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Ferroelectric-assisted gold 
nanoparticles array for centimeter-
scale highly reproducible SERS 
substrates
Xiaoyan Liu1, Minoru Osada2, Kenji Kitamura2, Takahiro Nagata2 & Donghui Si1,3

Assemble metal nanoparticles into various ordered structures with scale up to centimeter area is 
required to meet diverse needs of lab-on-a-chips and analytic components. Here, we present the 
uniform and high-yield fabrication of centimeter-scale gold nanoparticles (AuNPs) array for SERS 
substrates. Ferroelectric-assisted assembly of AuNPs line array is successfully fabricated by using a 
periodically poled LiNbO3 (PPLN) single crystal as a template. SNOM-Raman shows that the uniform 
assembly of AuNPs exhibits a high density of “hot spots” arising from strong electromagnetic (EM) 
field coupling induced by adjacent AuNPs. Quantitative analysis based on SERS detection describes 
an excellent reproducibility with an intensity variation less than 7% at 1649 cm−1 of Rhodamine 6G. 
SERS spectra combined with 3D-FDTD modelling indicate that the EM enhancement occurs at all three 
excitation wavelength of 515, 561 and 633 nm and the 561-nm-laser displays the strongest Raman 
enhancement with an enhancement factor in an order of 109. The corresponding experimental and 
theoretical results present a new strategy to fabricate large-area, highly reproducible and sensitive 
SERS substrates for practical applications.

Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive vibrational spectroscopy that allows for the 
detection of analytes at extremely low concentrations1, 2. The successful detection of a small amount of ana-
lyte by SERS is influenced by many factors. Arguably the most important of these factors is the SERS substrate. 
Applicable SERS substrates should possess mainly (1) large surface area to adsorb as many molecules to contrib-
ute to Raman signal, (2) abundant “hot spots” of metal nanostructures to enhance local electric fields and thus 
Raman signal3, 4, and (3) highly reproducible Raman signal over the large surface area. Many years of research 
have been devoted to creating and optimizing SERS substrates in order to meet these requirements5–9. Among 
them, well-ordered structures such as arrays, of nanoparticles have attracted a massive amount of interest due to 
their benefits over randomly aggregated nanoparticles that might hinder specific properties of the assembled nan-
oparticles, including plasmonic coupling effects10, optical bandgaps11, and metamaterial effects12. Electron beam 
lithography, nanosphere lithography, focused ion beam pattering, vacuum evaporation and soft-lithography are 
the most used techniques for assembly of metal arrays, however, they are limited by the high costs i.e. expensive 
equipment with complicated procedures, and the enormous difficulties to achieve an assembled structure over 
a large area13–15. In addition, the metal arrays assembled via these techniques are nearly planar and thereby have 
limited surface area. Recently, Q. Yang et al. prepared gold nanoparticles (AuNPs) spot array by a direct inkjet 
printing method16, J. Lee et al. fabricated silver nanoparticles (AgNPs) line array using anisotropic buckling tem-
plates17. The former can achieve a high reproducibility with a comparative sensitivity, but it has a limitation of 
fabrication of large surface area due to the limitation of the technique that is based on the controlling of printing 
AuNPs droplets and their drying process. The later, however, requires an additional process to transfer the assem-
bled AgNPs array on the predefined templates to the desired flat substrate.
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Ferroelectric materials possess spontaneous polarization that can be reversed by the application of an external 
electric field. Polarization inversion results in domain patterns with polar surfaces that exhibit surface-bound 
charges. LiNbO3 is a widely known ferroelectric material benefiting from its large spontaneous polarization 
(~75 µC/cm2) existing only along the crystallographic c-axis18. By applying an external electric field greater than 
the coercive field, domain structures exhibiting antiparallel polarization along the c-axis can be fabricated19. This 
results in domain patterns with positively-poled (+Z) and negatively-poled (−Z) domains that have different 
surface reactivities due to their different polarization orientation. This property potentially enables domain pat-
terned LiNbO3 to act as templates for assembly of various functional nanostructures20. Studies have shown that, 
with a supra band gap illumination (>3.9 eV), photochemical reduction of Ag+ to Ag° from an aqueous solution 
occurs to +Z surfaces of domain patterns21, 22 and domain walls23, 24. Although the photodeposition of AgNPs on 
LiNbO3 has been reported in several publications, difficulties on fabrication of large-area well-ordered structures 
with nanoparticles in high density and good uniformity impede its applications in SERS. Recently, B. J. Rodriguez 
et al. developed a chemical patterning technique to fabricate periodically proton exchanged LiNbO3 (PPELN)25, 
and they demonstrated that the PPELN substrates possess different plasmonic properties with PPELN creating 
a stronger SERS signal relative to periodically poled LiNbO3 (PPLN) substrates26, 27. However, the PPELN sub-
strates made by periodically proton exchanged method exhibit surface morphology with steps between the +Z 
and −Z domains at a height of 6–8 nm27, which could be a demerit as used for SERS substrates. Till now, to our 
knowledge, there is no report on fabrication of AuNPs array using ferroelectric LiNbO3 single crystals.

AuNPs and AgNPs are most often used as SERS substrates because of their great Raman enhancement prop-
erties. However, silver lacks chemical stability and thus, if oxidized, the nanoparticles have weak scattering and 
strong Ohmic losses. In contrast, AuNPs have attracted a lot of interests for practical SERS applications due to 
their higher stability. Here, we report an easy-to-control technique based on ferroelectric-assisted assembly of 
AuNPs line array as high-performance SERS substrates with excellent reproducibility at a centimeter-scale area. 
Further, this technique can be applied to assemble metal nanoparticles into various ordered structures, such as 
spot array with scale up to centimeter area (Fig. S1) to meet the diverse needs of lab-on-a-chips and analytic 
components. Consequently, this ferroelectric-assisted assembly presents a new strategy to fabricate large-area and 
high reproducible SERS substrates.

Results and Discussion
PPLN is made by electric poling using congruent LiNbO3 single crystal wafer cut perpendicular to the crystallo-
graphic c-axis and completed at an optical level polishing28. The period of domain patterns can be manipulated 
at a range of a few micrometers to a few ten micrometers. Photochemically-induced assembly of AuNPs array 
on the PPLN was performed with optimized parameters of illumination and HAuCl4 aqueous solution. Figure 1 
illustrates the procedure for assembling AuNPs array onto a flat PPLN template. This procedure involves mainly 
two steps: fabrication of flat PPLN template and assembly of AuNPs onto +Z domain surfaces of the template to 
form AuNPs array. In this work, in order to create AuNPs array with large areas, we fabricated PPLN with a width 
ratio of 4:1 of +Z and −Z domains at a period of 19.7 μm (Fig. 1a).

After poling, polarization property and surface flatness was confirmed by piezoresponse force micro-
scope (PFM). Figure 1b is the phase image of the PPLN and the corresponding topographic image (Fig. 1c) 
obtained from the same area shows a highly smooth surface without height difference at domain boundaries. 

Figure 1.  (a) Schematic of electric poling for fabrication of the PPLN. Photoresist (red blocks) with a 
periodical pattern was formed on the surface of negatively-poled LiNbO3 single crystal. An external negative 
voltage (>21 kV/mm, coercive field of the LiNbO3) was applied through a liquid electrode (light blue areas) 
to invert polarizations from negatively-poled ones (gray arrows) into positively-poled ones (red arrows). PFM 
phase (b) and topographic images (c) taken from the same area. (d) Dark field image of AuNPs array with 
AuNPs assembled onto +Z surfaces of the PPLN template. The insert is a representative SEM image showing 
morphology of AuNPs ca. 35 nm in average diameter. The scale bar in the insert is 200 nm.
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Photochemical deposition of AuNPs was performed immediately after the clean process by immersing the PPLN 
into an aqueous solution of HAuCl4 with a supra band gap illumination.

+ + + ++ − + −⟶H AuCl 3e Au H 4Cl (1)
nv

4

The reaction associated with the salt solution and light irradiation is seen in Equation (1). Photo-excited electrons 
in LiNbO3 crystal move toward +Z domain surface due to the photogalvanic effect and are available for local reac-
tion with HAuCl4

21, 29, 30. The reduction of [AuCl4]− to Au occurs preferentially over the +Z domains also because 
at which photo-excited electrons face no energy barrier from the conduction band of LiNbO3

30. We used a white 
light delivered by a bundled fiber to realize carrier excitation. In order to assemble AuNPs array with nanoparticles 
at a high density and a certain dimension, a large number of preliminary experiments were performed through 
adjusting of concentration of HAuCl4 aqueous solution and illumination intensity. The illumination intensity varied 
by tuning the light output or the distance between the PPLN template and the output surface of the bundled fiber. A 
representative AuNPs array was displayed at a dark field image (Fig. 1d), the insert is a scanning electron microscope 
(SEM) image showing the AuNPs with high density and good uniformity. The average diameter (~35 nm) of AuNPs 
was calculated by measuring 30 particles of five different SEM images in each. Furthermore, surface morphology of 
the AuNPs was also demonstrated by the zoom-in ac-AFM image as shown in Fig. S2.

Energy-dispersive X-ray spectroscopy (EDS) was used to demonstrate the AuNPs assembled on +Z surfaces 
of the PPLN template. Figure 2(a) shows EDS spectrum of the AuNPs on the LiNbO3, containing detectable ele-
ments of Au and Nb. The peak at the highest energy corresponds to x-rays generated by emission from different 
energy-level shells (L, M) in Au and Nb due to their close overlaps of Au-Mα and Nb-Lα. Figure 2(b) shows 
element mapping of Au, Nb and O. Intentionally, the EDS was conducted in a selected region with low intensity of 
AuNPs in order to distinguish three different elements of Au, Nb and O. The mapping of O-Kα combining with 
that of Au-Mα and Nb-Lα demonstrates that the AuNPs were fabricated upon LiNbO3.

To evaluate the SERS performance of the assembled AuNPs array, Raman experiments were conducted employ-
ing Rhodamine 6G (R6G) as the probing molecule owing to its well-established vibrational features. Figure 3 shows 
the SERS spectra of R6G measured at a 633 nm laser with various concentrations ranging from 10−5–10−8 M on the 
AuNPs array. Most of the Raman bands match well with the characteristics of the Raman spectrum of R6G31. The 
bands at 1127 and 1183 cm−1 are assigned to the C-H in-plane bending mode, the band at 1310 cm−1 is assigned to 
the C−O−C stretching mode and the bands at 1362, 1509, 1580, and 1649 cm−1 are assigned to the C-C stretching 

Figure 2.  (a) EDS spectrum of AuNPs on the LiNbO3, containing detectable Au and Nb. (b) Element mapping 
of Au, Nb and O.
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modes. The signals are found to be monotonically decreasing with the decreased concentration, despite the low 
concentration of 10−8 M, it exhibited clearly the main Raman peaks. It should be mentioned that the 633 nm laser is 
not a best match with the AuNPs structure, which was confirmed later by wavelength dependence of SERS intensity, 
thus our fabricated substrate is expected to be able to detect probe molecules at a lower concentration (<10−8 M) 
by using an optimized laser. In addition, it was confirmed that all Raman bands of LiNbO3 single crystal are beyond 
the measuring range of 1000–1800 cm−1 of the probing molecule R6G (Fig. S3). Raman spectra of different probing 
molecules of p-aminothiophenol (PATP), 2-aminothiophenol, and methylene blue (MB) are shown in Fig. S4, fur-
ther demonstrating SERS performance of the assembled AuNPs array.

For quantification, the enhancement factor (EF) was calculated using the expression

= ×I I C CEF [ ]/[ ] [ ]/[ ] (2)SERS normal normal SERS

where Cnormal and Inormal correspond to the concentration and peak intensity for the regular Raman measurement 
with 0.5 M R6G solution on a LiNbO3 wafer (Fig. S5), respectively; and CSERS and ISERS are the concentration and 
peak intensity for the SERS measurement with 10−6 M R6G molecules adsorbed on the AuNPs array, respectively. 
This calculation is based on the fact that the intensity of SERS is proportional to the number (or concentration) of 
molecules if the number of molecules is below a single-molecule layer15. The calculation was made based on the 
intensity of the carbon stretching mode at 1649 cm−1, the EF was calculated to be 5.8 × 108. The high SERS sensi-
tivity was possibly mainly attributed to the large electromagnetic (EM) field coupling at the junctions of AuNPs, 
as will be discussed further in the section of SNOM measurement and theoretical modelling. It should be noted 
that the interparticle distance among the adjacent AuNPs was much smaller than the laser-spot size in the Raman 
measurement, which ensures the contribution of narrow interparticle gaps to the EM field coupling.

Another important advantage of the AuNPs array is the homogeneous site enhancement distribution over 
centimeter-scale area, yielding improved reproducibility of Raman signals. Figure 4a shows the SERS spectra of 
10−6 M R6G recorded at 11 randomly chosen spots across the AuNPs array. The spot-to-spot intensity variations 
of the characteristic 1649 cm−1 peak are quantitatively displayed in Fig. 3b, which shows that the total 11 data 

Figure 3.  SERS spectra of 10−5–10−8 M R6G on the AuNPs array. The incident laser of 633 nm was used with 
the laser power of 1 µW and the laser diameter of 1 µm focused on the samples. The acquisition time was 10 s.

Figure 4.  (a) Reproducibility of Raman spectra of 10−6 M R6G on the AuNPs array. Colors are assigned 
according to the relative intensity of the spectra. (b) Intensity distribution of the 1649 cm−1 peak in the 11 
spectra.
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points exhibit an intensity variation less than 7%. The remarkable reproducibility suggests the presence of the 
uniformity of site enhancement distribution over the AuNPs array.

SNOM enables studying sample optical properties on the nanometer scale and the technique has been widely 
used in plasmonics. In this work, a SNOM-Raman32, 33 was used to correlate the EM field with the surface topog-
raphy of the AuNPs. Figure 5a and b show SNOM-Raman mapping and that overlaid on the corresponding 
topographic image of the AuNPs, respectively. Figure 5a demonstrates the uniform distribution of the EM field 
i.e. “hot spots”34, 35 over the AuNPs, while Fig. 5b visualizes the highly localized EM field at the interparticle gaps 
among the adjacent AuNPs, which contributes to the high SERS sensitivity of the substrate.

Because the SERS effect mainly arises from the plasmon resonance of the nanostructures, it is typically 
wavelength dependent. In this work, we examined the SERS properties of R6G on the AuNPs array with laser 
excitation at 515, 561, 633 nm. Theoretical modelling with 3D-FDTD was applied to calculate the electric field 
distribution of the AuNPs in terms of the laser wavelength. We built the theoretical model as the AuNPs displayed 
in the insert SEM image in Fig. 1d, where shows dimer configurations dominating the structure. The meas-
ured average diameter of 35 nm was used for modelling and the separation between two AuNPs was set at 1 nm 
roughly correspond to the size of R6G molecule. Figure 6a indicates that the EM enhancement was found at all 
three incident lasers and SERS spectra obtained at 561 nm provided the strongest Raman enhancement with an 
EF in the order of 109. The theoretical modelling (Fig. 6b) shows accordingly that the magnitude of electric field 
for the plasmon resonance between AuNPs was obviously different with the assist of the incident laser, and the 
maximum enhancement was achieved at 561 nm, which is well consistent with the experimental SERS spectra. 
The corresponding theoretical and experimental results further demonstrated that the SERS of R6G molecules 
on the AuNPs array is mainly dominated by the EM effect. These results also imply that a higher sensitivity can be 
realized by optimizing nanostructures and laser wavelength.

Conclusions
In summary, ferroelectric-assisted assembly of large-area AuNPs array is used as SERS substrates for sensitive 
molecule detection. The AuNPs array possesses uniform site enhancement distribution and is capable of quan-
titative analysis of R6G molecules with excellent reproducibility of less than 7% intensity variation at the major 
vibration. Corresponding experimental and theoretical results show that the electromagnetic fields significantly 
enhanced on the surface of AuNPs array with an enhancement factor in an order of 109 at the excitation wavelength 
of 561 nm. Based on spontaneous polarization properties of ferroelectrics, this technique has advantages for assem-
bling AuNPs into various ordered structures at a centimeter-scale large area. The totality of the results suggests 
ferroelectric-assisted AuNPs array to be a promising candidate of SERS substrates for practical SERS applications.

Materials and Methods
Preparation of PPLN template.  The LiNbO3 samples were cut from a 0.3-mm-thick Z-cut LiNbO3 wafer 
(Oxide Ltd., Japan). Polarization inversion was performed using an electric poling technique with a patterned 
photoresist covered by a metal film on the −Z surface and a continuous liquid electrode of LiCl aqueous solution 
on the +Z surface. Periodically poled LiNbO3 (PPLN) was then diced into pieces in a size of 8 × 10 mm2 (Swing 
Ltd., Japan), and they were used as photodeposition templates after the clean process.

PFM characterization of PPLN.  The polarization property and surface flatness of the PPLN templates 
were measured using piezoresponse force microscope (PFM, Asylum Research MFP-3D). During the PFM imag-
ing, a 2 V AC voltage was applied to a conductive cantilever (spring constant of 3.5 N/m and tip radius of 25 nm) 
while scanning the tip on the template surface. The PFM phase image provides information of polarization direc-
tion. The topography was recorded simultaneously with the PFM phase image via the MFP-3D controller.

Figure 5.  (a) SNOM-Raman mapping. (b) SNOM-Raman mapping overlaid on the corresponding topographic 
image.
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Fabrication of centimeter-scale AuNPs array.  The PPLN templates were cleaned prior to the photo-
deposition via sonication for 20 min each in acetone, ethanol and Milli-Q water sequentially. The templates were 
placed into a small vessel made with an O-ring sealed upon a slide glass and that was filled with 300 μL of HAuCl4 
aqueous solution. A spot light source (San-ei Electric) equipped with a 200 W xenon lamp was used for the illu-
mination at a distance of 1.5 cm above the template surface for 5 min. The light was delivered by a bundled fiber 
with a spot diameter of 5 mm and a total intensity of 1.235 W/cm2 in the wavelength range of 200–400 nm. After 
the deposition, the substrates were immersed into Milli-Q water for 1 min and then blown dry with nitrogen.

SEM and AFM measurements.  Surface morphologies of AuNPs were obtained by using a scanning elec-
tron microscopy (SEM, JSM-7800E) and an atomic force microscopy (AFM, Asylum Research MFP-3D). The 
AFM was performed at ac-mode. The SEM was performed at an accelerating voltage of 5 kV and a working dis-
tance of 9.6 mm attached an energy-dispersive X-ray spectroscopy (EDS). In order to obtain information about 
containing elements, the samples don’t have any surface coating layer though it is generally used to enhance the 
electron conductivity during the scanning process.

SERS measurements.  R6G was used as a probe molecule for SERS measurements. The substrates were 
immersed in a 10−5–10−8 M R6G aqueous solution for 30 min to reach an adsorption/desorption equilibrium. 
Then, they were rinsed with Milli-Q water to remove any unabsorbed molecules, and dried with a stream of air. 
Raman spectroscopy was conducted using a Horiba-Jobin-Yvon Raman System T64000. A 100x (NA = 0.75) 
objective was used to focus the laser on a target area and to collect the backward scattering light from the sample 
surface. A spot size of 1 µm in diameter and excitation wavelength of 515, 561 and 633 nm from a diode laser at a 
power of 1 µW was used to irradiate the sample surfaces. The irradiation time for SERS spectra was 10 s.

SNOM measurements.  Scanning near-field optical microscope (SNOM) system, based on a commercial 
SNOM (Omicron, Twin-SNOM), is specially upgraded for spectroscopy purpose. The gold-coated fiber probe, 
forming the SNOM aperture, can be moved with nanometer accuracy to and from the surface. Single-mode fiber 
probes capable of linear polarized light output (~20%) were selected for use in this experiment. The SNOM probe 
is held within 10 nm of the sample surface using the shear-force feedback technique. An Ar+ laser (λ = 515 nm, 
~1 µW) was used for an excitation source. Raman-scattered light was detected in a backscattering configuration 
using the reflective objective lens and then passed through a holographic notch filter (Kaiser, Super Notch-Plus) 
to remove elastically scattered light before being focused into the spectrometer. A thermo-cooled intensified CCD 
camera (Andor Technology, DV438) was used in conjunction with a Czerney-Turner spectrometer for the Raman 
signal detection.

3D-FDTD simulation.  A three dimensional finite difference time domain (3D-FDTD) simulation 
(Lumerical Solutions, Inc.) was applied to calculate the electric field distribution of the AuNPs. The AuNPs were 
illuminated by normal incident light with its polarization along the X-direction (Fig. 5b). The separation between 
two AuNPs was set at 1 nm roughly correspond to the size of R6G molecule.

Figure 6.  (a) SERS spectra of R6G at the excitation wavelengths of 515, 561 and 633 nm at the same power. (b) 
The FDTD calculated local electric field enhancement (log |EF|) of dimer AuNPs at the XY plane.
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