exist first-order equivalent nodes in V2, and the 

nodes R, B, F, H, 6 in V2 don’t exist first-order equivalent nodes in V1. Everyone else has only one first-order 
equivalent with node. So ∑ − ′ + ∑ − ′ =∈ ∈max e v e v max e u e u{0, ( ) ( )} {0, ( ) ( )} 8v L N u L N( )

1 1
( )

1 1
1

1
1

2
. For i = 2 and 3, 

e v e r y  n o d e  i n  V 1  d o e s n ’ t  e x i s t  i t h - o r d e r  e q u i v a l e n t  n o d e s  i n  V 2 .  S o 
∑ − ′ + ∑ − ′∈ ∈max e v e v max e u e u{0, ( ) ( )} {0, ( ) ( )}v L N

i i
u L N

i i
( ) ( )i i

1 2
= + = + =n n 13 15 281 2 . Accordingly d(N1, 

N2) = (8 + 28 + 28)/(3 × 28) = 16/21.
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Lemma 10. If there is dk(N1, N2) = 0 for all k. Then there exists a positive integer m, such that for any m0 ≥ m, we 
have that each node u in V1 has a m0th-order equivalent node u′ in V2.

Proof. Assume that the above conclusion does not hold, i.e. for any positive integer m, there exist k0 ≥ m and a 
node u ∈ V1, such that u′ ≢ uk0  for any node u′ ∈ V2. So when m = 1, there exist k1 and u1 ∈ V1, such that u1 ≢ ′uk1  
for any node u′ ∈ V2. So ≠d N N( , ) 0k 1 21

. This conclusion is in contradiction with dk(N1, N2) = 0 for all k.   ◽

Computational Aspects. For odd number k (or even number k), the kth-order equivalent nodes can be 
computed by a bottom-up (or top-down) approach, no matter whether the nodes are in the same network or two 
different networks. Given two networks N1 = ((V1, E1), f1) and N2 = ((V2, E2), f2). Algorithm 8 shows the pseudoc-
ode that decides whether two nodes are kth-order equivalent or not, where E(k) is the abbreviation for the set 
of kth-order equivalent nodes. This process will cost at most O(n3) time, where n = max(|V1|, |V2|). Therefore, it 
takes totally at most O(n5) time to find out all ith-order (where 1 ≤ i ≤ k) equivalent nodes for each node of the 
two networks. Computing the formula 1 will costs O(n) time. In conclusion, we will spend O(n5) time in comput-
ing the kth-distance between two networks, where n is the maximum of |V1| and |V2|.

Results
We compared the kth-distance with m-distance on the space of reduced phylogenetic networks19 and the 
de-distance on the space of partly reduced phylogenetic networks20, by means of 100 networks constructed by the 
Lnetwork method3. Thus, each distance method can obtain a distance matrix with approximately 5000 values. 

Figure 8 shows the distribution of the distance values, where the horizontal axis is the distance value and the 
vertical axis is the percent of the distance value in all values. Here the results of de-distance didn’t show in Fig. 8, 
because it just has two distance values 1 and 0, and 99.38 percent and 0.62 percent respectively. The minima of 
m-distance and the de-distance are 0, while the minimum of kth-distance is 0.32.

From the results, we reached the following conclusions. First, almost all de-distance values are maximum 
values 1. Second, the kth-distance values are not 0 between the networks whose de-distance and the m-distance 
values are 0. Third, the kth-distance values are larger than the m-distance values for the same networks.

Algorithm 1: Deciding whether u and v are kth-order equivalent or not for an odd number k (or an even number k).

 1: input: nodes u and v

 2: if outdegree of u is not equals to that of v (or indegree of u is not equals to that of v) then

 3:    return

 4: end if

 5: if u and v are leaves and they have the same labels (or u and v are the root) then

 6:    add v to E(k) of u

 7:    add u to E(k) of v

 8: else

 9:    flag := false

10:   if E(k − 1) of u does’t contain v then

11:     return

12:   end if

13:   for each child a of u (or each parent a of u) do

14:    for each child b of v (or each parent b of v) do

15:     if b.label = true then

16:         continue

17:     end if

18:     if the E(k) of a has b then

19:         flag = true

20:         b.label = true

21:     end if

22:    end for

23:    if flag = false then

24:       return

25:    else

26:       flag = false

27:    end if

28:    end for

29:    add v to E(k) of u

30:    add u to E(k) of v

31: end if
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Discussion
In order to compare dissimilarity for more phylogenetic networks, we define a polynomial-time computable 
metric on the space of kth-order reduced phylogenetic networks. Here the larger k is, the larger the space of 
kth-order reduced phylogenetic networks is. Moreover, the larger k is, the more precise the distance between two 
phylogenetic networks is. Take the non-isomorphism networks in Fig. 1 for example. When k = 1 or 2, the value 
computed by the formula 1 is 0, i.e. their m-distance and de-distance are 0. However, when k = 3, the value com-
puted by the formula 1 is 1/3. So when k = 1 or 2, the value computed by the formula 1 doesn’t indicate the real 
dissimilarity between the two networks. The choose of k in general is based on the desired precision of distance. 
Whatever k is, the kth-distance is not a metric on the space of all rooted phylogenetic networks. For example, the 
two phylogenetic networks in Fig. 9, their kth-distance is 0, but they are not isomorphic.
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