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High-precision spatial localization 
of mouse vocalizations during 
social interaction
Jesse J. Heckman1, Rémi Proville1, Gert J. Heckman2, Alireza Azarfar1, Tansu Celikel1 & 
Bernhard Englitz1

Mice display a wide repertoire of vocalizations that varies with age, sex, and context. Especially during 
courtship, mice emit ultrasonic vocalizations (USVs) of high complexity, whose detailed structure 
is poorly understood. As animals of both sexes vocalize, the study of social vocalizations requires 
attributing single USVs to individuals. The state-of-the-art in sound localization for USVs allows 
spatial localization at centimeter resolution, however, animals interact at closer ranges, involving 
tactile, snout-snout exploration. Hence, improved algorithms are required to reliably assign USVs. We 
develop multiple solutions to USV localization, and derive an analytical solution for arbitrary vertical 
microphone positions. The algorithms are compared on wideband acoustic noise and single mouse 
vocalizations, and applied to social interactions with optically tracked mouse positions. A novel, 
(frequency) envelope weighted generalised cross-correlation outperforms classical cross-correlation 
techniques. It achieves a median error of ~1.4 mm for noise and ~4–8.5 mm for vocalizations. Using 
this algorithms in combination with a level criterion, we can improve the assignment for interacting 
mice. We report significant differences in mean USV properties between CBA mice of different sexes 
during social interaction. Hence, the improved USV attribution to individuals lays the basis for a deeper 
understanding of social vocalizations, in particular sequences of USVs.

Mice emit complex and non-random ultrasonic vocalizations (USV) during social interactions1–4. These vocal-
izations are strongly modulated on different levels by a variety of contextual determinants, such as age, genetic 
background, behavioural state and to a lesser extent by sex5. Mice utilize these USVs during social interactions 
and in distress to mediate essential behaviours6–12. Recently, it has been shown that playback of different types of 
USVs can also elicit different responses in the recipient mouse13. This suggests that mice are able to adapt their 
vocal behaviour in a context-dependent manner and that these modifications may convey information14. One of 
the most commonly used experimental paradigms to study mouse USVs is the dyadic social interaction6, 8, 15–23, 
i.e. the interaction of a pair of mice during behaviors such as courtship24–31 and territorial disputes8.

By its very nature, vocal behaviour is thus highly susceptible to contextual modulation. Hence, in social inter-
actions, one of the main experimental challenges is to attribute USVs properly to their emitter, e.g. an adult male 
mouse’s courtship call. However, as mice do not show clear visual cues of their vocal behaviour in these interac-
tions7, this attribution has been difficult. Often it has simply been assumed which animal vocalised. For instance 
during courtship, vocalizations are primarily attributed to the male mouse29, 32. Control experiments involving 
devocalised males, indeed suggest that the female mouse does not vocalize during these specific events18, 32. 
However, this does not completely exclude female vocalizations during male-female interactions altogether. For 
instance, female mice may still vocalize but only in response to male calls. Thus, due to the indistinctness of USV 
origin in the literature it is not certain, whether some putatively defined male courtship calls, may have been 
female instead. Social interaction paradigms with male-male pairings may rule out the presence of female USVs8, 
but these calls can no longer be compared to male courtship calls, due to changes in behavioral state.

A recent study shows that female mice in fact do vocalize during social interaction with males, specifically 
in between the chases of courtship behaviour33. For this purpose, a microphone array was used in addition to 
a sound source localization method34. In total, 18% of the USVs here were assigned to female mice. Most of 
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these USVs occurred within 1 second of a male USV, suggesting an exchange of information during this event. 
However, the median error between the estimated source and actual source of USV location was 38.7 mm, which 
leaves some room for erroneous assignments and may not be sufficient in other paradigms, such as social facial 
interaction35–37.

Presently, we devise and evaluate a more accurate estimation technique for localizing and assigning USVs 
to animals that takes both temporal and level differences into account. The present method is able to reduce the 
source localization error substantially, depending on the stimulus class (about a factor of 4 for USVs). While the 
present results are obtained on a 1D setup using two microphones, the methods presented can in principle be gen-
eralised to 2D or 3D contexts by adding microphones and slightly generalizing the analytical correction method.

Results
We developed and experimentally evaluated a range of sound source localization algorithms in the context of 
mouse vocalizations, especially during social interactions. Experimental data from 6 male and 4 female mice 
comprising a total of ~4000 vocalizations entered the analysis. Animals interacted ad libitum with their snouts 
on elevated platforms, separated by a gap, while both high-speed video and two audio signals were collected 
(Fig. 1A,B). Mouse USVs occurred primarily during and after social interaction, where the attribution of a USV 
to a mouse is challenging (Fig. 1C). The accurate estimation of sound source location involves two steps: First, 
estimate the inter-microphone delay (IMD), and second, compute the translation of the IMD to a position in 
space, based on the geometry of the setup. To further introduce the experimental recording condition, we proceed 
directly by describing the second step in the following section.

Analytical compensation for vertical source-microphone distance. The signals at the two micro-
phones can be used to compute an inter-microphone delay (IMD) for each vocalization. Converting the IMD 
ΔT via the speed of sound to a distance can be used to estimate the sound source location. The plain value cor-
responds to the difference in distance ΔP of the sound source to the microphones only if the microphones are 
at the same height as the sound source (see Fig. 2A for illustration). In all other cases, ΔP will be smaller. The 
magnitude of the effect depends on the relative vertical distance between the sound source and the microphones. 
We have derived an analytical relationship for determining the lateral position ΔX from the IMD ΔT (Eq. 12), 
and vice versa (Eq. 6).

The IMD can be computed directly from ΔX on the basis of the geometry (see Methods, Eq. 6, and Fig. 2A). 
The shape of the dependence is generally sigmoidal as a function of ΔX, with its steepness decreasing as a func-
tion of vertical distance H, i.e. larger ΔX lead to less change in ΔT, thus complicating the task. Inter-microphone 
distance was not varied in the depiction, but would increase the maximal IMD and thus the resolvable range 
of positions. For the present spatial arrangement (H = 356 mm, D = 460 mm) the overall range of delays is 
+/−1.25 ms, however, the range covered by the high-speed camera is maximally 160 mm (2nd set of experi-
ments), thus corresponding to a range of delays of only +/−0.25 ms (Fig. 2B1). Within the camera range, a linear 
approximation would be quite accurate, although the analytical form was used here.

The inverse relationship, computing ΔX from ΔT is less trivial, but can still be solved analytically (see 
Methods, Eq. 12 and its derivation). The shape is generally similar to a tangent function, with acceleration 
towards the limits of the delay range (as above: +/−1.25 ms). The greater the vertical distance between source and 
microphones, the steeper the dependence of ΔX on ΔT (Fig. 2A1), meaning that small errors in delay estimation 
lead to larger errors in position estimation. For the present configuration the range of camera positions can be 
reestimated from the available delays (Fig. 2B2).

The analytical correction for the vertical distance between microphones and the source is important to avoid 
systematic errors in estimation. The same technique should be applicable for localization in 2D and 3D cases (see 
Discussion).

Ground truth comparison based on artificial stimuli. We compared and validated the estimation 
methods using a set of acoustic stimuli presented across a range of relevant locations during social interaction 
([−50, 50] mm, in steps of 5 mm). The stimuli were simple Gaussian white noise bursts (see Fig. 3A), intended to 
provide an upper bound to the accuracy of the estimation methods. The wide frequency range of this stimulus 
avoids ambiguities and should constitute an easy challenge for localization algorithms. Stimuli were presented via 
a calibrated audio system which covered a frequency range encompassing the range of presented stimuli ([10–
100] kHz, see Fig. S2 and Methods). The speaker was placed at a fixed height and variable positions mimicking 
those of the mice in the same booth (see Fig. 1A). The Gaussian white noise was always played for 1 s, but sound 
localization performed on subsections of different lengths (see Fig. 3B, inset).

Basic cross-correlation exhibited instability in several locations over the tested range (Fig. 3B, CC, black), lead-
ing to saltatory deviations by up to ~40 mm. These misestimates were systematic, i.e. repeated stimulation from 
the same position led to the same estimate, as indicated by the small error bars (SEM, computed from 10 repe-
titions of the identical stimulus from the same location). For basic CC we obtained an overall RMSE = 8.92 mm 
(MAE = 5.95 mm).

Generalised cross-correlation (GCC) estimates were robust and accurate, achieving a vastly improved 
RMSE = 1.27 mm (MAE = 1.13 mm, Fig. 3B, red), with essentially no difference in accuracy across the range of 
tested locations. For some locations the vanishing error bars indicate, nonetheless, that the estimation errors are 
not random (across repeated acoustic presentations of the stimulus).

Envelope weighted generalised cross correlation (EWGCC) performed similarly well as GCC with a 
MSE = 1.42 mm (MAE = 1.42 mm). The slight reduction in performance is caused by the exclusion of certain fre-
quencies for estimation based on the envelope criterion, which means some - in this case relevant - information 
is ignored.
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None of the three methods showed a strong dependence on sample size (see inset, colours corresponding to 
main panel), here evaluated at 4 different sample durations ranging from 25 to 200 ms.

GCC and EWGCC proved to be more reliable and precise than CC for sound localization of white noise. We 
also tested some additional methods (based on either phase, impulse response or spectrogram), which performed 
less reliably (see Discussion for more details).

Ground truth comparison based on real vocalizations. The localization methods were further verified 
under more realistic conditions, i.e. for vocalizations of a single mouse on an elongated platform (see Fig. 4A 
and Methods for details and dimensions). A female mouse was presented to the male mouse for snout-snout 

Figure 1. The study of mouse vocalizations during natural behavior requires attributing individual 
vocalizations to individual mice. (A) For development and testing of localization algorithms a dedicated 
interaction space was designed. Mouse vocalizations were recorded during social interactions of a male-female 
pair of CBA mice. Mice were located on separated platforms, which allowed them to interact by making 
snout contact, but not cross the platforms. The entire setup was housed in a sound attenuated chamber. For 
testing and calibration of the algorithms, localization performance was in addition assessed using a movable 
speaker, which was positioned at a set of locations that could reflect mouse positions (indicated by the blue 
speaker). For detailed spatial dimensions of the setup, see Methods. (B) Positions were estimated based on 
high-speed video-images captured from directly above (upper part), and also based on mouse vocalizations 
recorded at two locations above the platforms (lower part; channels are represented in blue and red). (C) Mice 
vocalised primarily during social interaction, where they are in close proximity. Attribution of vocalizations is 
complicated by the partial overlap of the snouts.
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interaction, and then quickly removed and placed in a sound-attenuated box. Subsequent vocalizations were used 
for comparing estimated with actual positions, determined from the video. The male mouse emitted sequences 
of typical, inverted-u vocalizations (Fig. 4B), comparable to the ones emitted during the extended snout-snout 
interactions (see Fig. 5).

The estimated positions conformed with the actual positions over the entire range of locations along the 
platform (Fig. 4C, depicted are only vocalizations that fulfilled the CQM > 6 criterion, i.e. 495 out of a total of 
897). The errors depended on the choice of the CQM threshold in a monotonic manner (Fig. 4D1–2). The MAE 
reduced from 7 to ~3.95 mm for the highest chosen CQM (10), where the precision appears to reach a plateau. 
Similarly the RMSE decreased as a function of CQM, and reached a lower limit around 10 mm. Finally, the cor-
relation between the estimated and the true positions rose from 0.97 to >0.99 for the highest CQM thresholds. 
We acknowledge that in the present paradigm it may be possible that a small number of female vocalizations 
were included in the male vocalization estimate, between the presentation of the female and the point when it 
was completely enclosed in the box. However, since this would introduce additional errors, this makes the cur-
rent estimate an upper bound on the actual accuracy. The precision of both cross-correlation and generalised 
cross-correlation was also evaluated, but lead to significantly greater errors, MAE = 8.4 mm (RMSE = 17.4 mm) 
and MAE = 9.7 mm (RMSE = 18.9 mm), respectively (without CQM threshold). The relatively poor performance 
of GCC on vocalizations, as opposed to noise, derives from a tendency to localize towards the center, likely 
based on contributions from irrelevant frequencies, which was overcome by the band-limitation used in EWGCC. 
Therefore, only the EWGCC is evaluated during social interaction (see below).

In summary, the new EWGCC method in combination with the height correction approach (Eq. 12) and the 
CQM threshold leads to a high precision in the localization of USVs in 1D. The MAE of 4–7 mm in 1D compares 
favorably to the 1D localization error in Neunuebel et al.33 (estimated ~21.7 mm, converted from the 2D error 

Figure 2. Analytical solution to account for the dependence of inter-microphone delay on microphone 
elevation. (A1) The position of a sound source relative to the microphones determines the difference in their 
sound arrival times (negative values indicate arrival at Mic. 1 before Mic. 2, computed using Eq. 6. The variables 
are indicated to visualize the computation. ΔP = Path difference from sound source to the two microphones; 
ΔX = Position sound source relative to the center; H = Microphone height relative to the platform; 
D = Distance between the microphones). Since the microphones are typically not positioned at the same 
height as the animal snouts, this difference in arrival times depends on the horizontal position and the relative 
height between snouts and microphones (colour coded here for all potential sound source positions). (A2) As 
a function of horizontal position, the dependence is sigmoidal, centered between the microphones and a slope 
which depends on the microphone height. Depicted here is the position-to-time relation for the dimensions 
of the present setup (microphone height: 356 mm). The inter-microphone delay ranges roughly between 
[−1,1] ms, i.e. less than maximally possible ([−1.25,1.25] ms), if the microphones were on the same height as 
the platform. In the camera’s view field (between vertical green), the dependence is close to linear. This leads 
to the relevant range of delays which can be compared to camera positions. (B1) To obtain the sound source 
position from the inter-microphone delay, the position-delay relationship has to be inverted. We computed this 
analytically (see Eq. 12), which leads to hyperbolic-type shapes for a given platform level. (B2) For the present 
setup, the position as a function of inter-microphone delay is relatively flat, and very close to linear in the region 
of the camera view. The formulas allow a computation of the horizontal position from the inter-microphone 
measurement.
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of 38.7 mm via MAE of 1D and 2D Gaussian distributions). The difference in accuracy between artificial and 
real USVs was a surprise to us, and may be caused by the variable head-position of the animal, which may have 
influenced the effective path length to the speakers to some degree, while the orientation of the speaker was 
standardized.

Application to social interaction of mice. Rodents and mice in particular vocalize in the ultrasonic 
range during social encounters38, 39. The role of individual animals during a social interaction has been difficult 
to assess, since it has been hard to assign individual vocalizations to an animal. We used the above described 
combination of empirical and analytical methods to perform this task in 1D. Vocalizations were recorded while 
a male-female pair of CBA mice interacted over a gap (see Methods, and Fig. 1 for details on the paradigm). 
Vocalizations were typically recorded at a signal-to-noise ratio of 2.4, as measured by computing the standard 
deviation of the sound pressure compared to the standard deviation of the noise, and can be easily discerned in 
the spectrogram of the left and right microphones (Fig. 5A, sequence of vocalizations, from left (top, red) and 
right (bottom, blue) microphones, estimated to come from the male mouse).

Generally, the snouts of the interacting animals can overlap, thus introducing ambiguity into the position 
estimate. Presently, this ambiguity is partly due to the use of only two microphones, allowing the localization to 
be performed in one dimension only. This problem can be addressed either by (i) determining the location in 
more directions, or by (ii) estimating the direction of vocalization. The constraints of the interaction setup made 
it impractical to introduce additional microphones, and we therefore used relative level at the two microphones 
to disambiguate the cases of overlapping snout positions. More precisely, if the animal snouts were within 2 times 
the MAE for 1D localization, i.e. 2 × ~5 mm = ~10 mm, we used the relative amplitude at the two microphones 
to determine the vocalizing animal, i.e. always the animal opposite to the microphone with the higher amplitude 
signal (see Fig. S3 for more details). We checked that the animals were actually facing in opposite directions, 
which is, however, the typical case for snout-snout interactions (see Fig. S3A). Further, we are confident that 
echoes inside the booth can be excluded as sources. Firstly, because most of the recordings were performed in 
platforms padded on the inside with acoustic foam with strong ultrasonic absorption properties. And secondly, 
because their localizations would fall far outside the central region. We visually separated the USVs attributed 

Figure 3. Ground truth comparison for artificial broadband sounds. The accuracy of the different estimation 
algorithms was compared on the basis of artificial sounds (Gaussian noise), which were presented using a 
movable speaker at a range of locations, i.e. −50 mm to 50 mm at 5 mm steps (see Figs 1 and S2 for setup/
speaker details). (A) The recorded sound at the left (A1, left) and the right (A1, right) microphone were similar 
in level, but differed in frequency content (compare spectrograms in A2 left with A2 right). Since the speaker 
was well equalised (see Fig. S1), these spectral differences must stem from reflections inside the apparatus In 
addition, they also depended on the speaker location (not shown). (B) The localization methods were evaluated 
across the entire range. The generalised cross correlation (GCC, red) method performed best, with a median 
residual RMSE = 1.27 mm (MAE = 1.13 mm). In comparison, the basic cross-correlation (CC, black) diverged 
erratically outside the central range of positions, leading to a substantially greater median RMSE = 8.92 mm mm 
(MAE = 5.95 mm). The envelope weighted generalised crosscorrelation (EWGCC, blue) performed almost 
as well as GCC with an RMSE = 1.42 mm (MAE = 1.42 mm). Results show averages over 10 random draws, 
and error bars represent 1 SEM. The quality of localization showed only a slight dependence on available data, 
reaching precise localization already for segments of 25 ms duration (inset). The errorbars in the inset show 
[14,86]% percentiles, i.e. indicate the level of variability of these estimates.
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by position only (full colours) from the ones attributed by the combination of position and level (light colours, 
naturally occurring mostly in the middle) in Fig. 5.

The large majority of USVs were attributed to the male mouse (~84%, i.e. 1838/2176 Fig. 5B). The acousti-
cally estimated position was significantly correlated with the male’s position estimated from the video record-
ings (r = 0.7, p < 10−200) with an RMSE = 11.6 mm (MAE = 5.74 mm, without selection by the CQM threshold). 
The remaining USVs were attributed to the female (~16%, i.e. 338/2176, Fig. 5C) with an RMSE = 15.5 mm 
(MAE = 8.48 mm). These numbers are consistent with an estimate of 18% for female C57Bl/6 J mice provided by 
previous work33.

As for the ground truth estimates (Fig. 4), the accuracy of the location estimate could be enhanced by selecting 
USVs based on different CQM thresholds. The average RMSE reduced from 12.1 mm to about 4 mm (at CQM > 6, 
Fig. 5D), the MAE reduced from 6 mm to ~2 mm (Fig. 5E), and the correlation coefficient increased from 0.7 to 
0.95 (Fig. 5F).

Dependence of estimation quality on general vocalization properties. The quality of spatial locali-
zation could exhibit some dependence on the spectrotemporal properties of the vocalization. USVs vary naturally 
in their level, length and frequency content. We found significant correlations between the absolute error and 
these properties, with the exception of frequency. The absolute localization error was negatively correlated with a 
vocalizations energy (r = −0.13, p ≪ 0.001, Fig. 5G). Average frequency of the USV did not influence localization 
accuracy (r = −0.02, p = 0.27, Fig. 5H). Larger frequency ranges of USVs slightly improved localization accuracy 
(r = −0.06, p = 0.005, Fig. 5I). Lastly, longer durations of USVs also improved localization accuracy (r = −0.13, 
p ≪ 0.001, Fig. 5J). All correlations reported are Spearman rank correlations, as the functional relationships are 
clearly not linear. This pattern of results is expected since higher energy, larger frequency range and longer signals 
provide more information for the localization and may thus improve the signal-to-noise ratio. Conversely, a shift 
in absolute frequency would not be expected to influence localization performance.

Sex-related differences in social vocalizations. We next investigated sex-specific differences in vocal-
izations during social interaction of CBA mice. The analysis was restricted to a limited set of basic properties (as 
above i.e. frequency, frequency range, duration, level) to demonstrate the use of attributing vocalizations to their 
emitters during social interaction. We find male and female USVs to differ significantly in duration, frequency, 
and to a lesser degree in frequency range and in level.

On average, male calls had a mean frequency of 73.5 kHz (S.D. = 5.65 kHz) during social interaction, while 
female calls displayed a mean frequency of 75.5 kHz (S.D. = 7.1 kHz). Mean frequency differed significantly 
between sexes (Wilcoxon rank sum test; p ≪ 0.001; Fig. 5J). The duration of male calls (51 ms, S.D. 20 ms) was 
also slightly but significantly longer than female calls (47 ms, S.D. = 19 ms, Wilcoxon rank sum test; p ≪ 0.001, 

Figure 4. Localization of USVs from a single mouse. (A) Schematic of the recording setup and sample 
image. The mouse was free to move on the platform, and was repetitively brought into snout-snout contact 
with a female mouse ~30 s after the last vocalization. The female mouse was placed into a sound proofed box 
immediately after to primarily record male vocalizations. The platform was padded with acoustic foam and a 
very soft cloth to reduce movement noise. (B) The vocalizations emitted by the male mice under this condition 
resembled the vocalizations observed during social interaction in the gap interaction setup. The shapes of 
the USVs are well conserved across the two microphones (top: left, bottom: right), while the amplitude of the 
vocalizations differs naturally based on the direction of vocalization. (C) The actual vs. estimated positions 
corresponded well with each other (n = 3 mice). The depicted data is shown for correlation quality measures 
(CQM) > 6 (see Methods). The few outliers may be a due to environmental noise, as they also exhibited clear 
correlation peaks. (D) Estimation quality was assessed via the median average error (MAE, D1), the root mean 
squared error (RMSE, D2) and the correlation (Spearman rank correlation, D3). The precision of the estimates 
improved with CQM, where results are displayed as a function of quality threshold (i.e. for USVs with CQM 
greater or equal). MAE converged to ~4 mm, MSE to about 10 mm, and correlation reach values above 0.99.
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Fig. 5H). The energy and frequency range only exhibited borderline significance (p = 0.026, Fig. 5G; p = 0.01, 
Fig. 5I respectively).

Differences in these properties were not reported previously to our knowledge for the present strain of mice8, 40.  
Potential explanations include strain differences (CBA/CaOlaHsd, current study, vs C57/BL68 and wild california 
mice40) as well as experimental or recording conditions. Furthermore, due to the neutral experimental area used 
here, we expect calls emitted to relate mostly to courtship rather than territorial disputes (which can both occur 
in these contexts8), suggesting at least a partial difference in behavioural states across the aforementioned studies.

Figure 5. Properties of vocalizations during snout-snout interaction. (A) Acoustic recordings of mouse 
vocalizations were collected with two microphones (Top, left (red) microphone; bottom: right (blue) 
microphone). While the level of each vocalization varied between the microphones, the spectrotemporal 
structure remains well resolved in both. (B) The majority of the vocalizations were attributed to the male mouse 
(~84%), either based on location along (dark red) or based on a combination of position and relative level at 
the two microphones (light red, for cases where the mouse snouts were within 10 mm of each other). The actual 
location of the mouse head, estimated from the video (abscissa) was well predicted by the audio-based estimate 
(ordinate). (C) A smaller number of vocalizations was attributed to the female mouse (~16%). The estimated 
locations also agree well with the actual position of the female mouse exhibiting a solid correlation. (D–F) If 
vocalization were selected based on different CQM thresholds, the localization quality improved as measured by 
RMSE (D), MAE (E) and Spearman correlation (F). (G–J) The quality of localization dependent significantly on 
a USV’s energy (G), duration (H), and frequency range (I), however, was not significantly correlated with mean 
frequency itself (J). (K–N) The properties of vocalization differed between the sexes. Male calls had significantly 
lower mean frequency (Wilcoxon rank sum test, p ≪ 0.001; J) and longer durations (Wilcoxon rank sum test, 
p ≪ 0.001; H) than females calls, while energy (G) and frequency range (I) exhibited borderline significances 
(p < 0.05).
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Discussion
We have developed a precise sound localization method adapted to the study of multiple animals, for exam-
ple during social interaction. Both artificial and natural sounds indicate that a precision of a few millimeters is 
achievable, even in the presence of acoustic reflections and scattering. When applied to interacting mice, our 
method allows the attribution of individual localizations to the interaction partners, enabling the study of social 
communication. We find differences in vocalization pitch, duration, frequency range, and energy between male 
and female vocalizations for CBA/CaOlaHsd mice.

Areas of application for acoustic localization. The current method of USV localization can be used 
to study social interaction in mice and other vocal rodents. Application of this method is primarily useful for, 
but not limited to, behavioural4, 6 and genetic USV research41, 42. Other fields may also benefit from this method, 
for example if rodent social communication is used as a natural stimulus, such as multisensory integration and 
auditory research35, 37. In theory, localization can be done in any experimental paradigm enriching the collected 
data. Presently, our experimental approach limits localization to 1 dimension, but we propose a generalization to 
2D below.

Reliable attribution of USVs to their emitter is of great benefit for behavioural USV research as it would allow 
a proper understanding of social vocalizations. USVs and their structure are strongly influenced by the context 
in which they occur (i.e. both a mouse’s internal and external environment5, 7), meaning that knowledge on the 
vocalizing animal is of key importance here. For instance, the structure of USVs during courtship can be studied 
in more detail, as recent studies conclude that indeed both male and female mice vocalize during this behav-
iour albeit to a different extent33, 43. However, little is known about the effect of sex on USVs. Application of this 
method will allow for more accurate study of male courtship USVs, and opens the door for studying female vocal 
behaviour during courtship.

Acoustic localization methods can also be used in the study of multisensory integration during social interac-
tions36, 37. USVs can be utilised as natural stimuli in combination with whisker touch, visual input, or odor. Recent 
publications indicate that crossmodal representation is present in the auditory cortex35. Precise localization of 
the vocal source combined with automated whisker tracking44, can help establish a similar result for audio-tactile 
integration in the barrel cortex.

Finally, the use of an USV localization algorithm in order to attribute vocalizations to their emitter, reduces 
the necessity of devocalization, i.e. silencing the vocal cords by cutting the inferior laryngeal nerve32. This allows 
for a more natural interaction and therefore benefits the ecological validity of an experiment and improves animal 
welfare.

Comparison with impulse response based sound localization methods. The precision at which a 
sound can be localised depends mainly on the acoustic properties of the environment (reverberations and scat-
tering), combined with the analytical properties of the localization method. We have presented and compared a 
range of localization methods, which are largely agnostic about the acoustic properties, typically summarised as 
the impulse response of the environment. Hence, in principle, methods that incorporate this generative model of 
the recorded data should be advantageous. We have implemented and tested an existing method which directly 
incorporates the impulse response.

The impulse response generally depends only on the room, but for a given room, the positions of sound source 
and microphone are also relevant. Hence, in the present context of a moving sound source, the impulse response 
has to be reestimated for every vocalization. Mathematically, the problem takes the form

∫ τ τ τ= ∗ = −s t s I s t I d( ) [ ] ( ) ( ) (1)i i t
T

i
0

where si(t) denotes the recorded signal at microphone i, Ii the impulse response between source and microphone 
location, s(t) the sound at the source, and * denotes convolution. In order to estimate the inter-microphone delay, 
one can use the relationship

∗ = = ∗− −s I s s I (2)1 1
1

2 2
1

as previously proposed45. If the inversion of the two impulse responses is non-degenerate, the translation between 
the two microphone responses is given by

= ∗ ∗ = ∗−s s I I s I( ) (3)1 2 2
1

1 2 1,2

Since convolution in the Fourier domain translates to a multiplication, the composite convolution kernel can be 
computed as

= −I F S S( / ) (4)1,2
1

2 1

The maximum value of I1,2 can then be interpreted as the inter-microphone delay.
Alternatively, an iterative algorithm can be used to estimate I1,2, which, however, exhibited slow convergence 

on our dataset.
Using either the Fourier-based or iterative estimation, the estimates of this method remained noisy, and only 

led to interpretable values, under relatively ideal conditions (data not shown). The reason for this lack of precision 
is likely that the impulse response can differ substantially for each vocalization, depending on the relative position 
of the animals with respect to each other. A reason for this difference is the generally unstable deconvolution step, 
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which may not have been constrained enough by individual vocalization. With sufficient data, this estimation 
generally works reliably, as e.g. in speaker calibration applied presently. For this reason, impulse response based 
methods are not presented here, although alternative estimation methods may prove more robust. The correlation 
based methods yielded overall substantially more robust estimates, despite being agnostic about the intervening 
impulse responses.

Alternative correlation-based methods. In addition to the presented correlative methods, we tested two 
additional methods, one amplitude free, phase-based method, and one spectrogram based method. In the first 
method, the phases of each signal were computed on the basis of the Hilbert-transform. Next, cross-correlations 
were computed over very short time-intervals, e.g. 1 ms. All local maxima exceeding the median correlation 
were kept and combined into a histogram of local maxima. The histogram’s maximum in turn was taken as the 
inter-microphone delay. This method exhibited surprisingly precise estimates, exceeding all other methods, as 
long as the impulse response of the room was very brief (below the period of the vocalization, based on surrogate 
data). For the real data, the estimation quality was poorer than the above methods (data not shown).

The second, spectrogram based method resolves sound energy at different frequencies before estimating 
inter-microphone delays. The delay estimation is performed for a subset of frequency channels which are spanned 
by the sound, and the resulting correlograms are combined. Concretely, first a finely resolved short-term Fourier 
transform is computed for each channel, i.e. Fourier-transforms are computed over a sliding 4 ms (=1024 sam-
ples) window, which is moved sample-by-sample along the stimulus. Hence, one obtains a STFT at the same 
‘resolution’ as the original sound, denoted as Si(ωt).

The combined cross-correlogram is computed as

∑ ∑τ ϖ ϖ τ= +
ϖε τΩ =−

C Abs S t Abs S t( ) ( ( , )) ( ( , ))
(5)t

T

1 2

where Abs(S) denotes the absolute value and Ω is the set of frequencies (chosen here to be the channels whose 
average activation is larger than the median activation across all channels). As before the best delay is chosen as 

ττε −max C( ( ))T T[ , ] .
It provided a robust measure of location, especially for larger distances from the center, however, was overall 

inferior in estimation quality compared to the EWGCC. Further, its computation takes a factor 50 longer than all 
other methods, which poses some practical hurdles for large datasets.

Generalization to localization in the plane. In the present experimental setup, animal motion was 
restricted to a single dimension in order to enable the local video recording during snout-snout interactions. 
While this type of setup has been used successfully for the study of rodent social interactions36, 37, the study of 
rodents in a plane or even 3D space is generally desirable, e.g. to study chasing behavior33, 38. A generalization of 
the present approach to 2D (or 3D) localization is possible, requiring a few additions on the practical and on the 
analytical level. Practically, a 2D arena needs to be equipped with at least 3 microphones. Analytically, the present 
approach needs to be generalised to the intersection of midlines between pairs of microphones, using Eq. 12 to 
correct for the distance away from the centerline connecting the microphones. Each midline corresponds to the 
points in the interaction plane consistent with the estimated relative position between a pair of microphones. 
For three microphones, the 3 midlines should intersect in one point, for 4 microphones there are 6 midlines, i.e. 
n choose 2 in general. Pilot experiments with 3 microphones suggest that the precision in a single dimension 
translates to each of the two dimensions, yielding an MAE of ~10–12 mm. Using more microphones, the certainty 
of the estimate could be further improved since these would define the intersection point more precisely, and 
outliers could be discarded. In addition, an open arena with sound proofed floor should be used to further reduce 
reflections and movement noises. While we do not foresee any major problems, the complete practical imple-
mentation may present some unexpected challenges, e.g. regarding computational implementation, runtime, and 
fusion of the individual estimates.

Vocalization differences between sexes of CBA/CaOlaHsd mice and their anatomical corre-
lates. While the present study focusses on improving the accuracy of localizing USVs, we also find a difference 
in the vocalization properties between male and female CBA/CaOlaHsd mice. Males emitted longer and lower 
frequency calls than females during the social interaction studied presently. To our knowledge this difference 
in vocalization properties has not been described before. Both of these differences are consistent with recent 
results from CBA/J mice (Fig. 6, although our results differ for call bandwidth)6, which, however, did not separate 
precisely between male and female animals. Generally, they are also in line with the male’s investment into court-
ship46, while putting themselves at a greater risk of discovery by a predator, for example due to the use of (slightly) 
longer vocalizations.

The neuronal basis of sex differences in vocalization is not known but likely to include vocal control by fore-
brain motor nuclei which has recently been investigated using transsynaptic tracers47. Sex-specific differences in 
these pathways are yet to be determined. To get a first insight into putative pathway differences, we performed 
a post-hoc analysis using a publically available data-set made available by the Allen Institute for Brain Science 
(http://connectivity.brain-map.org/, see Methods for details). We compared the monosynaptic projections orig-
inating from a spatially constrained region of the M1/M2, which was previously identified as a key structure 
for the generation of vocalizations in mice47. The results showed a higher prevalence of direct projections to 
the brainstem in males (Fig. 6A) and the differential projections via the cortico-truncal and cortico-thalamic 
descending pathways (Fig. 6B,C), including seven nuclei which receive forebrain motor input specifically in the 
female (see Fig. 6B for the list of the identified nuclei) as well as numerous thalamic nuclei that have preferential 

http://connectivity.brain-map.org/
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Figure 6. Sex differences in motor cortical projections in the mouse brain. Monosynaptic projections 
originating from a motor cortical region of interest (ROI) were quantified as described in the Materials and 
Methods section. (A) Major projection targets for the infragranular neurons in the ROI. The edge weight 
represents the relative weight of projections by volume. Only the top 13 targets are shown. (B) Normalised 
projection density across all nodes in the mouse brain. Downward triangles mark those nodes that receive 
monosynaptic input exclusively in the female brain. The numbers associated with triangle refer to the name 
of nuclei which are listed below the figure. (C) The difference of the normalised energy values across the 
sexes reveal the nodes that receive preferential input from either sex. Nodes marked with IIX and IX refer 
to descending nuclei that have preferential M1/M2 input in the female brain, compared to the male. Nodes, 
X-XIIV are nuclei that have preferential input in the male mouse brain.
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input in a sex-specific manner (Fig. 6C). These observations suggest that, in addition to differential vocal control 
by forebrain motor nuclei, potential sex-specific differences in auditory feedback during ultrasonic vocalizations, 
there might sex differences at the meso-scale circuit level which could contribute to sex-specific vocalizations. 
Future work, combining these circuit level differences with targeted, chronic recordings and local stimulation 
in the identified regions could shed light on the neural basis of sex differences in vocalization while providing a 
mechanistic insight into differential vocal control.

Materials and Methods
All experimental procedures were approved by the animal welfare body of the Radboud University under the 
protocol DEC-2014-164 and conducted according to the Guidelines of National Institutes of Health.

Animals. 10 CBA/CaOlaHsd mice (6 male, 4 female) were studied in the experiments. The animals were 6 
weeks old at arrival. The females arrived in two groups (2 animals each) of same age (possibly from the same 
litter), whereas the males arrived separated by two weeks, thus were all from different litters. The animals were 
housed socially but segregated by sex in individually ventilated cages. Animals had free access to food and water, 
and were kept on a 12 h/12 h light/dark cycle. After 2 weeks of acclimation the experiments were started.

Experimental Procedures. Pairs of adult mice of different sexes were placed on two elevated platforms sep-
arated by a gap based on the gap-crossing task48, 49 (see Fig. 1). The experiments were conducted in an unlit box, 
except for an infrared backlight (see below) used in imaging. In the behavioural apparatus, animals performed 
without human interaction inside an automatised experimental setup. Prior to interaction, the platforms were 
initialised and positioned at a distance of 60 mm apart (before transferring the animals), thus allowing interac-
tion, while effectively preventing them from crossing over. Platforms had a movable door, which opened at the 
beginning of the trial and closed at the end of it. The animals had time to interact for a period of 5–10 min, which 
was recorded using a broadband microphone (see below) and a high-speed camera (see below) for post-hoc 
analysis. Trial length was determined based on the activity of the mice and limited by computer memory to 
~10 min for high speed video recording. Two sessions were collected daily per pair of animals. A total of 52 
recordings of social interactions were analysed in the present study, comprising ~2200 vocalizations. This number 
may seem low in comparison with other studies, but during snout interactions are rarer than during free running 
interactions.

Behavioural Apparatus. The behavioural apparatus was modified from the apparatus described in previous 
work48. In short, the apparatus consisted of two acrylic platforms (75 × 220 mm) surrounded by walls (height: 
250 mm). Each platform was individually controlled by a stepper-motor driven, linear actuator, with a 0.005 mm 
resolution. Infrared emitter/sensor combination (IESC) were used for calibrating the starting position. Three 
other IESCs, positioned at the 9 mm, 78 mm and 183 mm from the front of the platform (10 mm above the plat-
form floor), served to coarsely localize animals and trigger video acquisition (see below). For most experiments 
(40/52 experiments, 2006/2361 USVs) the platforms were additionally padded on the inside with acoustic foam 
(5 cm at the end, 1.5 cm at the sides, Basotect Plan50, BASF), to largely eliminate reflections inside the platforms. 
According to the manufacturer’s specifications, this should have removed all reflections above ~1 kHz.

Both motor commands and sensor information were provided via a Matlab-controlled DAQ card (PCIe-6353, 
National Instruments, Austin). Motor commands were transferred via an Arduino-circuit, powered by a regu-
latable power-supply (Voltcraft PPS-11603). Sensor read-outs and camera trigger times (see below) were directly 
acquired and digitised at 10 kHz. The apparatus was housed in a sound-proofed chamber, covered on the inside 
with acoustic foam (5 cm, as above).

Video Recording and Animal Tracking. High speed video was recorded at 100–480 fps and digitised 
at 640 × 512 pixels (resolution of ~0.1 mm/pixel; Camera: PointGrey Flea3 FL3-U3-13Y3M-C, Monochrome, 
USB3.0). Part of the experiments was performed over a field of view of 70 × 57 mm (Lens: SainSonic XR-300, 
35 mm, 1:1.7, 355 USVs), while the majority was collected for a bigger field of view of 164 × 205 mm (Lens: 
Cosmicar, 12.5 mm, 1:1.4, ~2000 USVs). The shutter time was set at 0.1 ms to minimize motion blur. Images were 
captured against a uniformly illuminated, rectangular infrared backlight (210 × 140 mm array of 1200 infrared 
LEDs (in 30 × 40 arrangement; λ = 850 nm), with a glass diffuser in front. As such, mice appear black against 
a bright background. Video acquisition was triggered when both animals were located at the gap, and termi-
nated, when an animal left the center. Images were transferred to memory and stored for analysis. Offline, mice 
were tracked in the XY-plane by a human observer (J.J.H.) at the midpoint of every vocalization using a custom, 
Matlab-based visualization tool. The observer marked the snout and the point between the ears, generating a 
viewing direction vector for each mouse. The reference position for comparison with the acoustic location was at 
10% of the distance from the snout towards the ears.

Audio Recording. Sounds inside the booth were recorded with two ultrasonic microphones (CM16/
CMPA48AAF-5V, flat (+/−5 dB) frequency response within 7–150 kHz, AviSoft, Berlin) at a sampling rate of 
250 kHz. An analog low-pass filter at 120 kHz prevented aliasing and excluded contributions beyond 120 kHz. 
Recorded data was digitised using a second DAQ card. The microphones were placed centered on the midline 
connecting the platforms, at a symmetric distance of 230 mm from the center of the gap between the platforms 
at a height of 354 mm above the platform floor. The entrance of the microphones was aimed at a 45° angle with 
respect to the horizon towards the gap. Based on the microphone’s angle of receptivity (~25 dB attenuation at 45°), 
the microphones receive sounds from both platforms. To account for sensitivity differences, the responses of the 
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two microphones were scaled by their average response to Gaussian white noise (relative correction factor = 0.74, 
confirmed by the manufacturer to be within tolerances).

Detection of Ultrasonic Vocalizations. Mouse USVs were detected automatically using a set of algo-
rithms developed by Holy and Guo (2005). Briefly, these algorithms compute a short-term Fourier transform 
with half-window overlaps (window length ~1 ms). The spectrogram is then thresholded and median filtered to 
remove isolated, low-amplitude speckles. The spectral purity was computed for each time-slice by dividing the 
maximal power in a bin by the summed power in this time-slice. Sounds were accepted if their average frequency 
was >25 kHz and their spectral purity was >0.1. Vocalization discovered on one microphone, were considered to 
be present on both microphones, and the corresponding data was kept for both sides. Based on visual inspection, 
the algorithm reliably detected USVs, if their signal to noise ratio exceeded ~0.5 (on the sound pressure level). 
Properties of individual USVs were extracted on the basis of their spectrogram, i.e. amplitude, average frequency, 
frequency range and duration (see Supplementary Figure 2).

Localization of Ultrasonic Vocalizations. The symmetric arrangement of the microphones allowed spa-
tial localization of sounds in one dimension, i.e. along the line connecting the microphones. Both temporal and 
level differences of arrival at the microphones can be utilised for this purpose. Temporal differences of arrival 
allow a difference of 4 µs (1 sample at 250 kHz) to be resolved between both sides. Based on the speed of sound 
in air this translates to an upper bound of the localization accuracy of ~1.37 mm. Differences in level are not as 
precise, but can be used to resolve certain ambiguities, e.g. if animals are very close in space, the vocalization can 
be attributed to the animal facing the microphone where the level was greater (see below).

We compared the performance of three temporal localization techniques, basic cross-correlation (CC), 
generalised cross-correlation (GCC) and a novel extension, envelope weighted generalised cross-correlation 
(EWGCC). Importantly, these techniques only yield an estimate of the inter-microphone delay, which translates 
into different spatial positions depending on the relative vertical position of the microphones compared to the 
sound source. Since we could not find a treatment in the literature of this conversion, it is provided below in 
detail.

Conversion of Delay to Position. If a sound is emitted between two microphones, the arrival time at the 
microphones is determined by the distance of the sound source to each microphone. In the present setup this 
distance has a horizontal and a vertical component. Given the position of the microphones and sound source, the 
inter-microphone delay ΔT can simply be computed by the product of the different in path-lengths ΔP divided 
by the speed of sound vsound (see Fig. 2A for a visualization of the variables). ΔP can be computed by the applica-
tion of the Pythagorean theorem, which comes out to be
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where H is the vertical distance between the sound source and the center of the microphone membrane, D is the 
horizontal distance between the two microphones and ΔX the horizontal distance of the sound source from the 
center between the two microphones (see Fig. 2A for a visualization of the variables).

The inverse problem, i.e. estimating the sound position from the inter-microphone delay is more complicated. 
We start from the above forward equation, and square both sides:
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Rearranging and squaring again yields
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After a few steps of expansion and cancellation, we arrive at
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and simplifying and canceling terms further yields
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Collecting terms for the sought variable ΔX, and using the binomial relationship − − = −a a b a b b( ) (2 )2 2  
with = +a H D2 2 1

2
2 and ∆=b P2 gives
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which yields the final conversion formula, after solving for ΔX:
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Hence, we have derived an explicit formula for the horizontal position ΔX as the function of path-length differ-
ence ΔP or the inter-microphone delay ΔT via vsound, given the microphone height H and distance D.

Next, we describe the three estimation methods. Prior to application of each technique, vocalizations were 
automatically detected and separated, using extensions of the work by Holy & Guo4, as well as high-pass filtered 
signal with a corner frequency of 10 kHz (4th order, Butterworth-filter), to prevent environmental noise from 
entering the estimate. All localization measures will be made available as a toolbox on our lab website.

Cross correlation measures. Ideally, the signals at the two microphones are just time-shifted versions of 
each other. In classical cross-correlation (referred to as simple cross correlation hereafter) its maximum across 
all possible delays τ is the most obvious choice for the difference in travel time to the microphones. For the two 
microphone recordings s1(t) and s2(t), it is defined as

∑∆ τ= +τε −
=−

T max s t s t( ) ( )
(13)T T

t T

T

[ , ] 1 2

where ΔT is an arbitrary maximal delay, which in the present case should be chosen to cover all possible delays 
for the given environment, i.e. at least corresponding to the distance between the microphones. Cross-correlation 
estimates are provided in Fig. 3 (black).

Generalised Cross-Correlation. Several non-idealities in the acoustics of the environment may introduce 
additional transformations in the signals, in which case the solution provided by simple cross correlation may not 
always correspond to the actual time delay. In the present case, these transformations are mostly acoustic reflec-
tions from the apparatus, slight differences between the spectral properties of the microphones and the typically 
harmonic nature of the vocalizations. The generalised cross correlation was computed as
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where ωS ( )i  denote the Fourier transform of the microphone signals, and ⁎S  the complex conjugate of a signal. The 
denominator here serves to equalize the weight across frequencies, which can make use of phase-differences in 
quieter frequency channels. The final inter-microphone delay was then obtained by computing the inverse Fourier 
transform of G, and extracting the timing of the peak (as in Eq. 13).

Envelope Weighted Generalised Cross-Correlation. The normalization step in the generalised 
cross-correlation (Eq. 14, denominator) is often helpful, but can also have detrimental effects on the localization 
quality if frequency channels contribute that contain only noise. We accounted for this problem by computing 
the envelope across frequencies, and only including frequency channels whose amplitude was >5% of the peak 
channel. The envelope was computed empirically as the average over 10 consecutive frequency bins, and then 
interpolated to the full set of frequencies again. This modification improved the robustness of the GCC especially 
for rather narrow-band USVs.

Localization Quality Criterion. The quality of single localization estimates can vary across different vocal-
izations, most likely due to other environmental noises. If the quality was known for individual vocalizations, 
the assignment could be selectively performed for localizations of different quality, e.g. in relation to the min-
imal distance to the animals. We attempted to estimate the quality of a single vocalization by computing the 
signal-to-noise of the peak in the final time-resolved correlation (from either of the three methods) compared to 
the mean correlation across the entire range of delays. We term this measure a correlation quality measure (CQM), 
and results are reported as a function of the quality criterion in Figs 4 and 5. We find that higher CQM values lead 
to lower localization errors, confirming that the CQM is informative on a single USV level.

Disambiguation during Close Range Interactions. When the mice interact closely, the position of 
the snouts can fully overlap, thus creating an ambiguity that cannot be resolved based on 1D localization. In 
order to disambiguate the situations, we additionally used the relative level at the two speakers to determine the 
emitting mouse. Concretely, if the animal snouts were within 2 times the MAE for 1D localization (Fig. 4), i.e. 
2 × ~5 mm = ~10 mm, we attributed the vocalization to the animal facing this speaker, i.e. on the opposite plat-
form. We verified the validity of this approach by applying the same criterion to the single mouse vocalizing in 
different directions and comparing the resulting levels. For the head orientations in snout-snout interaction, the 
method showed an average accuracy of 88% (see Fig. S3 for more details). Vocalizations outside of this close range 
were attributed based on position alone.

http://S3


www.nature.com/scientificreports/

1 4Scientific RepoRts | 7: 3017  | DOI:10.1038/s41598-017-02954-z

Verification of Localization Performance. The localization performance of the individual algorithms 
was first tested using artificially generated sounds, and further with a single vocalizing male mouse. For this 
first test, a high-fidelity speaker (Fostex T250D) was digitally calibrated to produce equal output level within 
the relevant range (10–100 kHz, see Fig. S1A). Briefly, the calibration was performed by placing the speaker at a 
distance of 50 mm in front of the microphone. First, a Gaussian white noise was played, to estimate the frequency 
transfer function of the speaker (function tfestimate in Matlab). This function was then divided by the intended 
flat spectrum, to arrive at the inverse transfer function. The inverse impulse response (IIR) was computed via 
the inverse Fourier transform of the inverse transfer function. Subsequently, stimuli were convolved with the IIR 
to achieve an equalised output. The time-delay introduced by the product of the IIR and the speakers impulse 
response (3 ms) was applied as a shift to the stimulus, when comparing input and output. The equalization spec-
trum and amplitude were tested by presenting white noise as well as Chevron-vocalization shaped sounds, i.e. an 
up-flat-down frequency sweep (see Fig. S1B,C).

For testing the localization algorithms, the membrane of the speaker was positioned at the same height as the 
mouse heads durings interaction (i.e. ~1 cm above the platform) at a number of horizontal positions (−50 mm 
to 50 mm relative to the center, in steps of 5 mm). This range covered more than the visible range of the camera 
(±28 mm). Localization performance was evaluated for the white noise (see Fig. 3B).

In addition to the testing based on synthetic stimuli, the quality of this estimate was assessed by estimating the 
sound source location of real USVs emitted by individual male mice (n = 3). For this experiment a single male 
mouse was placed on an elevated, elongated platform (400 mm × 100 mm, at 250 mm above the floor), flanked 
by two microphones (see Fig. 4A for the spatial arrangement, locations ±296 mm, at a height of 133 mm relative 
to the platform level). In this test, we chose to sample a larger range of distances than used in the gap interaction 
task, in order to explore also locations close to the microphones. A digital camera (Point Grey, Flea3) was placed 
centered over the platform (height relative to platform level: 850 mm) to obtain the mouse position as a function 
of time. Recordings were performed at 100 Hz at a resolution of 640 × 512 pixels over a viewfield of 420 × 336 mm 
(Lens: Cosmicar, 12.5 mm, 1:1.4). The setup was surrounded by acoustic foam (5 cm, as above) to prevent inside 
reflections and outside noises from entering. In order to motivate the male mouse to vocalize a female mouse was 
briefly presented repeatedly for snout-snout interaction (when the male mouse had ceased to vocalize for ~30 s) 
and then removed to a sound-proofed box. Results from this analysis are shown in Fig. 4B–D.

Projection mapping. To address whether observed sex differences correlate with motor cortical projections 
we studied the anatomical projections originating from a region of interest (ROI) across sexes using the data 
made available by the Allen Brain Institute. The, so called, Mouse Connectivity database (http://connectivity.
brain-map.org) currently includes 2546 experiments where a select population of neurons express a fluorescent 
protein as well as the whole brain visualization of the projections of the fluorescently stained neurons, thus pro-
viding a database to study connectivity in the mouse brain in the mesoscale.

We have chosen the ROI and cortical layers of interests relevant to sex differences in motor cortical projections 
based on the transsynaptic mapping experiments by previous work47 (see e.g. Fig. 3) who showed that infragran-
ular layers in a region of primary (M1) and secondary (M2) cortices contribute to control of ultrasonic vocaliza-
tions. Spatially cross referencing their transsynaptic tracer visualization and egr-1 based activity mapping results 
with the reference mouse brain atlas of the Allen Brain Atlas, we selected 13 experiments (6 female, 7 male) which 
were performed in transgenic mouse strains and allowed mapping of projections originating from the infragran-
ular layers within the ROI. The strains used were: Tlx3-Cre_PL56, Syt6-Cre_KI148 and Sim1-Cre_KJ18. Unique 
experiment identifiers are: Female – 177319974, 168229113, 297947641, 287807743, 297892130, 294525944. Male 
– 122642490, 156786234, 297854981, 297711339, 297714071, 293432575, 293431869. All data are available from 
the Allen Institute for Brain Science at http://connectivity.brain-map.org/.

To determine the main projection targets of the ROI (see Fig. 6A), we calculated the normalised (to the max-
imum) projection volume. To determine the relative “strength” of projections, we calculated the normalised (to 
the maximum) projection energy where projection energy is defined as the total intensity of tracer signal/total 
number of pixels in a given node. Thus projection energy can be used to infer the relative “strength” of projections 
into a given node in the network.

Statistical Analysis. To avoid distributional assumptions all statistical tests were nonparametric, i.e. 
Wilcoxon rank sum test for two group comparisons, Kruskal-Wallis for single factor analysis of variance. 
Correlation is computed as Spearman’s rank based correlation coefficient. Error bars represent standard errors 
of the mean (SEM), unless stated otherwise. All statistical analyses were performed in Matlab (The Mathworks, 
Natick) using functions from the Statistics Toolbox.

Data Availability Statement. The authors declare that they will make the original data readily available to 
anyone upon request.
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