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Abnormal Growth and Feeding 
Behavior Persist After Removal 
of Upper Airway Obstruction in 
Juvenile Rats
Mohammad H. Assadi1,3, Elena Shknevsky3, Yael Segev3 & Ariel Tarasiuk1,2

Pediatric obstructive sleep-disordered breathing is associated with growth retardation, but also with 
obesity that has a tendency to persist following treatment. We investigated the effect of upper airways 
obstruction (AO) and of obstruction removal (OR) in juvenile rats on gut-derived ghrelin and related 
hypothalamic factors, feeding, and growth hormone (GH) homeostasis. Here, we show that after seven 
weeks of AO, animals gained less weight compared to controls, despite an increase in food intake 
due to elevated ghrelin and hypothalamic feeding factors. OR rats who had complete restoration of 
tracheal diameter, consumed more food due to increased ghrelin and exhibited growth retardation 
due to deregulation of GH homeostasis. This study is the first to show dysregulation of the hormonal 
axes controlling feeding behavior and growth that are not fully restored following OR. Thus, surgical 
treatment by itself may not be sufficient to prevent post-surgical increased food intake and growth 
retardation.

Sleep-disordered breathing (SDB) in adults elicits a cascade of complex endocrine derangements that cause sleep 
abnormalities, increased energy intake, and obesity1. Pediatric SDB has been shown to cause insufficient body 
weight gain and growth retardation while, in some studies, metabolic syndrome and obesity were observed2–7. 
Interestingly, SDB treatment by adenotonsillectomy (usually the first line treatment in children) is frequently 
associated with weight gain, thus increasing the risk for obesity, despite normalization of sleep and respiration2, 3, 6.  
It has been proposed that a shift toward sedentary lifestyles and high caloric food choices are predominantly 
responsible for this weight gain1–3.

We have previously shown that the juvenile upper airway obstruction (AO) rat model mimics many of the 
features of pediatric SDB including sleep fragmentation and growth retardation8–10. To the best of our knowledge, 
the role of the appetite-related neuroendocrine factors on eating behavior in AO and after obstruction removal 
(OR) have not been well-characterized. Abnormal growth hormone (GH)/insulin-like growth factor 1 (IGF-
1) homeostasis7, 11 and appetite-related factors such as ghrelin and leptin12–14 can play a role in AO-associated 
insufficient body weight gain. Growth hormone and circulatory liver-derived IGF-1 have major effects on lipid 
metabolism and body composition15–17. Feeding is regulated by the gut-derived hormone ghrelin, and by the 
hypothalamic release of orexin and ghrelin18–21. Orexin plays an important integrative link between control of 
ventilation and homeostatic challenges such as sleep and feeding22–25. Released from the oxyntic glands of the 
stomach in response to fasting, ghrelin stimulates feeding and release of growth hormone releasing hormone 
(GHRH) from the hypothalamus18, 21 by activation of the GH secretagogue receptors (GHSR)26, 27. Neuropeptide 
Y (NPY), agouti-related peptide (AgRP), and GHRH neurons all express GHSR and are well-characterized 
targets for ghrelin action on food intake28, 29. However, skeletal growth acceleration with ghrelin is dose- and 
pattern-dependent30–32. Short exposure to ghrelin stimulates GH by activating the hypothalamic GHRH via 
GHSR. Prolonged exposure to ghrelin leads to desensitization of the axis and further ghrelin treatment response.
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Intermittent hypoxia associated with SDB can lead to liver injury and to increased risk for obesity33–35. The 
most characterized cellular adaptive response to acute and chronic hypoxia is up regulation of hypoxia-inducible 
factors (HIFs). Under normoxic conditions HIFs undergo protein hydroxylation and degradation by prolyl 
hydroxylases (PHDs). In hypoxia, PHDs are suppressed and cellular HIFs are stabilized, improving cell survival36. 
Although no noticeable blood gas exchange abnormalities are evident in AO animals8–10, 37, 38, it is unclear if this 
condition is associated with liver oxidant stress or liver injury.

The mechanisms linking upper airway obstruction with abnormal energy metabolism and growth retardation 
are poorly understood. We hypothesized that AO leads to sustained elevation of gut-derived ghrelin, which, 
on one hand, causes desensitization of the hypothalamic-pituitary-GH axis while, on the other hand, increases 
feeding behavior. In this study we explored for the first time, to the best of our knowledge, the pathophysiological 
consequences of upper airway loading and of its removal on feeding behavior, linear growth, and endocrine path-
ways from weaning to adulthood. We show that AO, even long after the critical tracheal obstruction is removed, 
leads to persistent dysregulation of hormonal axes controlling feeding and growth. Increased feeding after AO, 
whether treated or untreated, is related to elevated gut-derived ghrelin hormone and its hypothalamic factors and 
to up regulation of hypothalamic orexin. Our evidence, therefore, indicates that upper airway obstruction elicits 
persistent neurohumoral derangements that are “stamped” on the hypothalamic pituitary axis of feeding and 
growth. Our data suggest that the surgical treatment per se may not be sufficient to prevent the post-surgical trend 
for increase in body weight and growth retardation.

Results
Food intake and body weight. Figure 1 illustrates the time-line of data collection. According to magnetic 
resonance imaging analysis, following AO the trachea diameter was reduced by 44% (p < 0.001) and after OR 
it was 13% (n.s.) below control values (Fig. 2a,b). Trachea cross-sectional area according to histology analysis 
was reduced by 70% (p < 0.001) in AO; after OR trachea cross-sectional area was 20% (p < 0.05) smaller than 
in controls (Supplementary Fig. S1). AO gained 48% and 15% less body weight and body length than controls, 
respectively (p < 0.001; Fig. 2c,d), despite 35% elevation of food intake (p < 0.01; Fig. 2f). Despite the 12% ele-
vation in food intake in OR, body weight and body length were 24% and 5% less than those of controls, respec-
tively (p < 0.001; Fig. 2c,d,f). Body mass index (BMI) was reduced by 36% and 11% in AO and OR groups, 
respectively (p < 0.001; Fig. 2e). Body temperature (Tb) was lower in the AO group (p < 0.05; Fig. 2h) and was 
similar to controls in the OR group. Dark phase locomotion activity (MA) was reduced by 20% and increased 
by 33% in AO and OR groups, respectively (p < 0.05; Fig. 2i). Arterial blood gases were within physiological 
range in all groups (Supplementary Table S1). No histological evidence for hepatic damage such as pericellular 
fibrosis (Supplementary Fig. S2A) or steatosis (Supplementary Fig. S2B) was found. Liver enzymes were within 

Figure 1. Flow diagram of study groups and times data was collected.
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physiological range in all groups (Supplementary Table S1). No changes were found in liver PHD2 mRNA and 
protein levels (Supplementary Fig. S2C,D). Liver HIF1α mRNA expression decreased (p < 0.001; Fig. 3e) and no 
change was found in HIF 1α protein level (Supplementary Fig. S2F). Liver HIF2α mRNA expression was similar 
in all groups (Supplementary Fig. S2G) while HIF2α protein level was undetectable using Western blot analysis.

Diurnal rhythms of sleep and hormones. Mean Tb for each hour of the day is presented in Fig. 3. Both 
light and dark phase Tb decreased by 0.7 °C in the AO group (p < 0.01; Fig. 3). The AO group was awake 20% 
more during the 12-hour lights on period (p < 0.01), and showed 15% less slow wave sleep (p < 0.05) and 7% less 
paradoxical sleep (p < 0.001). The time course of slow wave activity during slow wave sleep (non-rapid eye move-
ment) of the AO group was 50% lower than in controls, and did not exhibit circadian variation (p < 0.001; Fig. 3). 
No significant differences were found in both diurnal and nocturnal plasma corticosterone level; plasma leptin 
decreased by 40% in AO (p < 0.001; Fig. 3).

Ghrelin and hypothalamic mediator factors. Plasma ghrelin was elevated by 200% in the AO group 
(Fig. 3), and remained 34% higher in the OR group (Fig. 4a). No significant differences were found in hypo-
thalamic ghrelin protein (Fig. 4c). GHRSR1a protein level was up regulated in the AO and OR groups by 40% 
(p < 0.01; Fig. 4c). NPY mRNA expression was elevated by 117% and 32% in AO and OR groups, respectively 
(p < 0.001; Fig. 4d). AgRP mRNA expression was up regulated by 74% in the AO group (p < 0.01; Fig. 4e). 
Injection of ghrelin (30 nmol kg−1 i.p.) induced considerable increase of food intake by 300% in all groups (Fig. 5).

The growth hormone axis. After 7 weeks hypothalamic orexin mRNA expression was up regulated by 20% 
in the AO group (p < 0.05; Fig. 6a) and returned to control values in the OR group. GHRH mRNA expression 
was down regulated by 38% and 14% in the AO and OR groups, respectively (p < 0.01 and p < 0.05; Fig. 6b). 
Somatostatin mRNA expression increased by 35% and 27% in AO and OR groups, respectively (p < 0.01; Fig. 6c). 
Basal GH secretion was determined by analysis of blood specimens collected every 15 min during 4-h periods 

Figure 2. Body weight and daily food intake. Effect obstruction (AO) and obstruction removal (OR) on (a) 
Trachea 3D magnetic resonance imaging (symbol on OR image indicates the location of obstruction); (b) 
Trachea diameter; (c) Body weight curve over the duration of the observation period; (d) Body length; (e) Body 
mass index; (f) Daily food intake; (g) Intestinal length to body length ratio; (h) 12-hour average lights on and 
lights off body temperature and locomotion activity (i). Error bars in (b,d,h,i) are s.e.m; error bars in (c,e,f,g) are 
s.d. *p < 0.05, **p < 0.01, ***p < 0.001 difference between control group (C, blue color) and AO group (green 
color). #p < 0.05 difference between AO and OR (red color). In (b), d–i statistical differences were determined 
by unpaired 2-tailed t test; In (c) statistical difference between groups were determined by two-way ANOVA 
followed by Student-Newman-Keuls test.
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in n = 7 animals in each group. Representative profiles of the GH secretory periods of two control and two AO 
animals are shown in Fig. 6d. In the control group high amplitude GH peaks (<120 ng ml−1) were detected in all 
animals, and occasional intermediate peaks (i.e., 30–50 ng ml−1) were detected in some animals; no AO animals 
exhibited high-amplitude or pulsed intermediate-amplitude. Most (>90%) GH pulses in the AO group were 
considered small. Overall, the frequency of pulses determined using AutoDecon39, 40 was appreciably different in 
the AO group. Basal GH secretion (prior GH peaks) was similar in control and AO groups (Fig. 6e). Total and 
average GH concentration decreased by 60% in the AO group (p < 0.001; Fig. 6f,g). Both liver IGF-1 mRNA and 
protein were down regulated by 52% and 42%, respectively, in the AO group (p < 0.001; Fig. 6h,i). Obstruction 
removal only partially improved IGF-1 protein level, which remained lower than that of the control group by 
15% (p < 0.05; Fig. 6i). IGFBP-1 mRNA expression was up regulated and IGFBP-3 mRNA expression was down 
regulated by 190% and 30% in the AO group, respectively (p < 0.001; Fig. 6j,k).

Discussion
This study demonstrated that in upper airway obstruction, there was persistent deregulation of the hormonal 
axis controlling feeding behavior and growth. This was not reversed following obstruction removal (treatment). 

Figure 3. Diurnal rhythms of body temperature, sleep, and hormones in freely moving conditions. Diurnal 
rhythms of body temperature (Tb) and electroencephalogram slow wave activity (SWA; values are hourly 
average ± SEM); plasma ghrelin (Ghre), plasma leptin (Lep), and plasma corticosterone (Cort); sera for 
hormone determinations were collected every 3 hours (mean ± SEM) in freely moving conditions; black 
horizontal bars represent lights off (active period, 21:00–09:00) on a 12:12-h cycle. Error bars are s.e.m. 
***p < 0.001 difference between control group (blue color) and obstructive group (green color). Differences 
between groups were determined by two-way ANOVA followed by Student-Newman-Keuls test.
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Elevation of gut-derived ghrelin and its hypothalamic mediators was associated with hyperphagia and altered 
hypothalamus-pituitary GH axis due to down-regulation of GHRH and up-regulation of somatostatin.

Little is known about long-term effects of pediatric SDB treatment from childhood to adulthood. To our 
knowledge this is the first study that explored the effects of AO and its removal on energy metabolism and the 
hypothalamic-pituitary-GH axis from weaning to adulthood. Upper airway obstruction was performed on 
22-day-old rats and animals were followed for two weeks prior to obstruction removal (Fig. 1). This period is 
comparable to half a year to 6–8 years in children8 and this period can lead to abnormal sleep and growth retar-
dation8, 41, 42. The peak prevalence of pediatric SDB occurs at two to eight years, which is the age when tonsils and 
adenoids are the largest in relation to the site of collapse; and adenotonsillectomy is usually first line treatment4, 6. 
Obstruction removal was performed on day 14 and animals were followed for five weeks. This period is roughly 
comparable to more than fifteen years in humans. Our model has implications for pediatric SDB; similar to sleep 
apnea, AO animals exhibit abnormal sleep and growth retardation. However, in our study both inspiratory and 
expiratory loading was induced, which may resemble subglottic stenosis in children and not be exclusively sleep 
related. We did not find evidence for stress in that serum corticosterone levels were similar to those of controls. 
Under these conditions, animals maintain their arterial blood gases and serum lactate43. Intermittent hypoxia 
can lead to liver injury33, 34. In our study we did not find changes in liver enzymes, liver histology, PHD2, HIF1α 
and HIF2α (Supplementary Fig. S2). These findings indicate that hypoxia probably does not play a role in this 
abnormal feeding and growth in AO animals.

Obstructive animals exhibited impressive hyperphagia that was related to elevation of gut-derived ghrelin 
and the array of mediators that are activated by ghrelin, and decreased circulatory leptin (Fig. 4). Short sleep per 
se can stimulate gut-derived ghrelin and feeding44. In our study AO animals were awake 20% more during the 
12-hour lights on period. Ghrelin increased signals associated with motivated behaviors of importance for sur-
vival such as increased wakefulness, MA, and feeding18, 45, 46. Increased feeding in AO is probably a physiological 
adaptation to provide energy needed to sustain the additional wakefulness47 and the increased work of breathing. 
Although hypothalamic GHSR1α protein increased, it was not related to desensitization of feeding, since admin-
istration of ghrelin stimulated food intake in all groups. Feeding could also be stimulated by orexin22–24. Enhanced 
orexin secretion is crucially important for respiratory homeostasis maintenance and partial sleep loss in AO 
animals9. Orexin-A consistently stimulates food intake, while orexin-B only does so occasionally22, 23, 48. Orexin 
and ghrelin-containing neurons could influence each other and thereby regulate feeding behavior21. The neuroen-
docrine effects in AO may resemble those seen following prolonged partial sleep-restriction in rats, including 
decreased Tb49, down regulation of hypothalamic GHRH, up regulation of somatostatin44, 50, and reduction of 
GH51.

Interestingly, here we provide evidence of deregulation of hormonal control of feeding long-term fol-
lowing treatment. The OR group continued to display hyperphagia due to increased gut-derived ghrelin and 
hypothalamic NPY, although trachea diameter, Tb, and hypothalamic orexin mRNA were similar to those of 
controls. Further studies are needed to explore the whole-body energy demand and energy expenditure using an 

Figure 4. Plasma ghrelin and its related hypothalamic mediator factors. (a) Plasma ghrelin; (b) Representative 
hypothalamic ghrelin protein determined by Western blot; (c) Representative GHSR1α protein determined 
by Western blot; (d) Hypothalamic NPY relative mRNA level; (e) Hypothalamic AgRP relative mRNA level. A 
densitometric analysis on separate Western immunoblot analyses summarizing the eight animals per group; 
AgRP – Agouti-related protein; NPY – Neuropeptide Y; GHSR1α – GH secretagogue receptor 1 alpha. Error 
bars are s.e.m. Statistical differences were determined by unpaired 2-tailed t test. **p < 0.01, difference between 
control group (C, blue color) and airway obstruction group (AO, green color). #p < 0.05 difference between AO 
and obstruction removal (OR).

http://S2


www.nature.com/scientificreports/

6Scientific RepoRts | 7: 2730  | DOI:10.1038/s41598-017-02843-5

open-circuit indirect calorimeter47, match for the number of calories consumed during the day, and verify protein 
content of hypothalamic feeding mediators. It is possible that elevated energy intake in OR is met with higher 
energy expenditure related to increased MA during dark phase (Fig. 2). Adenotonsillectomy has been reported to 
accelerate the risk for obesity, despite the normalization of sleep and breathing2, 3. The increased risk for obesity 
was attributed to a shift toward sedentary lifestyle and highlights the importance of lifestyle modifications follow-
ing medical intervention1–3. It was recently found in adults that although a reduction in basal metabolic rate after 
positive airway pressure treatment predisposes to a positive energy balance, dietary intake and eating behavior 
had greater impacts on weight change and tendency to develop positive body weight gain and obesity1. Thus, 
weight gain following relief of upper airway obstruction could be at least in part related to permanent alterations 
in appetite homeostasis.

Gut-derived ghrelin plays an important integrative role in stimulating GH and feeding19, 20, 52 by activation 
of GHSR26. Short exposure to ghrelin stimulates GH by activating the hypothalamic GHRH30–32, 46, 53, while pro-
longed exposure leads to desensitization of the GH30–32. In our study we found prolonged elevation of ghrelin 
associated with desensitization of the hypothalamic-pituitary-GH axis in the AO group (Fig. 6). This desensiti-
zation was related to elevation in hypothalamic somatostatin and reduction of GHRH; both regulate the pulsatile 
secretion of GH. Activation of orexin neurons can inhibit GHRH in hypothalamic nuclei involved in regulation of 
sleep and GH54. The need to maintain ventilation in AO leads to elevation of hypothalamic orexin, which results 
in abnormalities in the GHRH/GH axis that underlie both growth retardation and slow wave abnormalities; 

Figure 5. Effect of ghrelin on cumulative food intake. (a) Control group; (b) Obstructive group; (c) 
Obstruction removal group. Open symbols are mean cumulative 4 h food intake after saline administration and 
closed symbols follow administration of ghrelin (30 nmol kg−2) on the following day. Blue color – control, green 
color – obstructive group, red color – obstruction removal. Error bars are s.d. *p < 0.05 statistical difference 
between saline and ghrelin were determined by two-way ANOVA followed by Student-Newman-Keuls test. 
#p < 0.05 difference between AO and obstruction removal (OR).
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supporting earlier studies9, 50. Circulating IGF-1 and IGF-binding protein 3 (IGFBP-3) strongly correlated with 
the 24-hour mean GH levels55, 56. Our study shows that the decreased GH was followed by downstream reduc-
tion of liver IGF-1 and IGFBP-3 and circulatory IGF-1. One of the interesting findings of our study is that GH 
homeostasis does not return to control values long-term after “treatment” (OR) and animals exhibited shorter 
body length. This desensitization of the GH axis was accompanied by an elevation in somatostatin and reduction 
of GHRH. In pediatric SDB, the impaired GH hypothesis has received a great deal of attention lately as a key 
mechanism underlying impaired somatic growth in these children7. Meta-analysis11 revealed that standardized 
height and weight, IGF-1, and IGFBP-3 increase after adenotonsillectomy, lending support to the concept that 
GH homeostasis is impaired prior to treatment in pediatric SDB. However, these studies used the “before and 
after” data analysis; healthy controls were not used and children are followed up to a year post-surgery11. Further 
studies are needed to explore the long-term alterations in GH homeostasis following treatment in clinical and 
animal models.

The mechanisms linking upper airway obstruction with abnormal energy metabolism and growth are poorly 
understood. To our knowledge, this study is the first to show that upper airway obstruction, even long after the 
critical tracheal obstruction is removed (treatment), leads to persistent deregulation of the hormonal axis con-
trolling feeding and growth. Our data may suggest remodeling of the central pathways regulating appetite and 
growth. Increased feeding following upper airway obstruction, whether treated or untreated, is related to elevated 
gut-derived ghrelin hormone and its hypothalamic mediator’s factors’ (e.g., GHSR1α, NYP, AgRP) levels and to 
up regulation of hypothalamic orexin. Growth and endocrine markers of feeding do not reach control values for 
a long period after AO with or without OR. Our evidence, therefore, may indicate that the surgical treatment of 
pediatric SDB by itself may not be sufficient to prevent the postsurgical trend for increase in body weight and obe-
sity. Restoration of the neuroendocrine system responsible for adequate feeding and growth seems to be essential 
for postsurgical management.

Figure 6. The hypothalamic-pituitary-GH axis. (a) Hypothalamic relative orexin mRNA; (b) Hypothalamic 
relative GHRH mRNA; (c) hypothalamic relative somatostatin relative mRNA; (d) Pulsatile GH concentrations 
in two representative C and two AO animals; (e) average baseline value of GH; (f) Total GH concentration; (g) 
Average GH concentration; (h) Liver IGF-1 relative mRNA; (i) Serum IGF-1; (j) Liver IGFBP-1 relative mRNA; 
(k) Liver relative IGFBP-3 mRNA; GH – growth hormone; GHRH – growth hormone releasing hormone; 
IGF-1 – insulin-like growth factor 1; IGFBP 1 and 3 – IGF-binding protein 1 and 3. Error bars are s.d. *p < 0.05, 
**p < 0.01, ***p < 0.0001 difference between control group (C, blue color) and obstructive group (AO, green 
color) or between C and OR obstruction removal (OR, green color). #p < 0.05 difference between AO and OR. 
Statistical differences were determined by unpaired 2-tailed t test.
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Methods
Animals. This study was approved by the Ben-Gurion University of the Negev Animal Use and Care 
Committee protocol number: IL-77-11-2015, and complied with the American Physiological Society Guidelines. 
Male Sprague-Dawley 22-day-old rats (48–55 gr) were used. Animals were kept on 12–12 light-dark cycle with 
lights on 09:00 at 23 ± 1.0 °C. Food and water were given ad libitum.

Surgery. Tracheal narrowing surgery (anesthesia tribromoethanol, 200 mg kg−1 i.p.) was used to induce UAO 
in 22-day-old Sprague-Dawley male rats (day 0; Fig. 1)8–10, 57. Controls underwent surgery with no tracheal nar-
rowing. On day 14 the AO group was randomized; OR of the silicon band was performed on n = 24 animals; all 
control and AO animals underwent repeat sham surgery. On day 39 a telemetric transmitter (TL11M2-F20-EET 
Data Sciences International, St. Paul, MN, USA) was implanted (under sterile conditions), enabling recording of 
electroencephalography (EEG), dorsal neck electromyography (EMG), and body temperature (see Supplementary 
Methods)8. For Tb and MA recording, a free-floating transmitter (model TA11TA-F10, DSI, St. Paul, MN, USA) 
was inserted into the abdominal cavity on day 40. The transmitter was able to freely move among the peritoneal 
organs, because it was not attached to the peritoneum9, 42. A venous catheter was implanted in the external jug-
ular and advanced to the right atrium for sampling of arterial blood in unrestrained animals on day 3658. A 3 F 
heparin-coated PU catheter (CBAS-C30, Solomon Scientific, San Antonio, TX, USA) was inserted into the com-
mon carotid artery, ensuring that the catheter tip was in the thorax. Following surgery, prophylactic enrofloxacin 
5 mg ml−1 (s.c.) and water containing ibuprofen (0.1 mg ml−1) were given for three days9, 59, 60.

Magnetic Resonance Imaging. We used a high performance 1 T compact M2 MRI, 35 mm ID solenoid 
coil (Aspect Imaging, Shoham, Israel)10. Images were acquired (on day 10 and day 20; Fig. 1) with a gradient spin 
echo sequence, with repetition time (TR)/echo time (TE)/NEX = 13.4/3/2. Multislice axial scans were collected 
with a 5-cm field-of-view and data matrix of 256 × 256, resulting in 50/256 = 0.195 mm in-plane resolution, slice 
thickness of 1 mm. Region growing algorithm was used for segmentation of two objects: trachea and the circum-
ferential silicon band used for the trachea narrowing.

Blood collection. To determine the relationships among plasma appetite-related factors such as ghrelin, lep-
tin, and corticosterone, blood specimens were obtained by repeated sampling of blood every 3 hours for 24 hours, 
starting at lights on (09:00). Characteristics of pulsatile GH secretion39, 40 were performed following a four-day 
recovery period. In a subset of animals, serum ghrelin and IGF-1 levels were determined at animals’ death, two 
hours after lights on.

Telemetry recordings. The duration of sleep-wake states was calculated in 1-h time intervals. These 
were categorized as: 1) W – wake, 2) SWS – slow wave sleep, and 3) PS – paradoxical sleep (see Supplementary 
Methods). The power density values for 0.5–4.0 Hz were integrated and used to calculate slow wave activity dur-
ing non-rapid-eye-movement sleep8, 42. Tb ( ± 0.1 °C) and MA were continuously monitored using the Dataquest 
A.R.T. system (DSI, St. Paul, MN, USA).

Food intake. To assess the nutritional effect of AO and OR, twenty-four hour food intake was assessed and 
expressed as grams of food kg−1 of body weight37.

Arterial blood gas. In a subset of control, AO and OR arterial blood gases were determined. Blood gas sam-
ples of 100 μL were drawn in a pre-heparinized syringe, placed on ice, and immediately analyzed on a blood gas 
analyzer (RAPID Point 500, Siemens, Erlangen, Germany).

Serum biochemistry and endocrine. To assess liver function, serum biochemistry was analyzed by the 
Biochemistry Laboratory of Soroka Medical Center (Beer-Sheva, Israel). Plasma GH, ghrelin, leptin, corticoster-
one, and serum IGF-1 were determined by specific ELISA kits according to the manufacturer’s instructions. GH, 
ghrelin, leptin, corticosterone were measured on days 45–48 and IGF-1 after animals’ death on day 49.

Trachea and Liver Histology. To excise the banded region of the tracheas a similar region from the fifth to 
the sixth cartilaginous rings of the trachea was excised in the control, AO, and OR groups. Tracheal and liver seg-
ments were fixed in 4% formalin for 48 hours at room temperature. After fixation, the silicon band was removed 
from the tracheal segments of the AO rats. All tracheal segments were then embedded in paraffin, and sections 
were cut (five μm thickness for the trachea and four μm for the liver) and collected on Superfrost™ Plus slides for 
histology staining with hematoxylin and eosin10, 42.

Western immunoblot and real time-PCR. Proteins were determined by Western immunoblot9, 42 on 
day 49. RNA extraction and real time-PCR: RNA was extracted, and quantitative real time PCR assays were 
performed (see Supplementary Methods)10, 42. All primers were purchased from Sigma-Aldrich, Rehovot, Israel 
(Supplementary Table S2). GHRH, Somatostatin, and Orexin primers were used to assess the hypothalamic GH 
axis. GHSR1α, somatostatin, NPY, AgRP, and β-Actin primers were used to assess hypothalamic ghrelin and 
related factors. IGF-I, IGFBP-1, and IGFBP-3 primers were used to explore liver growth mediators. PHD2, HIF 
1α, and HIF 2α primers were used to assess liver hypoxia inducible factors.

Experimental schedule. AO or sham control surgery was performed on 22-day-old rats (day = 0) and ani-
mals were followed for 7 weeks. Obstruction removal was performed on day 14 on n = 24 randomly selected 
AO animals. Body weight was measured weekly, MRI images were acquired on day 10 and day 20. Body mass 
index was calculated by dividing body weight (grams) by body length squared (centimeters squared). Sleep, Tb, 
and MA were recorded for 24 hrs, and food intakes were measured on days 45–48. Plasma ghrelin, leptin, and 
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corticosterone were determined on day 40 every 3 hours starting at lights in freely moving conditions. GH was 
determined on day 42 starting at lights onset and blood was collected every 15 minutes for 4 hours in freely mov-
ing conditions. Immediately before animal death on day 49 body length was measured and BMI (gr cm−2) was 
calculated. Tissues and serum were harvested between 1 and 2 hours after light onset and were frozen at −80 °C 
until analysis.

Data analysis. Two-way analysis of variance for repeated measures was used to determine significance 
between time and group using post hoc comparisons by Student–Newman–Keuls test. Significance between 
groups was analyzed by unpaired Student’s t-test. Characteristics of GH pulsatile secretion were analyzed with 
the AutoDecon statistical algorithm to separate small peaks from background variation, according to guidelines 
described by Johnson39, 40. Pulses of GH detected by AutoDecon additionally were assessed for frequency in those 
instances in which two peaks were captured during the 4-h sampling period. Null hypotheses were rejected at the 
5% level.
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