SCIENTIFIC REPORTS

Received: 9 February 2017 Accepted: 24 April 2017 Published online: 07 June 2017

OPEN TiO(OH)₂ – highly effective catalysts for optimizing CO₂ desorption kinetics reducing CO₂ capture cost: A new pathway

Hongbao Yao^{1,2}, Sam Toan¹, Liang Huang³, Maohong Fan^{1,4}, Yujun Wang², Armistead G. Russell⁴, Guangsheng Luo² & Weiyang Fei²

The objective is to find a new pathway for significant reduction in CO₂ capture energy consumption. Specifically, nanoporous TiO(OH)₂ was used to realize the objective, which was desired as a catalyst to significantly accelerate the decomposition of aqueous NaHCO₃, essentially CO₂ desorption – the key step of Na₂CO₃/NaHCO₃ based CO₂ capture technologies from overall CO₂ energy consumption perspective. Effects of several important factors on TiO(OH)₂-catalyzed NaHCO₃ decomposition were investigated. The guantity of CO₂ generated from 0.238 mol/L NaHCO₃ at 65 °C with catalyst is ~800% of that generated without the presence of catalyst. When a 12W vacuum pump was used for carrying the generated CO₂ out of reactor, the total amount of CO₂ released was improved by \sim 2,500% under the given experimental conditions. No significant decrease in the catalytic effect of TiO(OH)₂ was observed after five cyclic CO₂ activated tests. In addition, characterizations with *in-situ* Fourier transform infrared spectroscopy, thermal gravity analysis and Brunauer-Emmett-Teller of TiO(OH), indicate that TiO(OH) is quite stable. The discovery in this research could inspire scientists' interests in starting to focus on a new pathway instead of making huge effort or investment in designing high-capacity but expensive CO₂ sorbent for developing practical or cost-effective CO₂ technologies.

There is no doubt that countless progresses have been made in controlling SOx/NOx and Hg emissions from fossil fuel fired power plants¹. However, the actions on CO_2 emission control have been slow². The importance of CO₂ capture in fossil fuel-fired power plants cannot be underestimated any more due to the catastrophic effect of the continuous increase in CO₂ concentration in atmosphere and the ill effects it has on the environment³⁻⁵, as indicated in the recently reached Paris Agreement⁶.

Nowadays, chemical absorption by liquid solvents, including amines and carbonates, is widely considered to be the most promising method among various post-combustion CO_2 capture technologies^{7–9}. However, high-energy requirements in the regeneration or CO₂ desorption process is the largest obstacle for preventing its industrial applications¹⁰. Conventional regenerations of spent solvents are just realized by heating spent solvents above boiling temperatures (100-150 °C). The energy consumption needed for CO₂ desorption or spent sorbent regeneration accounts for ~15-30% of power plants' electricity outputs¹¹.

Accordingly, many other efforts have been made for lowering \overline{CO}_2 desorption energy consumptions and up to date, there mainly exists three important strategies¹⁰⁻¹². The most popular one is to use new organic amine mixtures for CO₂ sorption and desorption. It was generally believed that adsorption solvents with lower heat of absorption require less heat to be regenerated. Thus, much attention has been focused on the blending of different types of amine solutions¹²⁻¹⁴. The other two strategies include the application of novel equipment with superior mass and heat transfer performance as well as process optimizations^{12, 15}. For example, stripping CO₂ from aqueous potassium carbonate solutions was achieved by using two types of polymeric flat sheet microporous

¹Department of Chemical and Petroleum Engineering, University of Wyoming, Laramie, WY, 82071, USA. ²State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China. ³State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China. ⁴School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA. Correspondence and requests for materials should be addressed to M.F. (email: mfan@uwyo.edu) or Y.W. (email: wangyujun@mail.tsinghua.edu.cn)

Figure 1. Schematic diagram of CO₂ desorption set-up [1: N₂ cylinder; 2: CO₂ cylinder; 3: mass flow controller; 4: thermostatic water bath; 5: thermoelectric couple; 6: stirred tank reactor; 7; condenser; 8: desiccator; 9; gas concentration analyzer; 10: data recording unit].

membrane contactors, which have been reported by Michael and co-workers¹⁶. Unfortunately, the efforts made in promoting CO_2 desorption or spent sorbent regeneration are still much less than that improving CO_2 absorption.

On the other hand, it should be pointed out that amine solvents, such as monoethanolamine (MEA), diethanolamine (DEA) and methyldiethanolamine (MDEA), have several serious shortcomings such as toxicity, corrosiveness, and oxidative degradation^{17, 18}. Alternative sorbents are inorganic carbonate solutions based on Equation R1, in which M stands for Na or K.

$$M_2CO_3 + CO_2 + H_2O \leftrightarrow 2MHCO_3$$
.

R1 based CO₂ captures are not only inexpensive but also stable and thus environmentally friendly. However, like any other CO₂ sorbents, its slow CO₂ desorption kinetics make its wide utilization unaffordable, considering the fact that the energy consumption of the CO₂ desorption step accounts for ~70–80% of those needed for the corresponding overall CO₂ capture processes¹⁹.

This research was designed to fill the gap with its focus on investigating the significant effect of $TiO(OH)_2$ on promoting aqueous NaHCO₃ decomposition or CO₂ desorption kinetics and the cost of Na₂CO₃/NaHCO₃ based CO₂ capture technology. The success could lead to a new pathway for future CO₂ capture technology development with its focus on catalysis instead of high-capacity but expensive sorbents.

Results

Effects of several key factors on the performance of TiO(OH)₂ on NaHCO₃ decomposition, essentially CO₂ desorption. Stirring rate. The experimental set-up for aqueous NaHCO₃ decomposition or CO₂ desorption test is illustrated in Fig. 1. The photo of actual experimental set-up is provided in supporting information (SI Photo 1). The quantities of CO₂ desorbed under different stirring rates at the given temperature (70 °C) were first evaluated. As shown in Fig. 2, CO₂ desorption amounts increase with the increase in stirring rates ranging from 400 rpm to 550 rpm while stirring rate only shows slight effect when it increases from 600 rpm to 650 rpm. This means that the mass transfer resistance of CO₂ diffusing from liquid phase to gas phase was intensively reduced and thus, CO₂ desorption is dominated by its reaction kinetics when stirring rate is higher than 600 rpm under experimental conditions.

Quantity of $TiO(OH)_2$ *added.* The effect of the quantity of $TiO(OH)_2$ or the Ti/Na molar ratio in solution on the decomposition of NaHCO₃ is shown in Fig. 3. NaHCO₃ decomposition or CO₂ desorption significantly increases with the quantity of added $TiO(OH)_2$ or the Ti/Na ratio. However, the improvement sensitivity decreases with Ti/Na ratio. Under the test conditions, the highest improvement in NaHCO₃ decomposition or CO₂ desorption reaches 800% at 110 s of reaction time. Considering the fact that the quantity of H₂O in reactor is much more than that stoichiometrically needed, the promotional effect of $TiO(OH)_2$ on NaHCO₃ decomposition or CO₂ desorption is exceptional.

Temperature. The effects of $TiO(OH)_2$ on NaHCO₃ decomposition or CO₂ desorption kinetics at temperatures of 40 °C, 50 °C, 60 °C and 70 °C are presented in Fig. 4. The quantity of CO₂ released within the first 180 seconds with the use of $TiO(OH)_2$ at 40 °C is 2.79 mmol, ~510% higher than that obtained without use of $TiO(OH)_2$ under

Figure 2. NaHCO₃ decomposition or CO₂ desorption profiles under different stirring rates [initial NaHCO₃ concentration: 0.143 mol/L; Ti/Na molar ratio: 0.78; reaction temperature: 70 °C; N₂ flow rate: 500 mL/min].

Figure 4. Effect of temperature on catalytic NaHCO₃ decomposition or CO₂ desorption [initial NaHCO₃ concentration: 0.143 mol/L; Ti/Na molar ratio: 0.78; stirring rate: 600 rpm; N₂ flow rate: 500 mL/min].

Figure 5. Cyclic performance of $TiO(OH)_2$ on NaHCO₃ decomposition [initial NaHCO₃ concentration: 0.238 mol/L; Ti/Na molar ratio: 0.78, stirring rate: 600 rpm; reaction temperature: 60 °C, N₂ flow rate: 500 mL/min].

	Specific surface area (m ² /g)	Pore volume (cm ³ /g)	Pore diameter (Å)
F-TiO(OH) ₂	807.4	0.73	17.12
C-TiO(OH) ₂ after 5 cycles	693.1	0.66	17.08

Table 1. BET characteristics of F-TiO(OH)₂ and C-TiO(OH)₂.

the same condition. At 70 °C, the catalyst can improve NaHCO₃ decomposition by about 490% within the first 180 s. The catalytic effects gradually decrease with time as dictated with thermodynamic theories, although they are still considerably large after 600 s of NaHCO₃ decomposition. For example, 5.63 mmol of CO₂ was released with the use of TiO(OH)₂ at 40 °C after 600 s, while only 1.61 mmol of CO₂ was released without presence of TiO(OH)₂under the same conditions, a 71.4% decrease.

Cyclic performance of TiO(OH)₂ **on NaHCO**₃ **decomposition.** In addition, the regeneration performance of NaHCO₃ solution decomposition using TiO(OH)₂ plays a key role in practical applications and cannot be neglected, which has also been examined in detail in this work. The fresh TiO(OH)₂ and CO₂-treated TiO(OH)₂ or cycled TiO(OH)₂ are hereafter denoted as F-TiO(OH)₂ and C-TiO(OH)₂, respectively. The C-TiO(OH)₂ promoted CO₂ release curves obtained from aqueous NaHCO₃ are almost overlap and no remarkable decrease in the total CO₂ desorption amounts are noticed in five continuous cycles as shown in Fig. 5. Furthermore, considering the resulting pore structure data summarized in Table 1, the specific surface area and pore volume of C-TiO(OH)₂ after 5 cycles of uses are 693.1 m²/g and 0.658 cm³/g, respectively, are comparable to those of F-TiO(OH)₂. This suggests that TiO(OH)₂ is a stable catalyst for NaHCO₃ decomposition or CO₂ desorption.

Discussion

 N_2 adsorption/desorption isotherms and pore-size distributions were conducted to investigate the pore structures of F-TiO(OH)₂ and C-TiO(OH)₂ with 5 cycles of CO₂ desorption and sorption. The resulting pore structure data were summarized in Table 1. Both samples are nanoporous with the average diameter close to 1.7 nm. The specific surface area of F-TiO(OH)₂ could reach to as high as 807.4 m²/g, while that of C-TiO(OH)₂ is 693.1 m²/g, about a 14% drop.

The FT-IR absorption spectra of two TiO(OH)₂ samples, Na₂CO₃ and NaHCO₃ are shown in Fig. 6. Both TiO(OH)₂ samples show broad peaks in the 400–900 cm⁻¹ range corresponding to Ti-O bending. The additional peaks in the 3,000–3,600 cm⁻¹ range existing in C-TiO(OH)₂ sample are likely due to the partial hydration during the reaction process. Typically, two small peaks at 1,124 and 1,072 cm⁻¹ in the F-TiO(OH)₂ likely result from Ti-O-C, the ending and bridging isopropyl groups, considering that TiO(OH)₂ are directly synthesized from the hydrolysis of TTIP. Similar phenomena were also reported by Sui and coworkers²⁰. Small peaks at 1,132, 1,117 and 1,022 cm⁻¹ were associated with Ti-O-C and butoxyl groups. In addition, it should be noted that C-O-H bending vibrations could appear as a broad and weak peak at 1,440–1,220 cm⁻¹ in alcohols and phenols^{21,22}. Accordingly, the two small peaks observed at 1,124, 1,072 cm⁻¹ for F-TiO(OH)₂ and C-TiO(OH)₂ may also be related to Ti-O-H group, which may be the major player in accelerating NaHCO₃ decomposition or CO₂ desorption.

Moreover, the FT-IR spectra of the NaCO₃ and NaHCO₃ obtained in experiments are consistent with those in references^{23–25}. The noteworthy peaks at 1,300 cm⁻¹ and 1,400 cm⁻¹ for NaHCO₃ and Na₂CO₃, respectively, are due to carbonate asymmetric stretching²⁶. In addition, a peak at 1,605 cm⁻¹ was observed for NaHCO₃, which

Figure 6. FT-IR spectra of F-TiO(OH)₂, C-TiO(OH)₂, Na₂CO₃, and NaHCO₃.

Figure 7. TGA data of F-TiO(OH)₂ and C-TiO(OH)₂ [heating rate: $20 \degree$ C/min; N₂ flow rate: $100 \degree$ mL/min].

can be attributed to symmetric stretching of CO₂. Therefore, the peak at 1,636 cm⁻¹ for C-TiO(OH)₂ may be due to the presence of CO_3^{2-} or HCO_3^{-} . This indicates that NaHCO₃ or NaCO₃ may be sorbed on the inner pore of F-TiO(OH)₂, which could be responsible for the decrease in specific surface area of C-TiO(OH)₂ as observed in Table 1.

The TGA data of F-TiO(OH)₂ and C-TiO(OH)₂ are shown in Fig. 7. Both samples started to lose absorbed water at ~120 °C, and then decomposed to TiO₂ above 300 °C. The final masses of F-TiO(OH)₂ and C-TiO(OH)₂ account for 80.1% and 81.2% of their initial masses, respectively, indicating that no titanium loss took place during the NaHCO₃ decomposition or CO₂ desorption process in this research. F-TiO(OH)₂ shows slower mass loss rates at lower temperatures, which could be due to loss of organic groups²⁷ from TTIP. This agrees with what was observed in the FTIR results.

Furthermore, Raman spectroscopy analyses of F-TiO(OH)₂, C-TiO(OH)₂, pure Na₂CO₃ and NaHCO₃ were also conducted and the results are shown in Fig. 8. All samples have a similar broad band in the range of 3,000–3,200 cm⁻¹, which resulted from H-O vibration in the water absorbed from air²⁸. Two very strong peaks at *ca* 1,043 cm⁻¹ for NaHCO₃ and at *ca* 1,079 cm⁻¹ for Na₂CO₃ were observed, which has been reported by others^{29,30} and can both be assigned to the ν_1 symmetric stretch.

Both $TiO(OH)_2$ samples show relatively intense Raman bands at *ca* 446 cm⁻¹ and *ca* 636 cm⁻¹ (*ca* 584 cm⁻¹ for reacted $TiO(OH)_2$). Typically, the frequencies of the Raman bands observed are 513 cm⁻¹ and 636 cm⁻¹ for anatase and 446 cm⁻¹ and 609 cm⁻¹ for rutile, respectively^{29, 31, 32}. The $TiO(OH)_2$ sample in this work is amorphous and the position and intensity of its characteristic peaks can be changed by modifying its material structures. It should be pointed out that the resulting Raman spectrum for C- $TiO(OH)_2$ is quite similar to that of F- $TiO(OH)_2$, implying that $TiO(OH)_2$ is stable or can be cyclically used.

Finding a cost-effective method for carrying the released or desorbed CO_2 out of reaction system is important. A pump was used to compare its performance on carrying the released CO_2 out of its desorption system to that achieved with N₂ as a carrier gas, and the results obtained within 55–65 °C are shown in Fig. 9. It can be seen that the quantity of CO_2 carried out with N₂ was high than that with a pump when NaHCO₃ decomposition was not

Figure 8. Raman spectra of F-TiO(OH)₂, C-TiO(OH)₂, pure Na₂CO₃ and NaHCO₃.

Figure 9. (a) Effect of different CO_2 carrying out methods on CO_2 release [initial NaHCO₃ concentration: 0.238 mol/L; Ti/Na molar ratio: 0.78; stirring rate: 600 rpm; reaction temperature: 65 °C, N₂ flow rate: 200 mL/ min; power of pump: 12 W]. (b) Ratio of CO_2 released by using N₂ gas and the pump with and without uses of catalyst for each 10 seconds.

catalyzed with TiO(OH)₂. However, the pump carried out 25% more CO₂ than the same amount of N₂ did when the catalyst was used. The quantity of the CO₂ generated from non-catalytic NaHCO₃ decomposition with 200 ml/ min N₂ being a carrier gas is only ~1/8 of that from catalytic NaHCO₃. Furthermore, when a 12 W pump was used for carrying the generated CO₂ out of NaHCO₃ decomposition reactor, the CO₂ releasing improvement due to the help of the catalyst is about 25 times or 2,500%.

Figures 3, 4 and 9 clearly show that noticeable CO_2 release from catalytic NaHCO₃ decomposition was observed earlier than that from non-catalytic NaHCO₃ decomposition. This is not only confirmed with the experimental set-up shown in Fig. 1 but also with the data collected with the FTIR function of the available *in-situ* FTIR-MS (SI Photo 2) for solid NaHCO₃ decomposition and shown in Fig. 10. The time needed for the appearing of the peak of C=O in the released CO₂ of catalytic NaHCO₃ decomposition is longer than that of non-catalytic NaHCO₃ decomposition.

Conclusion

Nanoporous $TiO(OH)_2$ is a very effective catalyst for aqueous NaHCO₃ decomposition or CO₂ desorption, and thus CO₂ capture. The finding could be significantly helpful for reducing the global concern about the high energy consumption required for CO₂ emission control. Further works should focus on understanding the associated mechanism and extending the new concept to other CO₂ emission and utilization technologies development.

Methods

TiO(OH)₂ **preparation.** Titanium isopropoxide (TTIP), ethanol (EtOH) and sodium bicarbonate (NaHCO₃) were purchased from Sigma-Aldrich and used without any further purification prior to preparing TiO(OH)₂. The first TiO(OH)₂ preparation step was to add 25 mL titanium isopropoxide to 350 mL deionized water at room

Figure 10. FT-IR- characterization of catalytic and non-catalytic solid NaHCO₃ decomposition [NaHCO₃: TiO(OH)₂ mole ratio: 1:2; temperature: 150 °C; He flow rate: 5 ml/min].

temperature, followed by 4 hours of vigorous stirring. The resulting white precipitate was separated by filtration, and then washed several times with deionized water and anhydrous ethanol sequentially. The wet $TiO(OH)_2$ was dried under 120 °C in an oven for 12 h.

TiO(OH)₂ characterization. The Brunauer-Emmett-Teller (BET) surface areas and pore size distribution of $TiO(OH)_2$ samples were measured by using a Quantachrome Autosorb-iQ pore structure analyzer. Pore volumes were estimated from the adsorbed amount of N_2 at a relative pressure of $P/P_0=0.99$. Fourier transformed-infrared (FTIR) spectroscopy data were collected with a Thermo Nicolet Magna-IR 760 spectrometer (SI Photo 1). Thermal gravity analysis (TGA) tests were conducted on a TA Instruments SDT Q600 thermogravimetric analyzer. Raman spectra of the $TiO(OH)_2$ samples were collected on a Raman Sierra IM-52 instrument from Snowy Range Instruments with a 532 nm laser and 3 mW power.

NaHCO₃ decomposition or CO₂ desorption tests. NaHCO₃ decomposition tests were started by adding predetermined amounts of $TiO(OH)_2$, NaHCO₃ and deionized water into the reactor stirred at the rate of 600 rpm. Reaction temperatures were regulated using a digital temperature controller. During NaHCO₃ decomposition, pure N₂ or vacuum pump (Karlsson Robotics, 12 W) was used to carry the desorbed CO₂ out of reactor. The change of CO₂ outlet concentration with time was recorded in a data acquisition unit, and the concentration-time profile was used to calculate the quantity of CO₂ desorbed and evaluated to observe the difference in CO₂ desorption tests, the use of $TiO(OH)_2$. When $TiO(OH)_2$ was used for cyclic NaHCO₃ decomposition or CO₂ desorption tests, the used $TiO(OH)_2$ and deionized water were mixed in a closed tank with pure CO₂ at 200 psi followed by vigorous stirring under room temperature to study the effect of CO₂ sorption or activation on $TiO(OH)_2$.

References

- Ling, L. X., Fan, M. H., Wang, B. J. & Zhang, R. G. Application of computational chemistry in understanding the mechanisms of mercury removal technologies: a review. *Energy & Environmental Science* 8, 3109–3133, doi:10.1039/c5ee02255j (2015).
- Cui, S. et al. Mesoporous amine-modified SiO₂ aerogel: a potential CO₂ sorbent. Energy & Environmental Science 4, 2070–2074, doi:10.1039/c0ee00442a (2011).
- Boot-Handford, M. E. et al. Carbon capture and storage update. Energy & Environmental Science 7, 130–189, doi:10.1039/c3ee42350f (2014).
- Zhang, Z., Yao, Z.-Z., Xiang, S. & Chen, B. Perspective of microporous metal-organic frameworks for CO₂ capture and separation. Energy & Environmental Science 7, 2868–2899, doi:10.1039/c4ee00143e (2014).
- Kong, Y. et al. A new aerogel based CO₂ adsorbent developed using a simple sol-gel method along with supercritical drying. Chemical Communications 50, 12158–12161, doi:10.1039/c4cc06424k (2014).
- 6. Paris Agreement, 2016. https://treaties.un.org/pages/ViewDetails.aspx?src=TREATY&mtdsg_no=XXVII-7d&chapter=27&clang=_en.
- Dutcher, B., Fan, M. & Russell, A. G. Amine-Based CO₂ Capture Technology Development from the Beginning of 2013-A Review. Acs Applied Materials & Interfaces 7, 2137–2148, doi:10.1021/am507465f (2015).
- Liang, Z. et al. Recent progress and new developments in post-combustion carbon-capture technology with amine based solvents. International Journal of Greenhouse Gas Control 40, 26–54, doi:10.1016/j.ijggc.2015.06.017 (2015).
- Sharma, S. D. & Azzi, M. A critical review of existing strategies for emission control in the monoethanolamine-based carbon capture process and some recommendations for improved strategies. *Fuel* 121, 178–188, doi:10.1016/j.fuel.2013.12.023 (2014).
- Li, T. & Keener, T. C. review: Desorption of CO₂ from rich solutions in chemical absorption processes. *International Journal of Greenhouse Gas Control* 51, 290–304, doi:10.1016/j.ijggc.2016.06.030 (2016).
- Singh, P. & Versteeg, G. F. Structure and activity relationships for CO₂ regeneration from aqueous amine-based absorbents. *Process Safety and Environmental Protection* 86, 347–359, doi:10.1016/j.psep.2008.03.005 (2008).
- 12. Zhang, X. *et al.* Experimental studies of regeneration heat duty for CO₂ desorption from diethylenetriamine (DETA) solution in a stripper column packed with Dixon ring random packing. *Fuel* **136**, 261–267, doi:10.1016/j.fuel.2014.07.057 (2014).

- Oexmann, J. & Kather, A. Minimising the regeneration heat duty of post-combustion CO₂ capture by wet chemical absorption: The misguided focus on low heat of absorption solvents. *International Journal of Greenhouse Gas Control* 4, 36–43, doi:10.1016/j. ijggc.2009.09.010 (2010).
- Sakwattanapong, R., Aroonwilas, A. & Veawab, A. Behavior of reboiler heat duty for CO₂ capture plants using regenerable single and blended alkanolamines. *Industrial & Engineering Chemistry Research* 44, 4465–4473, doi:10.1021/ie050063w (2005).
- Frimpong, R. A., Remias, J. E., Neathery, J. K. & Liu, K. Solvent regeneration with a high volatility liquid as stripping carrier. International Journal of Greenhouse Gas Control 9, 124–129, doi:10.1016/j.ijggc.2012.03.014 (2012).
- Simioni, M., Kentish, S. E. & Stevens, G. W. Membrane stripping: Desorption of carbon dioxide from alkali solvents. *Journal of Membrane Science* 378, 18–27, doi:10.1016/j.memsci.2010.12.046 (2011).
- Knuutila, H., Juliussen, O. & Svendsen, H. F. Kinetics of the reaction of carbon dioxide with aqueous sodium and potassium carbonate solutions. *Chemical Engineering Science* 65, 6077–6088, doi:10.1016/j.ces.2010.07.018 (2010).
- Savage, D., Sartori, G. & Astarita, G. Amines as rate promoters for carbon dioxide hydrolysis. Faraday Discussions of the Chemical Society 77, 17–31, doi:10.1039/dc9847700017 (1984).
- Feng, B., Du, M., Dennis, T. J., Anthony, K. & Perumal, M. J. Reduction of Energy Requirement of CO₂ Desorption by Adding Acid into CO₂-Loaded Solvent. *Energy & Fuels* 24, 213–219, doi:10.1021/ef900564x (2010).
- Sui, R., Rizkalla, A. S. & Charpentier, P. A. FTIR study on the formation of TiO₂ nanostructures in supercritical CO₂. The Journal of Physical Chemistry B 110, 16212–16218, doi:10.1021/jp0570521 (2006).
- 21. Colthup, N. Introduction to infrared and Raman spectroscopy. (Elsevier, 2012).
- 22. Schrader, B. Infrared and Raman spectroscopy: methods and applications. (John Wiley & Sons, 2008).
- Nickolov, Z. S., Ozcan, O. & Miller, J. FTIR analysis of water structure and its significance in the flotation of sodium carbonate and sodium bicarbonate salts. *Colloids and Surfaces A: Physicochemical and Engineering Aspects* 224, 231–239, doi:10.1016/S0927-7757(03)00317-0 (2003).
- Dutcher, B., Fan, M. & Leonard, B. Use of multifunctional nanoporous TiO(OH)₂ for catalytic NaHCO₃ decomposition-eventually for Na₂CO₃/NaHCO₃ based CO₂ separation technology. *Separation and Purification Technology* 80, 364–374, doi:10.1016/j. seppur.2011.05.022 (2011).
- Dutcher, B. et al. Use of Nanoporous FeOOH as a Catalytic Support for NaHCO₃ Decomposition Aimed at Reduction of Energy Requirement of Na₂CO₃/NaHCO₃ Based CO₂ Separation Technology. *Journal of Physical Chemistry C* 115, 15532–15544, doi:10.1021/jp204899r (2011).
- Su, C. M. & Suarez, D. L. In situ infrared speciation of absorbed carbonate on aluminum and iron oxide. Clays and Clay Minerals 45, 814–825, doi:10.1346/ccmn.1997.0450605 (1997).
- Sui, R. H., Rizkalla, A. S. & Charpentier, P. A. FTIR study on the formation of TiO₂ nanostructures in supercritical CO₂. Journal of Physical Chemistry B 110, 16212–16218, doi:10.1021/jp0570521 (2006).
- Wu, J. & Zheng, H. Quantitative measurement of the concentration of sodium carbonate in the system of Na₂CO₃-H₂O by Raman spectroscopy. *Chemical Geology* 273, 267–271, doi:10.1016/j.chemgeo.2010.03.001 (2010).
- de Veij, M., Vandenabeele, P., De Beer, T., Remonc, J. P. & Moens, L. Reference database of Raman spectra of pharmaceutical excipients. *Journal of Raman Spectroscopy* 40, 297–307, doi:10.1002/jrs.2125 (2009).
- Brooker, M. & Bates, J. B. Raman and infrared spectral studies of anhydrous Li₂CO₃ and Na₂CO₃. *The Journal of Chemical Physics* 54, 4788–4796, doi:10.1063/1.1674754 (1971).
- Balachandran, U. & Eror, N. G. Raman spectra of titanium dioxide. Journal of Solid State Chemistry 42, 276–282, doi:10.1016/0022-4596(82)90006-8 (1982).
- Rigby, S. J., Al-Obaidi, A. H. R., Lee, S.-K., McStay, D. & Robertson, P. K. J. The application of Raman and anti-stokes Raman spectroscopy for *in situ* monitoring of structural changes in laser irradiated titanium dioxide materials. *Applied Surface Science* 252, 7948–7952, doi:10.1016/j.apsusc.2005.10.003 (2006).

Acknowledgements

The authors gratefully acknowledge the great support from the Department of Energy, State of Wyoming.

Author Contributions

Hongbao Yao, Sam Toan and Liang Huang performed the experiments. Hongbao Yao analyzed data and wrote the whole manuscript. Sam Toan helped to draw Figures 9 and 10. Liang Huang helped to draw the graphic abstract. Maohong Fan and Yujun Wang supervised the study, planned and designed experiments. Armistead G. Russell, Guangsheng Luo and Weiyang Fei helped in editing the manuscript. All authors reviewed the manuscript.

Additional Information

Supplementary information accompanies this paper at doi:10.1038/s41598-017-03125-w

Competing Interests: The authors declare that they have no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017