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Human cortical activity evoked 
by contextual processing in 
attentional orienting
Shuo Zhao1,2,3, Chunlin Li   4, Shota Uono5, Sayaka Yoshimura5 & Motomi Toichi1,3

The ability to assess another person’s direction of attention is paramount in social communication, 
many studies have reported a similar pattern between gaze and arrow cues in attention orienting. 
Neuroimaging research has also demonstrated no qualitative differences in attention to gaze and arrow 
cues. However, these studies were implemented under simple experiment conditions. Researchers 
have highlighted the importance of contextual processing (i.e., the semantic congruence between cue 
and target) in attentional orienting, showing that attentional orienting by social gaze or arrow cues 
could be modulated through contextual processing. Here, we examine the neural activity of attentional 
orienting by gaze and arrow cues in response to contextual processing using functional magnetic 
resonance imaging. The results demonstrated that the influence of neural activity through contextual 
processing to attentional orienting occurred under invalid conditions (when the cue and target were 
incongruent versus congruent) in the ventral frontoparietal network, although we did not identify any 
differences in the neural substrates of attentional orienting in contextual processing between gaze and 
arrow cues. These results support behavioural data of attentional orienting modulated by contextual 
processing based on the neurocognitive architecture.

The ability to assess another person’s direction of attention is paramount in social communication. For example, 
we are able to identify a person’s focus based on their eye gaze, thus enabling an understanding of other people’s 
inner state (such as thoughts, beliefs, and desires)1. Similar to eye gaze, non-social stimuli also play important 
roles in influencing attention, such as an arrow on a road sign. However, compared with eye gazes, non-social 
directional stimuli are not helpful when making conclusions regarding someone’s cognitive state, such as specu-
lating about what a person wishes to do.

Over the past two decades, cognitive psychologists have focused on comparing the role of directional gaze and 
arrow cues in attentional orienting. These studies have typically investigated attentional orienting based on gaze 
and arrow cues using a modified version of Posner’s cueing paradigm2. For example, Friesen and Kingstone3 pre-
sented non-predictive gaze cues at the centre of a screen prior to the presentation of a peripheral target (right or 
left). Before the onset of the target, a centrally presented directional cue (e.g., eye gaze) appears on screen. Under 
valid conditions, the cue will accurately indicate the subsequent target location, whereas under invalid conditions, 
the cue will indicate the opposite location. A rapid response to a validly cued target indicates an allocation of 
attention (i.e., orienting) to the target location prior to target onset. In contrast, a delayed response to an invalidly 
cued target occurs when the onset of the target at the opposite location, indicating a reorienting of attention to the 
target. Previous studies4–9 have commonly demonstrated that arrow cues automatically trigger attentional shifts 
in the same manner as gaze cues. These studies have demonstrated that both gaze and arrow cues trigger atten-
tional shifts when they are counterpredictive of a target location7, facilitate response time when discriminating 
the target following the cue6, have comparable sensitivity to object-based selection4, 5, 8 and the stimulus onset 
asynchrony between the cue and target9.
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Recent neuroimaging studies regarding attentional orienting have attempted to investigate differences in cor-
tical activity between gaze and arrow cues. These studies have focused on two attentional networks (reviewed 
by10, 11). The dorsal frontoparietal network, with regions centred around the intraparietal sulcus (IPS), superior 
parietal lobule (SPL)/Brodmann’s area (BA)5, 7, and frontal eye field (FEF)/BA8, may be responsible for orienting 
of attention to a validly cued target in the cueing paradigm, but also for reorienting attention to an invalidly cued 
target10, 11. The ventral frontoparietal network, with regions centred on the temporoparietal junction (TPJ)/BA39, 
40, 22 and ventral frontal cortex (VFC)/BA44, 45, 47 (including parts of the middle frontal gyrus (MFG) and 
inferior frontal gyrus (IFG)), may only be responsible for reorienting attention. Most previous studies12–18 have 
demonstrated that the differences in cortical activity associated with social gaze and arrow cues are quantitative 
rather than qualitative, although some studies19–21 have reported evidence suggesting different mechanisms for 
these cues. For example, Tipper et al.17 reported attentional orienting to both eye gaze and arrow cues engaged 
extensive dorsal and ventral frontoparietal networks, but the magnitude of activation differed between these 
networks. However, these studies only examined the differences between gaze and arrow cues under simple con-
ditions (e.g. a dot or letter as the target). Given that Birmingham and Kingstone22 suggested that the apparent 
difference in attentional orienting between gaze and arrow cues might be distinguished only when the cues were 
embedded in a rich environment, it is thus important to examine the differences between gaze and arrow cues 
under more complex conditions.

Some studies have highlighted the importance of contextual processing (i.e., the semantic congruence between 
the cue and target) in attentional orienting when using arrows or eye gaze as cues. Previous studies23, 24 have 
demonstrated that attentional orienting is facilitated through contextual processing when using arrows as cues. 
For example, Ristic et al.23 examined attentional orienting based on whether facial gaze and arrow cues could 
be triggered through the contextual processing of cue-target colour contingencies. The results indicated that 
attentional orienting elicited by an arrow rather than an eye gaze was sensitive to colour-congruent target stimuli; 
an attentional orienting effect for blue arrows was only evident for blue targets. However, other studies25–27 have 
demonstrated that attentional orienting with facial gaze was facilitated through a strongly contextual relationship 
between the cue and target when there was congruence in meaning between the cue and target. For example, 
Bayliss et al.25 reported that compared with disgusted faces, the gaze direction of happy faces more effectively 
oriented attention to pleasant targets. These findings indicated that participants could employ contextual infor-
mation in attentional orienting by arrows or eye gaze cues to effectively capture important information, although 
the context effect might be observed only when targets are presented at a specific context of colour and emotion 
for gazes and arrows. These findings raised a question regarding whether attentional orienting differs between eye 
gaze and arrow cues when these cues were influenced through contextual processing.

At a neural level, researchers have shown activity in the TPJ and superior temporal sulcus (STS)/BA21, 22 
associated with contextual processing in attention. Geng and Vossel28 reviewed previous evidence, indicating 
that the TPJ (anatomically, the TPJ is strictly defined as the cortex at the intersection of the posterior superior 
temporal, supramarginal, and angular gyri) was engaged in terms of “contextual updating” in attention. For exam-
ple, Weidner et al.29 demonstrated that cortical activity in TPJ increased when the contextual processing of the 
relationship between the cue and target was incongruent as opposed to congruent (i.e., when the target-defining 
dimension (orientation or colour) was incongruently rather than congruently cued). Moreover, Noppeney et al.30 
observed that the activity in STS increased when a sound or speech target was incongruent (e.g., a car picture 
paired with the spoken word ‘owl’) as opposed to congruent (e.g., a cat picture paired with the spoken word ‘cat’) 
with prior visual information. This finding indicated that context also modulated the activity of STS. Consistently, 
when a strong relationship was established between the target word and a word sound that had been previously 
presented, the results showed the enhanced activation for thematically related categories (e.g., picture + frame) 
and response suppression for taxonomically related categories (e.g., chair + armchair) in the left STS31. In the 
present study, we focused on these brain regions to examine the influence of neural systems in relation to gaze and 
arrow cues through contextual processing focused on the relationship between the cue and target in attentional 
orienting.

In the present study, we examined the neural activity of attentional orienting with social gaze and arrows as 
cues using Posner’s cueing paradigm. Based on a previous study27, two sounds (a social voice and a tone) were 
manipulated as targets to determine the contextual relationship between cue and target; that is, social gaze and 
social voice and arrow and tone as congruent meaning conditions, and social gaze and tone and arrow and social 
voice as incongruent meaning conditions. The aims of this study are as follows: (1) We first wanted to examine 
whether the influence of neural activity in TPJ and STS differed between gaze and arrow cues in response to con-
textual processing of the relationship between cue and target. (2) Furthermore, given that previous studies10, 11 
have characterised the functional mechanisms of the orienting and reorienting of attention (i.e., valid and invalid 
conditions) in dorsal and ventral frontoparietal networks, respectively, we considered it important to specifically 
investigate these functional mechanisms and how they were modulated through the contextual processing of the 
relationship between cue and target. Specifically, if different neural activity was observed for gaze and arrow in 
response to the contextual processing of cue-target, we would subsequently examine whether the neural activ-
ity for attentional orienting differed with contextual processing between gaze and arrow cues at the dorsal and 
ventral frontoparietal networks, respectively. In contrast, if no difference between gaze and arrow was evident, 
we would then examine only the influence of neural activity for attentional orienting by contextual processing in 
both gaze and arrow cues in these two attentional networks.

Methods
Participants.  This research was approved by the local ethics committee of Capital Medical University, 
Beijing, China. No foreseeable risk to the participants was present, and personal identifying information was not 
collected. Participants provided written informed consent and background information. All procedures complied 



www.nature.com/scientificreports/

3Scientific Reports | 7: 2962  | DOI:10.1038/s41598-017-03104-1

with the ethical standards of the 1964 Declaration of Helsinki regarding the treatment of human participants in 
research. In total, 22 volunteers (9 women, 13 men; mean ± SD age, 22.95 ± 2.61 years) participated. All partic-
ipants were right-handed, as assessed by the Edinburgh Handedness Inventory32, and had normal or correct-
ed-to-normal visual and auditory acuity.

Stimuli.  Visual and auditory stimuli were almost identical to those used in a previous behavioural study (at 
a sound level comfortable to each participant)27. Previous studies have demonstrated that female faces are less 
resemblance to angry expressions than male faces, and male faces are perceived as less likeable33, 34 and more pow-
erful35. To avoid any differential influence of expression (e.g., anger), a Japanese female face with neutral expres-
sions was used for this task (Fig. 1A). The image was obtained from a previous study36, in which the emotional 
intensity of facial stimuli with neutral expressions was assessed. The results confirmed that these facial images 
were considered neutral rather than emotional. Based on these findings, it is reasonable to propose that the female 
face image in the present study conveyed neutral facial expressions. Moreover, three versions of each face were 
produced: one version with a direction of gaze straight ahead, another version with the pupils averted leftward, 
and a third version with the pupils averted rightward. The faces measured approximately 4.7° wide and 6.9° high. 
For the arrow cue, a symmetrical arrow was presented as the cue stimulus, with an arrowhead at one end and a tail 
at the opposite end. The arrows measured 4.7° in width by 1.7° in height and were light grey.

Furthermore, two types of auditory stimuli were presented as targets. One type was sampled from a woman: 
an/i/voice sound (F0 frequency of 300 Hz), which is similar to the /iy/sound in English. The other type was a pure 
tone of similar frequency to the F0 voice (300 Hz), which was produced using the Audacity software package (ver. 
1.3.13; Audacity store.com). The duration of the stimulus presentation was 150 ms.

Apparatus.  These stimuli were generated on a computer and presented to the participants via a custom-built, 
magnet-compatible audio-visual system during magnetic resonance (MR) scanning. To attenuate the acous-
tic noise that accompanies fMRI (functional magnetic resonance imaging) scanning, shooting earmuffs were 
used. Participants viewed visual stimuli on a back-projection screen. The auditory stimuli were identical to 
those presented in a previous study37 via an air-conductive tube to participants. Presentation software (ver. 10.2; 

Figure 1.  Illustration of the stimulus presentation.
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Neurobehavioral Systems) was used to generate auditory and visual stimuli on a Windows computer. In addition, 
the participants generated their responses using a keypad (Current Designs Inc., Philadelphia, PA, USA).

Procedures.  The sequence of stimulus presentation is shown in Fig. 1. For each trial, a fixation cross was 
initially presented for 300 ms in the centre of the screen. A neutral stimulus with a straight eye gaze (gaze trail) 
or transverse lines (arrow trail) was subsequently presented at the location. After 350 ms, a cue stimulus (gaze 
or arrow) in the right or left direction was presented in the centre of the screen. The stimulus onset asynchrony 
(SOA) between the auditory target and cue was fixed to 200 ms. Subsequently, an auditory stimulus target (voice 
or tone sound) was presented in the left or right ear for 150 ms through headphones. Consistent with previous 
studies37–39, the participants were asked to answer quickly and precisely whether or not they heard the auditory 
target on the left or right side of the headphones by pressing the corresponding key on the switch keypad using 
their dominant index or middle fingers, respectively. Response times (RT) were measured in each trial. A stand-
ard procedure for the Posner’s cueing paradigm removed cue stimuli before a target stimulus appeared on the 
display. However, when using a facial gaze as a cue, many studies e.g. refs 40 and 41 also implemented a modified 
cueing paradigm in which the cue remained on the screen until a response was obtained or a set time had elapsed. 
For this study, we designed a contextual processing condition between the cue and target. To establish a strong 
and obvious contextual relationship between the cue and target, the cue remained until a response was obtained 
or 1000 ms had elapsed. The targets appeared randomly on the same or opposite side of the cue direction when 
the cue was directed left or right. The target appeared at the cued location in 50% of the trials. The participants 
were told that the cue did not predict the target location and were instructed to fixate on the centre of the screen 
in each trial.

The fMRI analysis relied on a within-subject three factorial design, with the cue condition (gaze or arrow), 
context condition (i.e., the congruence of meaning between the cue and target, which could be congruent (social 
gaze and social voice or arrow and tone) or incongruent (social gaze and tone or arrow and social voice)), with 
validity condition (valid or invalid) as the repeated factors. Sixty trials were performed under each condition. Our 
experimental design was based on a mixed block/event-related paradigm, facilitating a more complete utilisation 
of the BOLD signal and enabling a deeper interpretation of how the regions of the brain function on multiple 
timescales42. Consistent with a previous study43, alternating blocks of experimental trials of cue condition and 
blocks of baseline were presented. Within the condition blocks, congruence trials were presented in a pseudor-
andom event-related distribution.

MRI acquisition.  The images were acquired using a 3.0-T Trio Tim Scanner-vision whole-body MRI system 
(Siemens, Erlangen, Germany) to measure activation using a head coil. The functional images comprised 33 
consecutive slices parallel to the anterior-posterior commissure plane, covering the entire brain. A T2*-weighted 
gradient-echo planar imaging (EPI) sequence was used with the following parameters: TR = 2000 ms, TE = 30 ms, 
flip angle = 90°, field of view = 220 × 220 mm, matrix size = 64 × 64, and voxel size = 3.4 × 3.4 × 3.5 mm3. The 
slices covered most of the brain, including the entire temporal cortex, but excluding the most inferior parts of the 
cerebellum. We also acquired high-resolution isotropic T1-weighted images (TR = 1900 ms, TE = 2.52 ms, flip 
angle = 9°, field of view = 250 × 250 mm, 176 sagittal slices, voxel size = 1 × 1 × 1 mm3).

Behavioural data analysis.  The data were analysed using the SPSS software package (ver. 21.0). Incorrect 
responses (1.76% of the trials) and RT of less than 100 ms or more than 1000 ms were excluded from the RT 
analysis (1.18% of the trials), and trials in which a response occurred prior to the target onset were also excluded. 
The mean RT under conditions was calculated for each participant. The mean RT was analysed using a three-way 
analysis of variance (ANOVA) with cue (gaze, arrow), context (congruent, incongruent), and validity (valid, 
invalid) as within-participant factors. To examine whether an interaction was significant, if present, a follow-up 
simple main effect (i.e. assessing the effect of each independent variable at each level of the other independent 
variable) analysis was conducted to interpret the result.

Image data analysis.  Data preprocessing and statistical analyses were performed using the Statistical 
Parametric Mapping software package (SPM12; Wellcome Department of Cognitive Neurology, London, UK; 
http://www.fil.ion.ucl.ac.uk/spm/software/spm12) implemented in MATLAB 2013b (Math Works). The func-
tional images from each run were realigned using the first scan as a reference to correct for head movements. 
The movement parameters generated during spatial realignment indicated that all subjects moved less than 
2 mm during the course of the trial. The T1 anatomical image was preprocessed using an intensity inhomo-
geneity correction. Then, T1 anatomical images were coregistered to the first scan of the functional images. 
Next, the coregistered T1 anatomical image was normalised to the Montreal Neurological Institute space using 
a unified segmentation-spatial normalisation approach44. The parameters from this normalisation process were 
subsequently applied to each of the functional images. Finally, these spatially normalised functional images 
were resampled to a voxel size of 2 × 2 × 2 and were spatially smoothed in three dimensions using an 8-mm 
full-width-at-half-maximum Gaussian kernel.

We used random-effects analyses45 to identify significantly activated voxels exhibiting interesting effects. First, 
we performed a single-subject analysis46. The BOLD response was modelled as the neural activity, convolved with 
a canonical haemodynamic response function (HRF), which yielded regressors in a general linear model (GLM) 
for each condition. We used a high-pass filter comprising a discrete cosine basis function with a cut-off period of 
128 to eliminate the artefactual low-frequency trend. To correct the global fluctuation related to motion artefacts, 
global scaling was conducted. Serial autocorrelation, assuming an AR (1) (first-order autoregressive) model, was 
estimated from the pooled active voxels with a restricted maximum likelihood procedure and used to whiten the 
data and design matrix47.

http://www.fil.ion.ucl.ac.uk/spm/software/spm12
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The contrast images from the first-level analyses from all subjects were subsequently used for the second-level 
group statistics. First, for each participant, the data were best fitted at every voxel using a combination of effects 
of interest. These data were delta functions representing the onsets of the eight conditions, given by the crossing 
of our 2 × 2 × 2 factorial design: cue (gaze, arrow) × context (congruent, incongruent) × validity (valid, inva-
lid), convolved with the SPM12 haemodynamic response function. Second, based on the behavioural results, 
a 2 × 2 × 2 (cue × context × validity) factorial ANOVA was used to investigate the relationship between behav-
ioural results and brain activation. Based on a methods analysis48, the statistical maps exhibited a spatial extent 
threshold at p < 0.05, family-wise error (FWE)-corrected for multiple comparisons, and an intensity threshold at 
p < 0.001, uncorrected for multiple comparisons at the whole-brain level was used to protect against false-positive 
activations. The peak voxels of clusters exhibiting reliable effects are reported in MNI coordinates. We had an a 
priori hypothesis regarding the activity of contextual processing in TPJ and STS, and the influence of contextual 
processing in dorsal and ventral frontoparietal networks. Based on anatomical masks using the WFU Pickatlas 
tool, a small-volume correction was also employed to the a priori regions of interest, attributed to the anatomical 
structures in left/right hemisphere of the STS with BA21, 22, the IPS and SPL with BA5, 7, the FEF with BA8, and 
the IFG with BA44, 45, 47, separately. Consistent with the whole-brain level, we used small-volume correction at 
a voxel spatial extent threshold at p < 0.05, FWE corrected, and an intensity threshold at p < 0.001, uncorrected 
for multiple comparisons. Finally, to quantify neural responses with the influence of attentional orienting under 
context conditions, we used the MarsBaR software package49 to extract percentage changes in BOLD signals 
for congruent and incongruent contexts under valid and invalid conditions, averaged across voxels with given 
regions of interest (ROI) using spheres with a radius of 8 mm. Then, the means of the percent signal change (PSC) 
between the conditions were compared using repeated-measures ANOVA. All statistics were calculated using the 
SPSS software package (ver. 21).

Results
Behavioural results.  The data pertaining to errors did not reveal any significant main effect or interaction 
(all p > 0.05), thus indicating that the participants suffered no speed-accuracy trade-off (Table 1).

The mean RT under each condition are listed in Table 1, and the mean differences in RT between the invalid 
and valid conditions are shown in Fig. 2. A three-factor repeated-measures ANOVA was used to analyse the RT. 
The analysis revealed a main effect of cue (F (1, 21) = 12.412, p = 0.002, ηp

2 = 0.371), with faster responses under 
the eye gaze (339.7 ms) versus arrow (351.3 ms) condition. In addition, we also observed a significant main effect 
of context (F (1, 21) = 8.213, p = 0.009, ηp

2 = 0.281), with faster responses under congruent (341.3 ms) versus 

Cue Validity

Context

Congruent Incongruent

M SD %E M SD %E

Gaze
Valid 328.3 28.3 0.15 330.3 27.9 0.15

Invalid 344.0 26.7 0.31 356.2 26.7 0.34

Arrow
Valid 337.1 26.3 0.15 343.4 27.2 0.12

Invalid 355.9 25.3 0.27 368.8 26.7 0.26

Table 1.  Mean response times (ms), standard deviations, and percent errors (%E) as a function of cue, context, 
and validity.

Figure 2.  Response times (RT) results in attentional orienting. Mean (with SE) RT presented for valid and 
invalid conditions as a function of a cue type condition (gaze or arrow). **p < 0.01.
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incongruent (349.7 ms) conditions, and validity (F (1, 21) = 25.247, p < 0.001, ηp
2 = 0.546), with faster responses 

under valid (334.8 ms) versus invalid (356.2 ms) conditions.
A significant interaction of context × validity was observed (F (1, 21) = 4.907, p = 0.038, ηp

2 = 0.189), but no 
significant interaction was detected for cue × context (F (1, 21) = 0.166, p = 0.688, ηp

2 = 0.008), cue × validity (F 
(1, 21) = 0.048, p = 0.828, ηp

2 = 0.002), or cue × context × validity (F (1, 21) = 0.108, p = 0.746, ηp
2 = 0.005).

The post hoc test revealed a significant difference between context conditions under invalid conditions 
(p = 0.004) but not under valid conditions (p = 0.182) with a faster response for congruent (349.9 ms) versus 
incongruent (362.5 ms) under invalid conditions, indicating an RT benefit for targets that match the context (e.g. 
social) of the cue under invalid conditions but not under valid conditions. This result suggests that the disengage-
ment of attention from cued locations is facilitated through contextual processing. These findings demonstrated 
that attentional orienting is modulated through contextual processing only under invalid conditions, enabling the 
investigation of the neural substrates underlying the behavioural response of the contextual processing between 
the cue and target in attentional orienting induced by gaze and arrow cues.

Supplementary analysis of the influenced by the gender.  Because previous studies have reported 
that gaze-triggered orienting is different between genders (e.g., refs 50 and 51), we added gender (male, female) as 
between-participant factor to supplement the influence of the gender based on the main (3-way) ANOVA of RT 
data analysis, although 22 participants were recruited with gender unbalance including 9 women and 13 men. The 
results found a significant interaction between gender and the validity (F (1, 20) = 9.591, p = 0.006, ηp

2 = 0.324) 
but not between gender and other factors (all F (1, 20) ≤ 2.54, p > 0.1). However, the post hoc test did not reveal 
a difference between genders under valid or invalid conditions (both p > 0.1), although a faster response was 
observed for valid compared with invalid conditions in both male (323.5 vs. 335.6 ms, p = 0.017) and female 
(351.1 vs. 386.0 ms, p < 0.001) participants. Thus, the results of the present study suggest that attentional orienting 
through contextual processing was not influenced by the gender of the participants.

fMRI results.  Next, based on the behavioural results, we investigated the patterns of brain activation associ-
ated with cross-modal attention. In the primary analysis, we performed 2 cue conditions (gaze, arrow) × 2 context 
conditions (congruent, incongruent) × 2 validity conditions (valid, invalid) repeated-measures ANOVA.

Main effects of cue, validity, and context.  In a whole-brain analysis, the gaze trials evoked significantly 
greater activity than arrow trials in a many clusters of voxels. One of these clusters included the fusiform gyrus 
(BA 19), extending from the extra-striate visual areas into the occipital and temporal cortices (Supplementary 
Fig. S1, Table S1). In contrast, greater activity for arrow than for gaze trials was observed in the right hemisphere 
of temporal lobe, including the middle temporal gyrus (BA 37), and the left hemisphere of occipital lobe, includ-
ing the middle occipital gyrus (BA 19) (Supplementary Fig. S2, Table S2). These results were consistent with 
previous evidence21, thus indicating that gaze versus arrow cues increased activation in various occipital and 
temporal areas, whereas the reverse contrast evoked activation in occipital regions.

Furthermore, in a whole-brain analysis, invalid gaze and arrow cues evoked a significantly larger response 
than valid gaze and arrow cues in the left frontal hemisphere and the limbic system, including the inferior and 
middle frontal gyrus, and the anterior cingulate (Supplementary Fig. S3, Table S3). These results were also con-
sistent with those of a previous study16 that revealed common activity in the IFG by conjunction analyses to 
response gaze and arrow cues in attentional orienting. However, activation was not observed by valid versus 
invalid gaze and arrow cues.

To highlight the neural underpinnings of RT modulated through contextual processing, we examined the dif-
ference between congruent and incongruent contextual meanings of the cue-target. The results of the whole-brain 
analysis indicated that the congruent condition evoked a significantly smaller response than the incongruent con-
dition in the left hemisphere parietal, including TPJ (BA 40). Additionally, anatomical region-based small-volume 
corrections revealed significant activation in the temporal lobe, including STS (BA21/22). (Fig. 3, Table 2) These 
findings indicated that activity in left TPJ and STS regions was associated with the contextual processing of the 
cue-target, but this activation was not observed in the congruent versus the incongruent condition. Furthermore, 
to examine the differences between gazes and arrows in contextual processing, we investigated whether the neu-
ral activity in these regions differed between gaze and arrow cues. The results revealed no significant difference 
between gaze and arrow cues, indicating that comparable neural activity was elicited by contextual processing 
between gaze and arrow, thereby influencing valid and invalid orienting within attentional orienting. Next, we 
assessed the cue condition, focusing on its influence in contextual processing for both gaze and arrow cues in 
attentional orienting.

Interaction of context and validity conditions.  A 2 (context: congruent, incongruent) × 2 (validity: 
valid, invalid) ANOVA was performed to investigate the influence of activation by the contextual relationship of 
cue-target in attentional orienting networks. The results of the whole-brain analysis revealed a significant inter-
action in left hemisphere TPJ (BA 40). Additionally, anatomical region-based small-volume corrections revealed 
significant activation in the left hemisphere IFG (BA 47) regions (Fig. 4, Table 3).

ROI analysis.  The results of the interaction were expanded using an ROI-based analysis. Figure 4 and 
Table 4 present the location and pattern of the response in all ROIs in which a signal change was extracted. 
These responses were located in left TPJ and IFG regions. The PSC in these regions was analysed using a 2 (con-
text: congruent, incongruent) × 2 (validity: valid, invalid) repeated-measures ANOVA. A significant interaction 
was observed in the left TPJ and IFG regions. Moreover, the post hoc test revealed that PSC was smaller when 
the contextual meaning of cue-target was congruent vs. incongruent in all regions under invalid conditions (all 
p < 0.05) but not under valid conditions (Fig. 4, Table 4). These results indicated that the influence of contextual 
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processing on the neural activity for attentional orienting was observed under invalid conditions but not under 
valid conditions.

Discussion
We examined attentional orienting by gaze and arrow cues under a localising task in which participants were 
asked to indicate whether the target (voice and tone) was heard on the left or right side of the headphones. The 
combination of cues and targets varied across trials, reflecting contextual relationship processing, where the con-
textual meaning of the cue-target was congruent (social gaze and social voice and arrow and tone) or incongruent 
(social gaze and tone and arrow and social voice). Although the behavioural results showed no difference between 
gaze and arrow cues, a RT benefit was observed for targets matching the context of the cue under the invalid 
condition. This finding suggested that a disengagement of attention from cued locations was facilitated through 
contextual processing. Previous studies23, 25 have demonstrated that attentional orienting can be influenced by 
contextual processing when targets were presented in a specific context (e.g., colour or emotion) for gaze or arrow 
cues. Compared with a previous study23 in which attentional orienting based on a contextual effect for gaze and 
arrow was investigated in the context of colour (i.e., schematic white/black eyes as the cue and a black square as 
the target), the present study examined attentional orienting through contextual processing using facial gaze and 
voice, which seems to more closely resemble a real-world environment. Furthermore, although another study25 
examined attentional orienting through gaze cues influenced by emotional context for 80 different images (e.g., 
a chimney image) as targets, the present study only manipulated two sounds as targets, potentially easing the 
establishment of a pairing between the cue and target. That is, the pairing of gaze and voice was easily established, 
and arrow and tone represented the other pair. Thus, the present study observed attentional orienting through 
contextual processing when using gaze and arrow as cues. Based on these findings, the results of the present study 
extended those of previous studies23, 25, indicating that attentional orienting through centrally presented cues, 
irrespective of cue characteristics (e.g. social or non-social), could also be modulated by contextual relationship 
processing between the cue and target.

Importantly, consistent with the behavioural results, the main analyses of fMRI data revealed that neural sub-
strates were not different in response to the contextual relationship processing of cue-target for gaze and arrow 
cues. Previous studies28–31 have revealed that neural substrates in the regions of the TPJ and STS were associated 
with contextual processing. Consistently, to highlight the neural underpinnings of RT modulated by contextual 
processing, the results of the present study also demonstrated that the left STS and bilateral TPJ were specifically 

Figure 3.  In response to incongruent versus congruent context conditions, exploratory whole-brain analysis 
indicating that the left TPJ is significantly activated, and small-volume-correction analysis showing that the left 
STS is significantly activated based on an anatomical mask. A voxel-wise spatial extent threshold p < 0.05, FWE-
corrected, and an intensity threshold p < 0.001, uncorrected, were used.

Side Area Region BA

Coordinates

Z-value

P (FWE) P (FWE) P (uncorr)
Cluster 
size

x y z
(cluster 
level)

(peak 
level)

(peak 
level) (mm3)

Exploratory whole-brain analysis

L Parietal Temporoparietal junction 40 −54 −50 34 4.696 0.001 0.021 0.000 819

Small-volume corrections analysis

L Temporal Superior temporal sulcus 21/22 −64 −34 6 3.943 0.028 0.005 0.000 41

Table 2.  Main effect of incongruent condition: incongruent > congruent. BA = Brodmann’s area; 
FWE = family-wise error; a voxel-wise spatial extent threshold at p < 0.05, FWE corrected, and an intensity 
threshold at p < 0.001, uncorrected.
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involved in contextual processing under both gaze and arrow conditions. The results also indicated that these 
regions were weakly activated when the relationship of cue-target was congruent (the expected target matching 
the context of the cue) compared with incongruent (the expected target non-matching the context of the cue). 
We suggest that these regions may be the locations of an inhibitory mechanism, which enhanced neural activity 
to suppress the processing of incongruent predictions for targets from cue stimuli. Given that the activity of these 
regions did not differ between social gaze and arrow cues, we further suggest that a comparable neural system was 
elicited by contextual processing for gaze and arrow cues and further influenced the attentional process. This idea 

Figure 4.  (a) In response to the interaction between context and validity conditions, exploratory whole-
brain analysis showing left TPJ significantly activated, and small-volume-correction analysis showing left 
IFG significantly activated based on an anatomical mask. A voxel-wise spatial extent threshold p < 0.05, FWE 
corrected, and an intensity threshold p < 0.001, uncorrected, were used. (b) Mean (±SE) and percent signal 
changes (PSC) in the left hemisphere TPJ and IFG regions are shown. These areas are overlaid on the mean 
normalised structural MRI from all subjects in this study. n.s: p > 0.05; **p < 0.01.

Side Area Region BA

Coordinates

Z-value

P (FWE) P (FWE) P (uncorr)
Cluster 
size

x y z
(cluster 
level)

(peak 
level)

(peak 
level) (mm3)

Exploratory whole-brain analysis

L Parietal Temporoparietal junction 40 −54 −50 34 3.962 0.01 0.345 0.000 391

Small-volume corrections analysis

L Frontal Inferior frontal gyrus 47 −46 18 4 3.356 0.04 0.025 0.000 5

Table 3.  Interaction between context and validity conditions. BA = Brodmann’s area; FWE = family-wise 
error; a voxel-wise spatial extent threshold at p < 0.05, FWE corrected, and an intensity threshold at p < 0.001, 
uncorrected.

Regions defined by locating local maxima

Region Interaction F Valid incongruent > congruent Invalid incongruent > congruent

Left TPJ 4.392* 0.004 15.308**

Left IFG 10.082** 3.715 8.956**

Table 4.  ROI results. ROIs represent previously examined areas that exhibited a significant interaction between 
context and validity conditions in a 2 × 2 ANOVA (with a voxel-wise spatial extent threshold at p < 0.05, FWE 
corrected, and an intensity threshold at p < 0.001, uncorrected). *p < 0.05, **p < 0.01.
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is consistent with previous studies12–18 that demonstrated the differences in attention to social and non-social cues 
were quantitative rather than qualitative.

Interaction analyses in behavioural results indicated that a different pattern of attentional orienting by con-
textual processing was elicited for valid and invalid conditions. That is, a RT benefit was observed for targets 
matching the context (e.g. social) of the cue under invalid conditions, but not under valid conditions. We propose 
that the different patterns between valid and invalid conditions may be influenced through the overlap of the time 
window between contextual processing and attentional orienting. Electrophysiological studies have demonstrated 
that the activity of temporal staging differed between valid and invalid conditions52–54. These studies reported an 
amplitude enhanced at P1 (a positive component at occipital electrode sites between 70 and 100 ms post-target 
onset) in attentional orienting with gaze as the cue under valid versus invalid conditions, whereas a greater ampli-
tude at P3 (a positive component at central/parietal/midline electrode sites between 300 and 500 ms post-target 
onset) was observed under invalid versus valid conditions. However, in previous studies55, 56, the N300 (a negative 
component at frontal electrode sites at approximately 300 ms) - N400 (a negative component at central/parietal 
electrode sites at approximately 400 ms) wave reflected an updating of context information. For example, Demiral 
et al.55 observed a stronger N300-N400 effect elicited through a semantic context when the contextual scene was 
presented before the target in a spatial attention task. Given that the pattern of attentional orienting by contextual 
processing differed between valid and invalid conditions, we suggest that this finding may be influenced through 
associations with the activities of temporal staging between the influence of attentional orienting (i.e. the mech-
anism of valid and invalid conditions) and the contextual processing component. Compared with the early stage 
(70–100 ms) under valid conditions, the time window of processing overlapped with that of contextual informa-
tion and attentional orienting under invalid conditions at a later stage (300–500 ms), in which these processes 
could be integrated to suppress a violation of expectancies (the expected target matching the context of the cue) 
when the contextual relationship of cue-target was incongruent. In addition, we speculated that varying SOA 
conditions may influence expectations, and the patterns of attentional orienting by contextual processing for valid 
and invalid conditions could be modulated in the present experiment. That is, if the target was presented at a short 
SOA prior to the expectation of the subject, then attentional orienting by contextual processing may not be influ-
enced under valid or invalid conditions, whereas if the target was presented at a long SOA after the expectation 
of the subject, then attentional orienting by contextual processing might be influenced under invalid conditions.

Furthermore, the results of the interaction analyses in fMRI also demonstrated the influence of contextual 
processing on neural activity for attentional orienting under invalid but not valid conditions. Such neural activi-
ties were observed in the left hemisphere TPJ and IFG, an area in the ventral frontoparietal network that may be 
responsible for invalidity orienting (for reviews, see refs 10 and 11). As mentioned above, analyses of the fMRI 
data revealed that the left STS and TPJ were involved in the contextual processing of the relationship between 
the cue and target. The activity in the left TPJ region overlapped in processing the contextual relationship of 
cue-target and invalidity orienting in attention. Additionally, consistent with the pattern of neural activity for 
contextual processing in the left STS and TPJ, we observed that when the relationship of cue-target was congru-
ent versus incongruent based on ROI analyses, less activity was observed in all of these brain regions. This result 
suggests that from the left TPJ to the IFG in the ventral frontoparietal network, neural signals for contextual pro-
cessing were transferred to invalidity orienting in attention, in which the intrinsic connection pathway is present 
among these regions57. Compared with incongruent conditions, we suggest that the lower activity in the ventral 
frontoparietal network when the contextual processing of the relationship between cue and target is congruent 
under invalid conditions may reflect a disengagement of attention from cued locations at a lower cost, which is 
readily elicited. This idea may explain the behavioural data obtained under invalid conditions, indicating that a 
lower cost is associated with processing when the contextual processing of the relationship between the cue and 
target was congruent versus incongruent; thus, participants could disengage attention from the cued location to 
rapidly capture a target.

Implications of the present study.  Previous behavioural studies23–26 had demonstrated that attentional 
orienting by gaze or arrow cues could be modulated through contextual processing. Consistent with these studies, 
the behavioural results in the present study also revealed that RT in attentional orienting was modulated through 
contextual processing. In particular, we observed that attentional orienting was modulated through contextual 
processing under invalid conditions. Given that the present study identified the influence of the neural substrates 
by contextual processing under invalid conditions in ventral frontoparietal networks, we suggest that this finding 
may account for the behavioural data regarding attentional orienting through contextual processing based on the 
neurocognitive architecture.

In addition, a behavioural study demonstrated impaired attentional orienting when the cue-target relationship 
is weak (i.e., incongruent context) in individuals with autism spectrum disorder (ASD)27, a finding that raises a 
question regarding whether individuals with ASD exhibit impairment of gaze-triggered attention because activity 
is impaired in the neural mechanism in the ventral frontoparietal network. Given that impaired gaze-triggered 
attention may impede and differentially affect the development of the ability to understand the mental state of 
another individual in social communication1, we suggest that an atypical function in the ventral frontoparietal 
network, particularly in the processing of contextual information, may be associated with the atypical develop-
ment of social cognition, further suggesting an important direction for future studies combining brain imaging 
and treatment interventions for social processing deficits in individuals with ASD.

Limitations.  First, we tested attentional orienting by contextual processing using gaze and arrow as cues with 
two types of targets (social voice and tone) under only visual-auditory cross-modal conditions. Given the com-
plexity of real life, future studies should examine attentional orienting by contextual processing using two types 
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of targets under visual-visual unimodal or visual-tactile cross-modal conditions in which attentional orienting by 
contextual processing may also play an important role.

Second, the present study involved two types of contextually related cues and targets. In contrast with faces 
and voices, which are immediately paired in a congruent context, the pairing of the tone and arrow might be influ-
enced through the increasing number of trials throughout the experiment. To evaluate this possibility, all exper-
imental blocks were divided into two parts (first and last half of the block), and a four-factor repeated-measures 
ANOVA (block × cue × context × validity) was used to analyse the RTs. Given that a significant 4-way interaction 
was observed (F (1, 21) = 5.09, p = 0.04, ηp

2 = 0.195), two 3-way repeated-measures ANOVA (block × cue × con-
text) was performed under valid and invalid conditions separately. Although no significant interaction was 
detected for block conditions under invalid conditions, (all p > 0.1), we observed that the main effect of context 
(F (1, 21) = 11.74, p = 0.003, ηp

2 = 0.36) was significant with faster response to congruent than incongruent condi-
tions (349.0 vs. 361.5 ms), thus indicating that contextual processing between the cue and target was immediately 
established at both gaze and arrow pairings. However, under valid conditions, although we observed no signifi-
cant main effect of context (F (1, 21) = 1.41, p = 0.25, ηp

2 = 0.063), a significant interaction of block × cue × con-
text was observed (F (1, 21) = 12.67, p = 0.002, ηp

2 = 0.38). The post hoc test revealed a significant difference 
between context conditions (p = 0.045) with a faster response to congruent than incongruent conditions (327.4 
vs. 346.9 ms) when using arrows as cues in the last half of the block, thereby indicating that attentional orienting 
by contextual processing could be influenced by increasing the number of trials throughout the experiment under 
valid conditions when the tone target was matched with arrow cue. In the present study, attentional orienting 
was modulated through contextual processing under invalid conditions. Thus, we suggest that this effect may be 
elicited through immediately established pairing between arrow and tone, rather than increasing the number of 
trials in the experiment. However, future studies should investigate the mechanism of how contextual processing 
is influenced by increasing the number of trials through the experiment.

Finally, in the present study, we directly contrasted the context conditions by gaze and arrow cues in invalid 
and valid trials to reveal differences in attentional orienting. Previous studies15, 20, 21 manipulated a neutral cue (e.g. 
direct gaze) as a baseline condition to examine differences in the neural mechanisms between valid and invalid 
attentional orienting conditions. However, compared with a non-directional arrow as a neutral cue, Engell et al.19  
suggested that a direct gaze, as a neutral cue, was perceived as directional rather than non-directional, which 
was problematic in terms of comparing social versus non-social cueing in an fMRI study. Future research should 
investigate the need for a baseline condition in which the neural gaze and arrow cues involve no spatial informa-
tion and have the same effect on neural activity, such as closed eyes and non-directional arrows.

Conclusions
In this study, we observed that the response time in attentional orienting by gaze and arrow cues was modulated 
through contextual processing between the cue and target when contextually congruent and incongruent under 
invalid conditions in behavioural studies. Additionally, on the neural level, activity in the left TPJ and STS was 
observed with attentional orienting by gaze and arrow cues in response to contextual processing of the relation-
ship between the cue and target. However, we did not observe any difference in the neural substrates between 
social gaze and arrows by contextual processing in attentional orienting. This finding adds further evidence in 
support of the notion that the differences in attention to social and non-social cues are quantitative rather than 
qualitative. Importantly, both behavioural and fMRI results indicated that the influence of contextual processing 
on neural activity for attentional orienting occurred under invalid conditions. Such an increase was observed in 
the ventral frontoparietal network when the cue and target were incongruent rather than congruent. This finding 
may provide an explanation for the behavioural data regarding attentional orienting by contextual processing 
based on the neurocognitive architecture.
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