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Atomistic Corrective Scheme 
for Supercell Density Functional 
Theory Calculations of Charged 
Defects
Tengfei Cao1 & Angelo Bongiorno1,2,3

A new method to correct formation energies of charged defects obtained by supercell density-
functional calculations is presented and applied to bulk, surface, and low-dimensional systems. The 
method relies on atomistic models and a polarizable force field to describe a material system and 
its dielectric properties. The polarizable force field is based on a minimal set of fitting parameters, it 
accounts for the dielectric screening arising from ions and electrons separately, and it can be easily 
implemented in any software for atomistic molecular dynamics simulations. This work illustrates both 
technical aspects and applications of the new corrective scheme. The method is tested on systems in 
vacuo to validate the energy scheme. It is applied to charged defects in the bulk and at the surface of 
realistic materials to achieve comparison with published results obtained by using available corrective 
schemes based on continuum electrostatics treatments. Moreover, to demonstrate its generality, 
the method is used to correct the formation energy obtained by DFT of a singly negatively charged S 
vacancy in monolayer, bilayer, trilayer and bulk MoS2.

Charged defects pose serious challenges to density functional theory (DFT) calculations relying on the use of 
supercells1–3. The electrostatic energy of a periodic array of charged defects diverges1, 2, and to eliminate the singu-
larity, the conventional approach consists in neutralizing the supercell by using a uniform charge background1, 2.  
Periodic DFT calculations rely on this solution to study charged systems and to calculate the formation energy of 
a charged defect in a dielectric system3–7. Unfortunately, the use of supercells and a uniform charge background 
introduce undesired interactions (between the charged defect and its replicas, and between the charged defect 
and the uniform background) that are fairly large and turn off slowly with the dimensions of the supercell1, 2. 
To account for these size effects, the formation energy, Ef, of a defect carrying a charge q is calculated by DFT as 
follows:

µ µ= − − − + ∆E E q E q E( ) (0) , (1)f L L I e L
DFT DFT

where ΔEL is the corrective energy term canceling the spurious interactions, E q( )L
DFT  and E (0)L

DFT  are the DFT 
energies of the defected and reference systems, respectively, computed by using supercells of linear dimension L, 
and μI and μe are the chemical potentials of the ions and electrons forming the defect. In Eq. (1), ΔEL is equal to 
E∞ − EL

1, 3, 6, 8, 9, that is the difference in electrostatic energy between the isolated defect in the infinite material 
system, E∞, and the periodic array of defected supercells of linear dimension L compensated by a uniform charge 
background, EL. Here, we present a new and original method to calculate ΔEL = E∞ − EL.

The well-known formula introduced by Makov and Payne is valid and can be used to calculate ΔEL only in the 
case of a point-charge defect in an isotropic and homogeneous bulk dielectric material1. In recent years, various 
corrective schemes have been put forward to go beyond the Makov and Payne scheme and calculate ΔEL in a 
general situation7, 8, 10–12, such as for a charged defect of finite size3 in an anisotropic9, inhomogeneous6, or ape-
riodic system6. All these previous corrective schemes rely on continuum electrostatics, structureless jellium-like 
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models for a defected dielectric system, and either analytical3 or numerical6 solutions of the Poisson equation. 
Although all valid, these schemes are limited either in scope to a selected class of defects and systems1, 3, 9 or (in 
our view) by the stringent requirement of using a structureless jellium to represent the defected material system. 
Here, we present a new, alternative, and general method to correct formation energies of charge defects obtained 
by DFT. At variance with previous approaches, our method is based on the use of atomistic model structures of 
a defected material, a simple polarizable force field, and a self-consistent treatment of the dielectric screening 
arising separately from ions and electrons. It is to be noted that since our method is based on atomistic models 
and force fields, it can be easily implemented in any software for classical molecular dynamics simulations, and 
therefore it is readily accessible. In the following, we discuss technical aspects and applications of our method to 
calculate ΔEL.

Results and Discussion
Method description. Our method relies on the use of periodic atomistic model structures to represent a 
dielectric material. Each atomic site encompasses an ionic charge, Q, connected to an equilibrium position by a 
harmonic spring, K, and an electronic charge, q, treated either as a spherical shell or a Gaussian charge distribu-
tion of width σ. Ionic and electronic charges belonging to the same atomic site interact only via a harmonic spring, 
k, whereas inter-site electrostatic interactions are calculated by using the Ewald method13. In mathematical terms, 
the potential energy function, U, of a periodic supercell encompassing N ions and n spherical shells takes the 
following form:

= +U U U , (2)Springs Ewald

with

∑ ∑= ∆ + ∆
= =

U k s K r1
2

1
2

,
(3)i

n

i i
j

N

j jSprings
1

2

1

2

and

∑ ∑ ∑

∑ ∑

∑

σ

π
π σ

σ

=
− −






− − 




+ +



−





−

+ −
∆






∆ 




σ

+

≠

+

≠

+

 

 

 



U
q q

V G
S q

q Q
s

s

r r R

r r R

G

1
2

erfc
2

2
exp

( ) 1
2

erf
2

,
(4)

i

N n

j i

N n
i j

i j

i j

ew

ew i

N n

i

i

n
i i

i

i

ew

n n

n

G

Ewald

0

G
2

2
2 2

ew
2 2

where, in the equations above, V is the volume of the supercell, n and Rn are indexes and corresponding lattice 
vector of the direct space of supercells, G is a vector of the reciprocal space, q indicates either ionic (Q) or elec-
tronic (q) charges, r refers to the vector position of either an ion (r) or an electronic charge (s), σew is the parame-
ter controlling the convergence of the Ewald sums, Δr refers to the displacement of an ion from its equilibrium 
position, and Δs indicates the distance between ion and the respective electronic charge (see Fig. 1). In Eq. (4), 
S(G) is the structure factor of the ionic and electronic charges, the first sum excludes the interactions between 
ions and electronic charges belonging to same sites, and the last sum is used to eliminate these same interactions 
from the sum in the reciprocal space. In case of electronic charges treated as Gaussian charge distributions, Eq. (2) 
includes the following additional term:

Figure 1. Left panel, ball and stick image of an atomistic model structure. In our scheme, each atomic site is 
described as shown in the 2D schematics enclosed in the dotted ellipse, i.e. an ionic charge, Q (red disc), and an 
electronic charge, q (wide blue disc). The ionic charge is connected to an equilibrium position via a harmonic 
spring K, and the electronic charge is connected to the ion via a harmonic spring k. The electronic charge can 
be treated either as a spherical shell or a Gaussian distribution of width σ. These parameters are calibrated to 
reproduce high- and low-frequency dielectric constants of the material system.
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where the σi’s correspond to the widths of the Gaussian distributions assigned to the electronic charge.
To determine equilibrium displacements of both ions and electronic charges (due to the presence of either a 

static electric field or a charge defect), we assign fictitious masses to both ionic and electronic charges and we use 
conventional damped molecular dynamics techniques13 to determine the ground state energy and dielectric dis-
placements of the supercell. Periodic model structures incorporating a charged defect are neutralized by using a 
uniform charge background, and to estimate the correction energy ΔEL = E∞ − EL to be used in Eq. (1), the polar-
izable energy scheme in Eqs (2) and (5) is used to calculate EL and, by extrapolation, E∞. Unless otherwise speci-
fied, =L V3 .

The parameters {K, Q} and {k, q, σ} for each atomic site require to be calibrated to reproduce the high- and 
low-frequency dielectric constants of the material system. In case of homogeneous (periodic and simple ape-
riodic) systems, all cationic/anionic sites are equivalent, and thus our scheme requires to determine the val-
ues of only a few parameters. In this case, the fitting procedure involves three simple steps. First, selecting 
the value for the ionic and electronic charges, and optionally of the width of the Gaussian distributions; this 
task is easily accomplished by relying on chemical intuition and formal oxidation numbers. Second, using the 
Clausius-Mossotti relationships to obtain tentative values for the harmonic spring constants k and K. Third, car-
rying out a few calculations with the polarizable energy scheme to refine these tentative values and obtain the 
optimal spring constants yielding the desired values for both the high- and low-frequency dielectric constants of 
the material system of interest. In the general case of non-equivalent sites, such as for complex surfaces or inter-
faces, or multicomponent systems, the fitting procedure may, in principle, become involved. In this case, however, 
DFT calculations of dielectric-constant spatial profiles may facilitate the task, as it has been recently shown for a 
corrective scheme based on solving the Poisson equation for continuum models of inhomogeneous materials6.

Applications to model systems. We first apply our method to the following charge distributions in cubic 
supercells of vacuum: (i) a unit point charge, (ii) a unit charge distributed according to a Gaussian distribution of 
width 4 a0, and (iii) two Gaussian charge distributions of width 1 a0 placed on the diagonal of the supercell at a 
distance of a10 3 0. In all cases, we use our scheme to calculate the energy of the array of charges interacting with 
a compensating uniform charge background.

The energy of a cubic array of point charges scales linearly with L−1, according to the scaling function shown 
as inset in Fig. 2, with a Madelung constant derived by fitting our data in excellent agreement with published 

Figure 2. (a) Energy vs. L−1 of (black discs) a cubic array of unit point charges and (red discs) unit Gaussian 
charges of width 4 a0. (b) Energy vs. L−1 of (black discs) a point charge with q = +2 and (blue discs) two unit 
Gaussian charges of width 1 a0 separated by a distance of a10 3 0. For clarity, schematics of the charged periodic 
systems, as well as the Makov-Payne formula and the Madelung constant obtained by fitting the energy values at 
large L are shown as insets.
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results10. Our scheme yields also the correct behavior for the energy of an array of Gaussian charges (Fig. 2). In 
this case, in addition to terms scaling as L−1, the energy depends also on terms scaling as L−3, accounting for both 
the size and quadrupole moment of the charge distribution in a supercell (Fig. 2)1, 10. These results demonstrate 
that our method encompasses correction schemes relying on analytical formulas, applicable to charged defects of 
finite size in homogeneous bulk systems1, 3.

To illustrate key technical aspects of our method, we consider a charged defect in a fictitious material with a 
static dielectric permittivity of 4. The material is described by using cubic lattices with a spacing of 2 Å. Each site 
of the lattice encompasses an immobile ion carrying a positive unit charge, and an electronic spherical shell carry-
ing a negative unit charge, connected to the ion via a harmonic spring k. To determine the value of k yielding the 
desired permittivity, we use the Clausius-Mossotti relation to estimate a tentative value (in this case k = 15.1 eV/
Å2), and then we perform a few trial-and-error calculations to determine the optimal value k = 11.0 eV/Å2. We 
use this model dielectric material to calculate values of E∞ − EL with supercells hosting a unit charge defect in the 
center of a cubic interstice of the lattice.

Figure 3 shows that, in the case of a point charge defect, the energy scales linearly with L−1, with a prefactor 
proportional to the Madelung constant of a cubic lattice and inversely proportional to the permittivity of the 
material. In the case of a defect charge distributed according to a Gaussian distribution of width 2 Å, our calcu-
lations show that in supercells of small to moderate size, the charge is only partially screened by the dielectric 
material, and thus that the linear scaling, or else the continuum limit, is approached only at large L (Fig. 3), 
when dielectric displacements are not constrained by periodic boundary conditions. These results demonstrate 
that, thanks to the atomistic representation and the self-consistent treatment of dielectric screening, our method 
accounts, at variance with previous schemes, for size effects associated with the screening of charged defects of 
finite size.

Applications to realistic systems. To show applications to realistic materials, we consider a Cl− vacancy 
defect in the bulk and at the (100) surface of NaCl6, 14, and a doubly negatively charged BN antisite defect in the 
bulk of the hexagonal form of BN9. Here we use our method to calculate the energy correction, E∞ − EL, and 
achieve comparison with recent computational studies of these defects6, 9, 14. To represent NaCl, we use 
rock-salt-type lattices, whereas for h-BN, we use layered atomistic structures with the AA′ stacking pattern. In 
both cases, we use experimental lattice constants. With the parameters reported in Table 1, our energy scheme 
yields, in agreement with experimental and DFT results, a dielectric constant of 5.9 ( = .∞ 2 4 ) for NaCl, and of 
6.6 and 3.5 for the components of the dielectric tensor perpendicular and parallel to the c axis of h-BN, respec-
tively ( = .∞

⊥ 4 3  and  = .∞ 2 6)9, 14. To describe the charged defects, we remove a Cl− site from the lattice of bulk 
models, and at the terminal layer of surface models of NaCl. In the case of the −BN

2  antisite defect in h-BN, we 
replace a N site with an atomic site carrying an ionic charge of 0.25e and an electronic charge of −3.25e, distrib-
uted according to a Gaussian distribution of width 1.5 Å; both charges are fixed at the equilibrium position.

Recently, Chen et al. used a periodic DFT scheme to calculate the formation energy of a Cl− vacancy defect in 
rigid supercells of NaCl, i.e. consisting of immobile ions14. Based entirely on DFT, this study obtained a value for 
E∞ − EL of about 0.7 eV, with L equal to twice the lattice constant, l0, of NaCl14. For the same value of L, our 

Figure 3. Energy vs. L−1 of a cubic array of (black discs) unit point charges and (red discs) a unit Gaussian 
charge of width 2 Å in a model dielectric material with a permittivity of 4. For clarity, schematics of the defected 
supercells and energy scaling function are shown as insets.

Material Cation, (Q, K); (q, k, σ) Anion, (Q, K); (q, k, σ)

NaCl Na, (1.0, ∞); (0, −, −) Cl, (0.0, 2.95); (−1.0, 4.00, −)

h-BN B, (1.0, 5.50); (0, −, −) N, (0.25, 6.0); (−1.25, 6.0, 1.0)

1L-MoS2 Mo, (0.0, ∞); (0, −, −) S, (2.0, ∞); (−2.0, 12.4, 0.5)

Table 1. Anionic and cationic parameters used in our atomistic polarizable energy scheme to reproduce high- 
and low-frequency dielectric constants of NaCl, h-BN, and monolayer MoS2. Harmonic spring constants, K and 
k, are expressed in eV/Å2, the Gaussian width, σ, in Å, and atomic and electronic charges, Q and q, in electron 
charge unit.
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method yields an energy correction of about 0.8 eV (Fig. 4), in agreement with the result obtained by extrapolat-
ing a few energy values calculated by DFT using supercells with L up to a value of 5l0

14. Also, our method yields 
an energy correction of 0.7 eV for a Cl− vacancy defect at the (001) surface of rigid NaCl crystals (with 

= × ×L l2 2 4 0
3 ). This result is in agreement with the energy correction of about 0.6 eV obtained by solving 

the Poisson equation for continuum models of the defected surface6.
Figure 4 shows the energy values obtained for a Cl− vacancy defect in both rigid and fully polarizable crystals, 

i.e. in which both ions and electronic shells participate in screening the charged defect. In both cases, and for both 
bulk and surface, at large L the energy scales linearly with L−1, with a scaling function proportional to the 
Madelung constant of the lattice of supercells and inversely proportional to the static permittivity of the periodic 
system (Fig. 4). By fitting the energy values of the defected surface, we find, as expected, a Madelung constant 
equal to 2.275, and a dielectric constant equal to +( 1)/20 , corresponding to the Madelung constant and permit-
tivity of an array of tetragonal supercells, with c = 2a and encompassing equal parts of dielectric ( = .5 90 ) and 
vacuum (Fig. 4).

A good agreement with a recent DFT study9 is also obtained in the case of the −BN
2  defect in h-BN. In fact, our 

method gives E∞ − EL = 0.85 eV to correct a formation energy obtained by DFT using a supercell of 8 × 8 × 3 unit 
cells, in close agreement with the energy value of about 0.75 eV obtained by Kumagai and Oba9. Also, we remark 
that, at variance with previous cases, the linear scaling function interpolating the energy values at large L (Fig. 4) 
is not related trivially to the symmetry and dielectric constant of the material. In case of anisotropic materials 
such as h-BN, the numerical approach is the only viable strategy to estimate E∞ − EL

9. Overall, these results 
demonstrate that our method is sound and applicable to a variety of defected systems, including aperiodic and 
anisotropic materials.

Application to a charged defect in a low-dimensional material. To demonstrate the generality of our 
method, we consider also the case of a charged defect in low-dimensional materials. In particular, we calculate 
the energy correction resulting from periodic DFT calculations of a singly negatively charged S vacancy in mon-
olayer, bilayer, and tri-layer (and for completeness also in bulk) MoS2

15, 16.
Our periodic DFT calculations17 are carried out using normconserving pseudopotentials18 for both Mo and 

S, a generalized gradient approximation for the exchange and correlation energy19, a plane-wave energy-cutoff 
of 80 Ry, and a semi-empirical corrective scheme to account for London dispersion interactions20. To describe 
the MoS2 systems, we use orthorhombic supercells and atomic positions in accord to the 2H crystalline phase of 
MoS2 with a AB layer stacking pattern. Single layers include 30 MoS2 formula units, and 2D films are separated 
by vacuum regions of about 12 Å. We use DFT to calculate structural, dielectric, and electronic properties, as 
well as the formation energy of the neutral and singly negatively charged S vacancy defect. Lattice parameters of 
monolayer and bulk MoS2 are found ~3% larger than experimental values, and in the case of bilayer and trilayer 
MoS2, the intra-layer spacing between S planes is found to be 3.17 Å, and the inter-layer separation between Mo 

Figure 4. (a) Energy vs. L−1 for a Cl− vacancy defect in (red) rigid and (black) fully polarizable lattice models of 
(vivid colors) bulk NaCl and (pale colors) the NaCl(001) surface. Supercells of bulk NaCl are cubic, whereas 
surface models consist of tetragonal supercells with c = 2a and equal parts of material and vacuum along the c 
axis. Energy values are refereed to that of a defected supercell with a dimension along the a axis equal to 2l0, 
where l0 is the experimental lattice constant. (b) Energy vs. L−1 for a −BN

2 antisite defect in orthorhombic model 
structures of h-BN. Discs show energy values calculated by using our polarizable energy scheme, and dotted 
lines show linear interpolations. Insets show schematics of the defected materials systems.
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planes is found to be 6.21 Å. Overall, structural, dielectric, and electronic properties computed in this study are in 
agreement with recent DFT study of the MoS2 systems16. To calculate formation energies, we use half the energy 
of molecular S2 and a Fermi level equal to the valence-band edge as chemical potentials for S and electrons, 
respectively. Relevant DFT results are reported in Table 2.

With the parameters in Table 1, our polarizable energy scheme gives, in agreement with our DFT calculations 
(Table 2), an in-plane and out-of-plane dielectric constant of 14.1 and 2.0, respectively, for monolayer MoS2, and 
values of 14.5 and 2.2 for bilayer MoS2, 14.7 and 2.5 for the tri-layer film, and 15.0 and 6.6 for the bulk phase. 
This polarizable energy scheme and atomistic model structures of the MoS2 systems are thus used to estimate the 
energy corrections for the formation energies of the charged S vacancy defect obtained by DFT (Table 2). In these 
calculations, the defect is described by using a negative unit charge in the center of a triangular interstice formed 
by nearest neighboring Mo ions. Point- or Gaussian-like (with a width of 1 Å) distributions for the unit charge 
yield results differing by only 0.02 eV. Figure 5 shows the results obtained in the case of monolayer MoS2; similar 
energy vs. 1/L curves are obtained also in the case of bilayer and trilayer MoS2. The correction energies obtained 
by extrapolation of the energy values to infinite volumes are shown in Table 2.

It has to be noted that due to the low dimensionality of the material, the defect energy in Fig. 5 scales 
non-trivially with L−1. In the present case, we find that extrapolation of the energy values to large volumes is aided 

MoS2 ε⊥  Φ Ef (VS
0) Ef ( −VS

1) E∞-EL

1L 1.9 14.1 6.1 1.65 3.29 0.30

2L 2.6 14.8 5.5 1.87 2.67 0.17

3L 2.9 14.8 5.3 1.88 2.61 0.08

bulk 6.0 14.7 — 1.92 2.47 0.10

Table 2. Results obtained from DFT calculations for the dielectric constants (perpendicular, ⊥ , and parallel,  , 
to the layers), work function (Φ), and formation energies of the neutral and singly negatively S vacancy in 
monolayer (1L), bilayer (2L), tri-layer (3L), and bulk MoS2. The last column reports the energy corrections for 
the formation energies of the charged defects obtained by using the method presented in this work. Energy 
values are in eV.

Figure 5. (a) Energy vs. L−1 for a singly negatively charged S vacancy in monolayer MoS2 calculated by using 
orthorhombic supercells with edges parallel to the monolayer equal to lx and =l l3 /2y x, and with a 
perpendicular edge equal to (red) lz = 2lx, (black) lz = lx, or (blue) lz = lx + d (d = 6.1 Å is an approximate value 
for the monolayer thickness). Energy values are obtained with supercells of increasing lx and plotted against 

=L l l lx y z . (b) Same as (a), with energy values plotted versus the rescaled linear dimension =⁎L LSC , with 
 = − +d l( 1) / 1SC z0

, where 0  is the component of the dielectric tensor parallel to the monolayer. Discs show 
energy values obtained by using our energy scheme, and the dotted line shows the linear interpolation of energy 
values at large L obtained by using supercells with lz = lx. Energy values are referred to that one obtained with the 
same supercell used to calculate the defect formation energy by DFT. The inset shows a schematics of the 
defected 2D material.



www.nature.com/scientificreports/

7Scientific RepoRts | 7: 2834  | DOI:10.1038/s41598-017-02986-5

by introducing a rescaled linear dimension L*, related to L, thickness and in-plane dielectric constant of the 2D 
MoS2 systems as described in the caption of Fig. 5. In agreement with recent DFT studies8, 11, 12, 16, these results 
demonstrate that the task of calculating the formation energy of a charged defect in a low-dimensional material 
cannot be accomplished by using only DFT. A numerical scheme needs to be used to estimate ΔEL = E∞ − EL, 
which in the case of a singly negatively charged S vacancy in monolayer MoS2 amounts to about 10% of the energy 
value obtained by DFT (Table 2).

Conclusion
We have introduced and applied a novel general method to correct the energy of charged defects obtained by 
DFT. At variance with previous methods, our approach is based on a polarizable energy scheme, atomistic rep-
resentations, and a self-consistent treatment of the dielectric screening. The force field is based on a minimal set 
of fitting parameters, which can be easily calibrated by relying on either experimental data or, in case of more 
complex cases such as aperiodic or multicomponent systems, polarizability profiles derived from DFT calcula-
tions6. Being based on atomistic models, force fields, and Ewald sums, our method can be easily implemented in 
any available software for molecular dynamics simulations of materials or biological systems. Therefore, besides 
being new and general, our method is readily accessible to the community interested in DFT calculations and 
charged defects.
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