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Node Attribute-enhanced 
Community Detection in Complex 
Networks
Caiyan Jia1, Yafang Li1, Matthew B. Carson  2, Xiaoyang Wang1 & Jian Yu1

Community detection involves grouping the nodes of a network such that nodes in the same 
community are more densely connected to each other than to the rest of the network. Previous studies 
have focused mainly on identifying communities in networks using node connectivity. However, each 
node in a network may be associated with many attributes. Identifying communities in networks 
combining node attributes has become increasingly popular in recent years. Most existing methods 
operate on networks with attributes of binary, categorical, or numerical type only. In this study, we 
introduce kNN-enhance, a simple and flexible community detection approach that uses node attribute 
enhancement. This approach adds the k Nearest Neighbor (kNN) graph of node attributes to alleviate 
the sparsity and the noise effect of an original network, thereby strengthening the community structure 
in the network. We use two testing algorithms, kNN-nearest and kNN-Kmeans, to partition the newly 
generated, attribute-enhanced graph. Our analyses of synthetic and real world networks have shown 
that the proposed algorithms achieve better performance compared to existing state-of-the-art 
algorithms. Further, the algorithms are able to deal with networks containing different combinations 
of binary, categorical, or numerical attributes and could be easily extended to the analysis of massive 
networks.

Complex networks provide a powerful tool for representing real-world complex systems1. Social networks, 
the World Wide Web, protein-protein interaction networks, academic citation and coauthor networks, and 
hyper-linked blogs are typical examples of such networks, where nodes denote objects and links denote pairs of 
relations between nodes. In recent years, much effort has been focused on identifying communities, groups of 
related nodes with dense internal connections and few external connections2–5. In addition to node connectivity 
information, most real-world networks have node-associated attributes. In this case, two types of information 
are available; graph data to represent the relationship between objects and attribute data to characterize a single 
object. Thus, nodes can be grouped either by data clustering methods using only their attributes6, or by com-
munity detection methods using only their link structure4, 7. However, clustering objects by attribute similarity 
ignores relationships between objects, and identifying communities using only links between pairs of nodes iso-
lates node attributes within communities. Therefore, various methods have been developed to uncover communi-
ties in networks by combining structural and attribute information such that nodes in a community are not only 
connected more densely than nodes outside of the community, but also share similar attributes.

Existing methods can be classified roughly into two categories. The first category is composed of probabilistic 
generative models that formulate joint models of link connections and node attributes, and that use the models to 
infer the posterior community memberships of nodes in a network8–17. The second category contains three types 
of hybrid methods. The first represents links as a class of node feature and uses node attributes and link connec-
tions to perform vertex clustering18–20. The second makes use of node attributes to help identify communities in 
networks21. The third uses node attributes and link structure together to optimize a unified objective function22, 23.

Probabilistic generative models include CESNA15, PCL-DC9, PPL-DC10, PPSB-DC11, cohsMix12, BAGC13, 
GBAGC14, BNPA17, and Metacode16. CESNA employs the probabilistic generative process of BIGCLAM24 for gen-
erating links and the logistic model of attributes together to infer the distribution of community memberships. 
PCL-DC, PPL-DC, and PPSB-DC project the discriminative content (DC) model of attributes into a generative 
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model of links (like PCL9, PPL10, and PPSB11) via community memberships. cohsMix embeds numerical attrib-
utes of nodes into the MixNet model25 for generating link classes. BAGC and GBAGC extend the cohsMix model 
to process categorical attributes and weighted networks. BNPA introduces node attributes and Bayesian priors to 
Newman’s mixture model26 and integrates the Chinese Restaurant Process to infer the number of communities. 
Metacode represents node attributes as metadata that describe properties of nodes and incorporates the metadata 
with the degree corrected stochastic block model27 to infer correlation between metadata and network structure. 
These models have good interpretability and provide powerful tools to discover overlapping communities or 
general structures. However, existing models deal with only one type of attribute (either binary, categorical, or 
numerical) and are sensitive to initial values.

SA-cluster18 and Inc-cluster19, 20 are typical examples of vertex clustering methods that use node attributes and 
link connections. SA-cluster views node attributes as virtual vertices, constructs an attribute-augmented graph, 
and performs a random walk on the attribute-augmented graph to obtain a unified distance. It then adopts the 
K-medoids algorithm to cluster the nodes based on learned pairwise distance. Inc-cluster was introduced as a 
slightly faster version of SA-cluster. CODICIL21 constructs content edges by selecting the top K  neighbors of each 
vertex using their attributes, obtains the combined similarity of a pair of nodes, and then sparsifies the newly 
constructed graph with content edges28. Finally, a fast graph clustering algorithm (Metis29 or MLR-MCL30) is used 
to partition the sparsified graph into K communities. GLFM22 extends MLFM31 (the multiplicative latent factor 
model) to give a unified model of homophily in networks such that an edge is more likely to exist between two 
nodes with similar attributes than between nodes having different attributes. A minorization-maximization algo-
rithm is then used to optimize the latent eigenmodel of GLMF. PICS23 finds cohesive clusters of nodes that have 
similar connectivity patterns and exhibit high levels of attribute homogeneity by optimizing a unified objective 
function defined by minimum description length. Compared to probabilistic generative models, these hybrid 
methods are more efficient. Nonetheless, these methods were designed to process networks with binary or cate-
gorical attributes only.

Nearly all of the methods mentioned above follow the assumption that cluster memberships related to 
node attributes must be consistent with community memberships determined by link structure for a network. 
However, it is not always true in real world networks. In fact, although nodes in the same community tend to have 
similar features by the homophily hypothesis32, there may exist some nodes in a community that share similar 
attributes but are not linked due to the sparseness of a real network. Therefore, for each node, we used only a small 
portion of the nearest neighbors measured by attribute similarity to alleviate the sparsity of a network, while 
strengthening the community structure. Consequently, in this study, we have proposed a node attribute-enhanced 
community detection approach, named kNN-enhance, using the kNN (e.g., k ≤ 10) graph of node attributes. We 
have instantiated kNN-enhance into two algorithms, kNN-nearest and kNN-Kmeans, to test the efficiency and 
the effectiveness of the approach. In the first stage, we constructed a kNN graph enhanced network by adding the 
kNN graph of node attributes to the original network. Then, we selected the number of communities and commu-
nity centers on the enhanced network using the idea behind the method K-rank-D33, which is the extended ver-
sion of the data clustering method proposed by Rodriguez and Laio34. In the second stage, we used kNN-nearest 
or kNN-Kmeans to cluster nodes into groups, where kNN-nearest assigned each remaining node to the cluster of 
its nearest neighbor with higher centrality and kNN-Kmeans clustered nodes iteratively by the K-means method. 
Our experimental results suggest that kNN-enhance improves upon existing algorithms through its ability to 
process networks with binary, categorical, or numerical attributes. Moreover, the approach can handle large-scale 
attributed networks by combining fast approximate kNN-graph algorithms35–37 with fast community detection 
algorithms such as BGLL38 and Informap39.

Results
A Description and Illustration of kNN-enhance. Networks in real applications are often sparse and 
contain noise in the form of spurious edges. This sparseness and noise blur the community structure of a network. 
Yet, nodes in the same community are likely to be connected to each other and share similar interests even though 
some of them are ‘silent’. Therefore, we can obtain a kNN graph by using a set of node attributes. The kNN-graph 
is then combined with the original network to compensate for sparsity, thereby strengthening the community 
structure of the network. Figure 1 is an illustration of kNN-enhance. Figure 1a shows an attributed network, 
where each node has four attributes: degree, research area, affiliation, and location. This original network is sparse 
and the community structure in it is not clear. If we add a link between nearest neighbors with common node 
attributes for each pair of nodes (Fig. 1b), the now attribute-enhanced network shows distinctive community 
structure. Optionally, a community detection algorithm like K-rank-D can be used to discover community struc-
ture in the newly generated, attribute-enhanced network.

Figure 1. An illustrated example of kNN-enhance.
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Figure 2 illustrates the effectiveness of kNN-enhance from its partition process. Figure 2a is an example of 
the decision graph of an original LFR network40 with μ = 0.9 and n = 1000 using K-rank-D. The original network 
contained 38 communities. One hundred binary attributes with the same cluster structure as the original network 
were attached to each node at a noise ratio of 20%. In the original LFR network, the community structure was 
unclear and the 38 community centers were not sufficiently separated in the right upper corner of the decision 
graph. As a result, it was difficult to determine the number of communities and the community centers as well 
as to detect the community structure in the network. Subsequently, the kNN-graph was added to the original 
network and the decision graph of the kNN-graph enhanced network was created with k = 10 using K-rank-D 
(Fig. 2b). The community structure became clearer and the 38 community centers were separated in the right 
upper part of the decision graph. This made the community structure much easier to determine. In addition, 
the red nodes in Fig. 2b were the top 38 nodes with highest comprehensive value (computed by Equation (4) in 
the Methods section). The nodes in the square were selected by manually drawing a rectangle in the right upper 
section of the graph. Using manually selected nodes as initial centers, all nodes are correctly partitioned when 
compared to the ground truth. Yet, using the top 38 nodes (red nodes) as initial centers, the accuracy (computed 
by Equation (5) in the Methods section) is only 95%. In some cases it is difficult to select the exact K community 
centers in decision graphs (see Fig. 2a as an example). We automatically selected the top K nodes with the highest 
comprehensive value as the centers in the following experiments.

Experiment Results. We generated two groups of LFR40 benchmark networks with binary and numeri-
cal node attributes, respectively. We tested existing state-of-the-art algorithms including probabilistic mod-
els (PCL-DC, PPL-DC, PPSB-DC, CESNA, cohsmix, BAGC, and GBAGC) and hybrid methods (SA-Custer, 
Inc-Cluster, CODICIL, and GLFM) on these synthetic benchmarks. We then evaluated these algorithms on sev-
eral commonly used real networks, including some with or some without associated ground truth. We compared 
two instantiations of our kNN-enhance approach, kNN-nearest and kNN-Kmeans, to these existing algorithms. 
In addition, we compared kNN-nearest and kNN-Kmeans with K-rank-D using only link information, K-means 
using only node attributes, and cluster-dp34 using both node attribute and link information on these networks to 
show whether the proposed approach performed better than existing similar methods and methods using either 
links or attributes alone.

Experimental Results on Synthetic Networks. Largeron et al.41 have provided a generator to generate networks 
with community structure and numerical node attributes. However, the generator cannot be used to generate 
networks with binary attributes. Therefore, we generated our own series of networks based on a commonly used 
LFR benchmark40.

LFR benchmark networks are presented by Lancichinetti et al.40. These mimic real networks by introducing 
associated characteristics, i.e., the heterogeneity in the distribution of node degree and community size. The LFR 
benchmark method uses several parameters to generate a network, including n (the number of vertices), μ (the 
mixing parameter), 〈k〉 (the average degree of vertices), kmax (the maximum degree of vertices), Cmin (the mini-
mum community size), Cmax (the maximum community size), γ and β (exponents of the power-law distribution 
of node degree and community size). The mixing parameter μ is designed to control the clearness of community 
structure in a network. Each node shares a fraction 1 − μ of its links with other nodes in its community and a 
fraction of μ with the other nodes in the network. Thus, the smaller μ is, the clearer the community structure in 
an LFR network. When μ ≤ 0.6, all algorithms are able to classify nearly all vertices into the correct communities. 
Therefore, we only added node attributes to LFR networks when μ = 0.7, 0.8, or 0.9. Following the example of 
previous studies33, 40, we generated a group of LFR benchmarks with 1000 nodes, =k 20, kmax = 50, Cmin = 10, 
Cmax = 50, γ = 2, and β = 1.

We generated two types of node attributes, binary and numerical, for the LFR benchmarks. We did not gener-
ate category attributes for simplicity since these can be formulated as binary attributes. We first attached 
D-dimensional binary attributes to each node and gave nodes in the same community the same d (d < D) attrib-
utes. In this group of experiments, we set D = 100 and d = 10 for testing high dimensional attributes. In order to 

Figure 2. The decision graph of an original LFR network and that of its kNN enhanced network.
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blur the attribute cluster structure, we added 10% to 50% noise by randomly flipping the corresponding portion 
of binary attributes. With the increase of the noise ratio, the clearness of cluster structure decreased. We then used 
the Gaussian cluster generator (http://personalpages.manchester.ac.uk/mbs/Julia.Handl) to generate D dimen-
sions of numerical attributes following multivariate normal distributions such that the cluster structure of attrib-
utes was the same as the community structure of the corresponding network. For a single multivariate cluster, the 
mean was uniformly distributed in the range [−10, 10], the off-diagonal entries of the covariance matrix were 
generated as a random number in the range [−1, 1], and the diagonal entries of the covariance matrix were gen-
erated as the sum of all off-diagonal entries plus a random number in the range ⋅ D[0, 20 ]. We set D = 10, 5, 3, 
and 2 in these groups of experiments. Higher dimensionality led to clearer attribute clusters.

We first compared six probabilistic generative models including PCL-DC, PPL-DC, PPSB-DC, BAGC, 
GBAGC, and CENSA and seven hybrid methods comprising CODICIL, SA-cluster, Inc-cluster, GLFM, 
cluster-dp, kNN-nearest, and kNN-Kmeans on the sample sets with binary attributes, where the noise ratio was 
in the range {10%, 20%, , 50%} at μ = 0.7, 0.8 or 0.9, respectively. Also, we compared all algorithms to K-rank-D 
using only links and K-means using only attributes. We reported the average results and standard deviations on 
10 sample sets for each setting shown in Tables 1, 2 and 3, where columns indicate the noise ratio of LFR bench-
marks, the three numbers in each cell represent the average values and the standard deviations of the three accu-
racy metrics (ACC, NMI, and PWF defined by Equations (5–7) in the Methods section) of the corresponding 
algorithm, and the best performing algorithm is marked in bold. The details of parameter settings of these com-
pared algorithms can be found in the Methods section. We did not include the results for PICS and BNPA in the 
tables because they did not converge to the real number of communities and distorted the meaning of the accu-
racy metrics (ACC, NMI and PWF).

Since only kNN-nearest, kNN-Kmeans, cohsMix, and cluster-dp can been used to cope with networks hav-
ing numerical node attributes, we then compared these four algorithms on LFR benchmarks with numerical 
attributes at different D = 10, 5, 3, or 2 when μ = 0.7, 0.8, or 0.9. Also, we compared these four algorithms with 
K-means using only numerical attributes (the results of K-rank-D using only links can be seen in Tables 1, 2 and 
3). The experimental results are shown in Tables 4, 5 and 6, where columns represent the dimension of numerical 
attribute space (D = 10, 5, 3 or 2), the three numbers in each cell represent the average values and the standard 
deviations of three accuracy metrics (ACC, NMI, and PWF) of the corresponding algorithm over 10 samples, and 
‘−’ indicates that cohsMix was trapped in a saddle point. The best algorithm for each column is marked in bold.

We also tested the algorithms on LFR networks with 5000 nodes, =k 20, kmax = 50, Cmin = 20, Cmax = 100, 
γ = 2, and β = 1. Because there were too many testing samples and the results were similar to the first group net-
works with 1000 nodes, we did not report the results of this group of experiments in the manuscript. Instead, to 
give a glimpse of the time complexity of the compared algorithms, we have reported the time costs of each algo-
rithm on a randomly generated sample containing 40% noise for binary attributes when {n = 1000, Cmin = 10, 
Cmax = 50}, {n = 5000, Cmin = 20, Cmax = 100}, and {n = 10000, Cmin = 20, Cmax = 200}, respectively, at 

γ β= = = =k k20, 50, 2, 1max  and μ = 0.8 in Table 7. All algorithms were run only once, each number rep-
resents the running time of the corresponding algorithm with time unit ‘second’, ‘—’ indicates that the time cost 
of the corresponding algorithm was beyond 48 hours, and ‘*’ indicates that the algorithm ran out of memory. 
These experiments were performed on a laptop with an Intel 2.50 GHz processor and 4 GB of main memory run-
ning Windows 7.0. CESNA was implemented in C++, CODICIL was implemented in Python and C/C++, 
cohsMix was implemented in R, and the remaining algorithms were implemented in MATLAB.

From the data in Tables 1–7, we have concluded that adding node attributes promotes the performance of 
community detection in most cases. Taking the results of kNN-Kmeans as an example, most of the results were 
better than those of the basic K-rank-D algorithm on links and K-means on attributes. As Tables 1–3 show, in 
most cases, kNN-nearest and kNN-Kmeans performed best among the 13 tested algorithms including proba-
bilistic generative models and hybrid methods, and these outperformed the other hybrid methods in all cases. 
Although kNN-nearest performed slightly worse than kNN-Kmeans, it was more efficient (see Table 7) since each 
node received its community label from the nearest node with higher centrality. According to our experiments, 
kNN-Kmeans converged quickly since community centers were carefully selected. In some cases, the probabilistic 
generative model PCL-DC displayed the best performance but ran too slowly to be used for processing large net-
works in real applications (see Table 7). CESNA and CODICIL also showed good performance on this group of 
experiments. Among the probabilistic methods, CENSA was the fastest algorithm. However, it was much slower 
than the majority of the hybrid heuristic methods. CODICIL ran quickly due to the fast graph partition program 
Metis, which was used to cut the networks into communities. GBAGC performed well because it used Metis on 
links to get the initial partition. Moreover, as Tables 4–6 show, both the kNN-nearest and the kNN-Kmeans algo-
rithms allowed us to discover communities effectively in LFR networks with numerical attributes. In summary, 
this empirical study on LFR benchmarks proves the flexibility, effectiveness, and efficiency of the kNN-enhance 
approach.

Experimental Results on Real Networks. In addition to our experiments using synthetic networks, we tested the 
algorithms on two groups of real networks. The nodes in the first group were associated with binary/categorical 
attributes, while those in the second group possessed numerical attributes. The first group of data sets included 
Cora42, Citeseer42, and DBLP10K18. Sinanet (https://github.com/smileyan448/Sinanet) and PubMed (http://linqs.
umiacs.umd.edu/projects//projects/lbc/) belonged to the second group. Detailed information on these data sets 
is described below.

The Cora data set consisted of machine learning papers. These papers were classified as belonging to one of 
the following seven classes: CBR (case based reasoning), GA (genetic algorithms), NN (neural networks), PM 
(probabilistic methods), RL (reinforcement learning), or RLT (rule learning theory). The papers were selected in 

http://personalpages.manchester.ac.uk/mbs/Julia.Handl
https://github.com/smileyan448/Sinanet
http://linqs.umiacs.umd.edu/projects//projects/lbc/
http://linqs.umiacs.umd.edu/projects//projects/lbc/
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such a way that in the final corpus every paper cited or was cited by at least one other paper. Assuming each node 
represented a paper, there were 2,708 nodes and 5,429 citations. After stemming and removing stop-words and 
words with document frequency less than 10, the corpus remained a vocabulary of size 1,433 unique words. Each 
paper was described by a 1433-dimension 0/1 vector indicating the absence/presence of the corresponding words 
from the dictionary of these unique words.

The Citeseer data set was also a citation network in the field of machine learning. These papers were classified 
into one of the following six classes: Agents, AI (artificial intelligence), DB (database), IR (information retrieval), 
ML (machine learning), and HCI (human-computer interaction). The papers were selected in the same way as the 
Cora dataset. There were 3,312 papers in the corpus and 4,732 citations between papers. A paper was described 
by a 0/1 word vector indicating the absence/presence of the corresponding words from the dictionary of the 3,703 
unique words.

Algorithms 10% 20% 30% 40% 50%

K-rank-D

0.7124 ± 0.0533 0.7124 ± 0.0533 0.7124 ± 0.0533 0.7124 ± 0.0533 0.7124 ± 0.0533

0.7718 ± 0.0523 0.7718 ± 0.0523 0.7718 ± 0.0523 0.7718 ± 0.0523 0.7718 ± 0.0523

0.5880 ± 0.0653 0.5880 ± 0.0653 0.5880 ± 0.0653 0.5880 ± 0.0653 0.5880 ± 0.0653

K-means

0.9452 ± 0.0166 0.9301 ± 0.0197 0.9355 ± 0.0130 0.8354 ± 0.0271 0.4567 ± 0.0530

0.9856 ± 0.0043 0.9801 ± 0.0041 0.9667 ± 0.0053 0.8505 ± 0.0192 0.5348 ± 0.0297

0.9560 ± 0.0149 0.9427 ± 0.0137 0.9343 ± 0.0134 0.7747 ± 0.0345 0.3298 ± 0.0530

PCL-DC

0.9031 ± 0.0324 0.8680 ± 0.0327 0.8621 ± 0.0143 0.8755 ± 0.0376 0.8647 ± 0.5480

0.9752 ± 0.0075 0.9678 ± 0.0070 0.9635 ± 0.0038 0.9516 ± 0.0120 0.9218 ± 0.5831

0.9191 ± 0.0306 0.8923 ± 0.0225 0.8836 ± 0.0163 0.8791 ± 0.0358 0.8413 ± 0.5331

PPL-DC

0.9496 ± 0.0181 0.9192 ± 0.0180 0.8991 ± 0.0224 0.8562 ± 0.0234 0.8220 ± 0.0263

0.9848 ± 0.0040 0.9611 ± 0.0104 0.9416 ± 0.0091 0.9013 ± 0.0120 0.8576 ± 0.0142

0.9585 ± 0.0134 0.9147 ± 0.0238 0.8822 ± 0.0226 0.8200 ± 0.0223 0.7540 ± 0.0283

PPSB-DC

0.7870 ± 0.0407 0.7700 ± 0.0177 0.7139 ± 0.0225 0.6857 ± 0.0253 0.4499 ± 0.2316

0.9006 ± 0.0199 0.8713 ± 0.0185 0.8246 ± 0.0201 0.7941 ± 0.0246 0.5556 ± 0.2304

0.7811 ± 0.0443 0.7443 ± 0.0272 0.6687 ± 0.0295 0.6304 ± 0.0417 0.3800 ± 0.2177

BAGC

0.7931 ± 0.0332 0.7368 ± 0.0449 0.6275 ± 0.0440 0.4789 ± 0.0396 0.3430 ± 0.0335

0.9239 ± 0.0169 0.8810 ± 0.0291 0.7822 ± 0.0385 0.6228 ± 0.0371 0.4705 ± 0.0421

0.6740 ± 0.0891 0.5196 ± 0.0927 0.3110 ± 0.0594 0.1627 ± 0.0268 0.0977 ± 0.0108 9

GBAGC

0.9353 ± 0.0420 0.9127 ± 0.0499 0.8943 ± 0.0653 0.8659 ± 0.1068 0.7937 ± 0.1663

0.9812 ± 0.0130 0.9736 ± 0.0164 0.9588 ± 0.0331 0.9364 ± 0.0686 0.8707 ± 0.1308

0.9345 ± 0.0515 0.9201 ± 0.0484 0.8899 ± 0.0784 0.8320 ± 0.1731 0.7231 ± 0.2427

CESNA

0.9152 ± 0.0232 0.9104 ± 0.0329 0.8988 ± 0.0286 0.8628 ± 0.0265 0.8120 ± 0.0341

0.9723 ± 0.0081 0.9695 ± 0.0119 0.9595 ± 0.0079 0.9285 ± 0.0129 0.8858 ± 0.0227

0.9203 ± 0.0248 0.9180 ± 0.0335 0.8955 ± 0.0311 0.8363 ± 0.0312 0.7624 ± 0.0463

CODICIL

0.6883 ± 0.0770 0.6475 ± 0.1326 0.6402 ± 0.1603 0.5420 ± 0.1547 0.3443 ± 0.0837

0.8445 ± 0.0530 0.7985 ± 0.1015 0.7567 ± 0.1400 0.6339 ± 0.1332 0.4588 ± 0.0683

0.6193 ± 0.1027 0.5663 ± 0.1596 0.5408 ± 0.1858 0.3988 ± 0.1646 0.1873 ± 0.0632

SA-cluster

0.3789 ± 0.0338 0.3646 ± 0.0344 0.3519 ± 0.0306 0.3340 ± 0.0303 0.3317 ± 0.0312

0.5072 ± 0.0332 0.4897 ± 0.0334 0.4691 ± 0.0328 0.4457 ± 0.0373 0.4391 ± 0.0293

0.2595 ± 0.0252 0.2374 ± 0.0245 0.2149 ± 0.0234 0.1880 ± 0.0236 0.1837 ± 0.0211

Inc-cluster

0.3793 ± 0.0339 0.3662 ± 0.0334 0.3544 ± 0.0310 0.3390 ± 0.0278 0.3324 ± 0.0322

0.5085 ± 0.0335 0.4930 ± 0.0339 0.4735 ± 0.0333 0.4541 ± 0.0364 0.4442 ± 0.0313

0.2608 ± 0.0256 0.2411 ± 0.0246 0.2196 ± 0.0241 0.1972 ± 0.0223 0.1895 ± 0.0217

GLFM

0.8608 ± 0.0643 0.8283 ± 0.0494 0.7673 ± 0.0494 0.6636 ± 0.0186 0.3997 ± 0.0357

0.9617 ± 0.0203 0.9454 ± 0.0199 0.9025 ± 0.0227 0.7709 ± 0.0126 0.5310 ± 0.0270

0.8337 ± 0.1101 0.7541 ± 0.1174 0.6581 ± 0.0981 0.4737 ± 0.0541 0.2002 ± 0.0280

cluster-dp

0.9716 ± 0.0253 0.8265 ± 0.0494 0.6809 ± 0.0433 0.5294 ± 0.0536 0.4464 ± 0.0393

0.9920 ± 0.0069 0.9423 ± 0.0161 0.8713 ± 0.0202 0.7422 ± 0.0464 0.6757 ± 0.0384

0.9667 ± 0.0292 0.7945 ± 0.0575 0.6289 ± 0.0570 0.4362 ± 0.0784 0.3385 ± 0.0608

kNN-nearest

0.9977 ± 0.0046 0.9789 ± 0.0147 0.9591 ± 0.0160 0.8818 ± 0.0291 0.7358 ± 0.0480

0.9991 ± 0.0018 0.9930 ± 0.0052 0.9834 ± 0.0061 0.9412 ± 0.0113 0.8331 ± 0.0241

0.9964 ± 0.0073 0.9773 ± 0.0164 0.9550 ± 0.0184 0.8583 ± 0.0343 0.6351 ± 0.0551

kNN-Kmeans

0.9946 ± 0.0108 0.9799 ± 0.0137 0.9486 ± 0.0240 0.9046 ± 0.0237 0.8261 ± 0.0454

0.9988 ± 0.0024 0.9937 ± 0.0042 0.9820 ± 0.0080 0.9505 ± 0.0109 0.8756 ± 0.0271

0.9962 ± 0.0076 0.9829 ± 0.0107 0.9563 ± 0.0206 0.9007 ± 0.0262 0.7764 ± 0.0521

Table 1. Results on LFR networks with binary attributes, μ = 0.7.
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The DBLP data set was a co-author network extracted from DBLP Bibliography data. This network contained 
10,000 authors and their coauthor relationships. These authors were distributed across four research fields includ-
ing databases, data mining, information retrieval, and artificial intelligence. Each author was associated with two 
relevant attributes; prolific and primary topic. The attribute prolific had three possible values: authors with ≥20 
publications were labeled as highly prolific, authors with ≥10 and <20 papers were labeled as prolific, and authors 
with <10 papers were labeled as low prolific. The attribute primary topic had 99 values. Each author was assigned 
a primary topic out of 99 extracted by a topic model from a collection of paper titles of the authors. For this data 
set, we did not know the exact number of communities or to which community a node belonged.

The Sinanet data set was a microblog user relationship network that we extracted from the sina-microblog 
website (http://www.weibo.com). We first selected 100 VIP sina-microblog users distributed across 10 major 
forums including finance and economics, literature and arts, fashion and vogue, current events and politics, 

Algorithms 10% 20% 30% 40% 50%

K-rank-D

0.2646 ± 0.0318 0.2646 ± 0.0318 0.2646 ± 0.0318 0.2646 ± 0.0318 0.2646 ± 0.0318

0.3697 ± 0.0381 0.3697 ± 0.0381 0.3697 ± 0.0381 0.3697 ± 0.0381 0.3697 ± 0.0381

0.1091 ± 0.0154 0.1091 ± 0.0154 0.1091 ± 0.0154 0.1091 ± 0.0154 0.1091 ± 0.0154

K-means

0.9378 ± 0.0193 0.9349 ± 0.0142 0.9362 ± 0.0126 0.8182 ± 0.0303 0.4366 ± 0.0534

0.9836 ± 0.0044 0.9824 ± 0.0044 0.9644 ± 0.0064 0.8434 ± 0.0168 0.5215 ± 0.0261

0.9494 ± 0.0148 0.9542 ± 0.0105 0.9351 ± 0.0122 0.7546 ± 0.0297 0.3060 ± 0.0540

PCL-DC

0.9074 ± 0.0259 0.9095 ± 0.0203 0.8909 ± 0.0384 0.8143 ± 0.0384 0.6320 ± 0.0398

0.9770 ± 0.0068 0.9732 ± 0.0061 0.9481 ± 0.0149 0.8596 ± 0.0255 0.6793 ± 0.0285

0.9260 ± 0.0262 0.9204 ± 0.0177 0.8803 ± 0.0386 0.7418 ± 0.0483 0.4636 ± 0.0457

PPL-DC

0.8089 ± 0.0353 0.6540 ± 0.0433 0.5250 ± 0.0363 0.4249 ± 0.0749 0.3206 ± 0.0158

0.8719 ± 0.0194 0.7271 ± 0.0293 0.6272 ± 0.0314 0.4964 ± 0.1012 0.4437 ± 0.0221

0.7370 ± 0.0309 0.4931 ± 0.0469 0.3531 ± 0.0356 0.2955 ± 0.0859 0.1608 ± 0.0147

PPSB-DC

0.5843 ± 0.0550 0.4407 ± 0.0360 0.3005 ± 0.1304 0.1653 ± 0.0879 0.1232 ± 0.0392

0.7062 ± 0.0392 0.5783 ± 0.0272 0.4239 ± 0.1297 0.2777 ± 0.0971 0.2379 ± 0.0450

0.4527 ± 0.0575 0.2979 ± 0.0324 0.1777 ± 0.0951 0.0904 ± 0.0535 0.0609 ± 0.0211

BAGC

0.7485 ± 0.0342 0.5887 ± 0.0489 0.3333 ± 0.0352 0.1744 ± 0.0153 0.1094 ± 0.0155

0.9106 ± 0.0204 0.7500 ± 0.0400 0.4582 ± 0.0362 0.2539 ± 0.0258 0.1450 ± 0.0270

0.6546 ± 0.0862 0.2984 ± 0.0611 0.0936 ± 0.0126 0.0625 ± 0.0052 0.0573 ± 0.0051

GBAGC

0.8662 ± 0.0589 0.7644 ± 0.0409 0.4509 ± 0.0490 0.2802 ± 0.0315 0.2099 ± 0.0360

0.9604 ± 0.0191 0.8911 ± 0.0234 0.6021 ± 0.0447 0.4252 ± 0.0350 0.3343 ± 0.0460

0.8748 ± 0.0612 0.7403 ± 0.0412 0.3071 ± 0.0534 0.1332 ± 0.0232 0.0798 ± 0.0157

CESNA

0.8785 ± 0.0408 0.7830 ± 0.2304 0.7038 ± 0.0438 0.4334 ± 0.0493 0.3035 ± 0.0329

0.9539 ± 0.0162 0.8558 ± 0.2170 0.7914 ± 0.0373 0.5412 ± 0.0440 0.4245 ± 0.0369

0.8796 ± 0.0443 0.7683 ± 0.2474 0.6159 ± 0.0590 0.2589 ± 0.0417 0.1397 ± 0.0219

CODICIL

0.6971 ± 0.0924 0.6951 ± 0.1059 0.6303 ± 0.1287 0.4182 ± 0.0869 0.2069 ± 0.0272

0.8434 ± 0.0739 0.8298 ± 0.0941 0.7337 ± 0.1199 0.5267 ± 0.0749 0.3422 ± 0.0290

0.6293 ± 0.1143 0.6258 ± 0.1321 0.5165 ± 0.1493 0.2626 ± 0.0780 0.0842 ± 0.0166

SA-cluster

0.3045 ± 0.0235 0.2764 ± 0.0283 0.2575 ± 0.0243 0.2406 ± 0.0247 0.2272 ± 0.0189

0.4127 ± 0.0335 0.3836 ± 0.0371 0.3590 ± 0.0331 0.3399 ± 0.0357 0.3249 ± 0.0320

0.1500 ± 0.0146 0.1244 ± 0.0165 0.1074 ± 0.0111 0.0945 ± 0.0122 0.0838 ± 0.0082

Inc-cluster

0.3053 ± 0.0252 0.2782 ± 0.0278 0.2600 ± 0.0247 0.2444 ± 0.0258 0.2300 ± 0.0189

0.4144 ± 0.0340 0.3875 ± 0.0382 0.3648 ± 0.0344 0.3445 ± 0.0358 0.3298 ± 0.0316

0.1517 ± 0.0155 0.1273 ± 0.0173 0.1108 ± 0.0124 0.0974 ± 0.0132 0.0864 ± 0.0087

GLFM

0.8322 ± 0.0763 0.7860 ± 0.0900 0.7081 ± 0.0608 0.4477 ± 0.0392 0.2396 ± 0.0175

0.9478 ± 0.0324 0.9247 ± 0.0390 0.8282 ± 0.0318 0.5733 ± 0.0274 0.3608 ± 0.0193

0.7625 ± 0.1700 0.6850 ± 0.1834 0.5281 ± 0.1208 0.2130 ± 0.0273 0.0933 ± 0.0091

cluster-dp

0.9693 ± 0.0185 0.7770 ± 0.0491 0.5641 ± 0.0250 0.3430 ± 0.0303 0.2159 ± 0.0171

0.9908 ± 0.0057 0.9149 ± 0.0191 0.7523 ± 0.0154 0.5187 ± 0.0400 0.3589 ± 0.0312

0.9656 ± 0.0225 0.7307 ± 0.0689 0.4488 ± 0.0299 0.2134 ± 0.0308 0.1019 ± 0.0119

kNN-nearest

0.9961 ± 0.0060 0.9742 ± 0.0168 0.9045 ± 0.0259 0.6354 ± 0.0325 0.2877 ± 0.0301

0.9987 ± 0.0021 0.9915 ± 0.0045 0.9601 ± 0.0099 0.7474 ± 0.0222 0.4067 ± 0.0315

0.9956 ± 0.0072 0.9709 ± 0.0150 0.8929 ± 0.0292 0.5065 ± 0.0442 0.1341 ± 0.0202

kNN-Kmeans

0.9951 ± 0.0076 0.9811 ± 0.0156 0.9071 ± 0.0414 0.7353 ± 0.0406 0.4044 ± 0.0223

0.9985 ± 0.0023 0.9946 ± 0.0051 0.9640 ± 0.0136 0.8205 ± 0.0205 0.5037 ± 0.0206

0.9960 ± 0.0065 0.9851 ± 0.0133 0.9113 ± 0.0398 0.6704 ± 0.0420 0.2469 ± 0.0277

Table 2. Results on LFR networks with binary attributes, μ = 0.8.

http://www.weibo.com
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sports, science and technology, entertainment, parenting and education, public welfare, and normal life. Starting 
from these 100 VIP sina-microblog users, we extracted the followees of these users and their published 
micro-blogs. Using a depth-first search strategy, we extracted three-layers of user relationships and obtained 
8,452 users, 147,653 user relationships, and 5.5 million micro-blogs in total. We merged all microblogs that a user 
published to characterize that user’s interests43. After removing silent users (those who post less than 5000 words), 
we were left with 3,490 users and 30,282 relationships. If we used words’ frequency of the merged blogs of a user 
to describe the user’s interest, the dimension of the feature space would have been too high to be successfully pro-
cessed. We used users’ topic distribution in the 10 forums, which was obtained by the LDA topic model (http://
gibbslda.sourceforge.net/), to describe users’ interests. Thus, besides the followee relationships between pairs of 
users, we have 10 dimensional numerical attributes to describe the interests of each user. This data set is available 
at https://github.com/smileyan448/Sinanet.

Algorithms 10% 20% 30% 40% 50%

K-rank-D

0.1212 ± 0.0060 0.1212 ± 0.0060 0.1212 ± 0.0060 0.1212 ± 0.0060 0.1212 ± 0.0060

0.2405 ± 0.0257 0.2405 ± 0.0257 0.2405 ± 0.0257 0.2405 ± 0.0257 0.2405 ± 0.0257

0.0381 ± 0.0017 0.0381 ± 0.0017 0.0381 ± 0.0017 0.0381 ± 0.0017 0.0381 ± 0.0017

K-means

0.9396 ± 0.0176 0.9327 ± 0.0232 0.9409 ± 0.0106 0.8293 ± 0.0315 0.4426 ± 0.0549

0.9831 ± 0.0056 0.9806 ± 0.0077 0.9682 ± 0.0058 0.8534 ± 0.0215 0.5233 ± 0.0265

0.9491 ± 0.0186 0.9467 ± 0.0214 0.9404 ± 0.0108 0.7718 ± 0.0381 0.3115 ± 0.0504

PCL-DC

0.8708 ± 0.0232 0.6201 ± 0.0511 0.3318 ± 0.0340 0.2191 ± 0.0191 0.1655 ± 0.0072

0.9185 ± 0.0138 0.7027 ± 0.0459 0.4691 ± 0.0363 0.3598 ± 0.0261 0.3033 ± 0.0168

0.7961 ± 0.0373 0.4407 ± 0.0596 0.1766 ± 0.0217 0.0956 ± 0.0081 0.0632 ± 0.0045

PPL-DC

0.2906 ± 0.0180 0.2158 ± 0.0136 0.1827 ± 0.0068 0.1577 ± 0.0136 0.1440 ± 0.0045

0.4805 ± 0.0247 0.3880 ± 0.0226 0.3417 ± 0.0207 0.3043 ± 0.0298 0.2829 ± 0.0245

0.1588 ± 0.0125 0.0995 ± 0.0076 0.0765 ± 0.0039 0.0590 ± 0.0044 0.0508 ± 0.0016

PPSB-DC

0.1513 ± 0.0282 0.1469 ± 0.0289 0.1369 ± 0.0212 0.1175 ± 0.0087 0.1091 ± 0.0098

0.2802 ± 0.0579 0.2714 ± 0.0529 0.2666 ± 0.0427 0.2291 ± 0.0153 0.2183 ± 0.0228

0.0711 ± 0.0171 0.0712 ± 0.0150 0.0641 ± 0.0050 0.0582 ± 0.0038 0.0532 ± 0.0057

BAGC

0.6345 ± 0.0417 0.2864 ± 0.0322 0.1266 ± 0.0216 0.0815 ± 0.0099 0.0691 ± 0.0068

0.8176 ± 0.0207 0.4216 ± 0.0369 0.1774 ± 0.0296 0.0858 ± 0.0303 0.0585 ± 0.0166

0.4722 ± 0.0741 0.0965 ± 0.0131 0.0591 ± 0.0053 0.0566 ± 0.0041 0.0563 ± 0.0042

GBAGC

0.7391 ± 0.0410 0.3974 ± 0.0511 0.1908 ± 0.0129 0.1409 ± 0.0079 0.1223 ± 0.0130

0.8804 ± 0.0158 0.5521 ± 0.0476 0.3402 ± 0.0179 0.2683 ± 0.0287 0.2369 ± 0.0380

0.7240 ± 0.0417 0.2932 ± 0.0561 0.0904 ± 0.0094 0.0582 ± 0.0054 0.0497 ± 0.0043

CESNA

0.7839 ± 0.0349 0.5728 ± 0.0482 0.1783 ± 0.0096 0.1384 ± 0.0051 0.1263 ± 0.0045

0.8661 ± 0.0247 0.6736 ± 0.0378 0.3121 ± 0.0243 0.2711 ± 0.0226 0.2547 ± 0.0224

0.7668 ± 0.0396 0.4844 ± 0.0582 0.0683 ± 0.0052 0.0465 ± 0.0029 0.0406 ± 0.0026

CODICIL

0.6681 ± 0.0914 0.6445 ± 0.1196 0.5691 ± 0.1049 0.3121 ± 0.0658 0.1542 ± 0.0175

0.8123 ± 0.0860 0.7698 ± 0.1164 0.6727 ± 0.0905 0.4373 ± 0.0456 0.2902 ± 0.0148

0.5917 ± 0.1295 0.5532 ± 0.1571 0.4447 ± 0.1179 0.1753 ± 0.0517 0.0559 ± 0.0110

SA-cluster

0.1818 ± 0.0159 0.1597 ± 0.0146 0.1427 ± 0.0081 0.1338 ± 0.0081 0.1297 ± 0.0073

0.2932 ± 0.0257 0.2707 ± 0.0292 0.2557 ± 0.0248 0.2464 ± 0.0241 0.2439 ± 0.0218

0.0624 ± 0.0045 0.0517 ± 0.0035 0.0457 ± 0.0019 0.0431 ± 0.0030 0.0423 ± 0.0029

Inc-cluster

0.1842 ± 0.0163 0.1607 ± 0.0144 0.1447 ± 0.0077 0.1353 ± 0.0085 0.1303 ± 0.0072

0.2961 ± 0.0265 0.2736 ± 0.0293 0.2583 ± 0.0252 0.2486 ± 0.0246 0.2446 ± 0.0221

0.0637 ± 0.0049 0.0521 ± 0.0039 0.0459 ± 0.0019 0.0427 ± 0.0028 0.0413 ± 0.0027

GLFM

0.8084 ± 0.0488 0.5866 ± 0.0234 0.3446 ± 0.0417 0.1898 ± 0.0197 0.1398 ± 0.0065

0.9087 ± 0.0239 0.7160 ± 0.0147 0.4712 ± 0.0358 0.3060 ± 0.0281 0.2405 ± 0.0253

0.7062 ± 0.1052 0.2989 ± 0.0595 0.1406 ± 0.0273 0.0732 ± 0.0081 0.0546 ± 0.0046

cluster-dp

0.9485 ± 0.0228 0.7380 ± 0.0422 0.4285 ± 0.0455 0.2391 ± 0.0161 0.1438 ± 0.0084

0.9846 ± 0.0054 0.8854 ± 0.0200 0.6114 ± 0.0256 0.3720 ± 0.0203 0.2533 ± 0.0244

0.9369 ± 0.0251 0.6882 ± 0.0540 0.3054 ± 0.0463 0.1207 ± 0.0105 0.0588 ± 0.0033

kNN-nearest

0.9861 ± 0.0088 0.9435 ± 0.0381 0.7617 ± 0.0411 0.2924 ± 0.0302 0.1280 ± 0.0109

0.9952 ± 0.0025 0.9809 ± 0.0118 0.8650 ± 0.0164 0.4173 ± 0.0265 0.2024 ± 0.0204

0.9839 ± 0.0108 0.9382 ± 0.0413 0.6872 ± 0.0494 0.1466 ± 0.0198 0.0567 ± 0.0040

kNN-Kmeans

0.9828 ± 0.0130 0.9566 ± 0.0263 0.8397 ± 0.0392 0.4549 ± 0.0452 0.1740 ± 0.0127

0.9954 ± 0.0034 0.9867 ± 0.0067 0.9126 ± 0.0180 0.5637 ± 0.0329 0.2840 ± 0.0212

0.9836 ± 0.0138 0.9619 ± 0.0223 0.8071 ± 0.0515 0.3218 ± 0.0459 0.0664 ± 0.0065

Table 3. Results on LFR networks with binary attributes, μ = 0.9.

http://gibbslda.sourceforge.net/
http://gibbslda.sourceforge.net/
https://github.com/smileyan448/Sinanet
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Algorithms D = 10 D = 5 D = 3 D = 2

K-means

0.8159 ± 0.0438 0.7278 ± 0.0259 0.7251 ± 0.0237 0.7267 ± 0.0359

0.8827 ± 0.0224 0.8442 ± 0.0129 0.8450 ± 0.0125 0.8552 ± 0.0191

0.7704 ± 0.0502 0.6774 ± 0.0348 0.6858 ± 0.0331 0.6970 ± 0.0472

cohsMix

0.6838 ± 0.0644 0.6397 ± 0.0573 — —

0.8057 ± 0.0328 0.7972 ± 0.0384 — —

0.6295 ± 0.0689 0.6023 ± 0.0628 — —

cluster-dp

0.6929 ± 0.0511 0.6499 ± 0.0410 0.5504 ± 0.0613 0.5584 ± 0.0438

0.8754 ± 0.0238 0.8655 ± 0.0234 0.8244 ± 0.0253 0.8228 ± 0.0220

0.6363 ± 0.0583 0.6239 ± 0.0577 0.5262 ± 0.0515 0.4826 ± 0.0358

kNN-nearest

0.9275 ± 0.0184 0.8684 ± 0.0322 0.7507 ± 0.0399 0.5534 ± 0.0291

0.9642 ± 0.0082 0.9303 ± 0.0146 0.8534 ± 0.0228 0.7329 ± 0.0209

0.9158 ± 0.0228 0.8473 ± 0.0367 0.6978 ± 0.0499 0.4842 ± 0.0321

kNN-Kmeans

0.9266 ± 0.0134 0.8788 ± 0.0277 0.7662 ± 0.0420 0.5645 ± 0.0321

0.9661 ± 0.0063 0.9325 ± 0.0131 0.8641 ± 0.0193 0.7412 ± 0.0198

0.9215 ± 0.0202 0.8587 ± 0.0320 0.7259 ± 0.0466 0.4968 ± 0.0383

Table 4. Results on LFR networks with numerical attributes, μ = 0.7.

Algorithms D = 10 D = 5 D = 3 D = 2

K-means

0.7974 ± 0.0354 0.7166 ± 0.0332 0.7055 ± 0.0298 0.7339 ± 0.0192

0.8800 ± 0.0213 0.8380 ± 0.0118 0.8378 ± 0.0119 0.8588 ± 0.0115

0.7493 ± 0.0435 0.6598 ± 0.0327 0.6555 ± 0.0277 0.6969 ± 0.0270

cohsMix

0.6786 ± 0.0309 0.6425 ± 0.0462 — —

0.8063 ± 0.0224 0.8027 ± 0.0194 — —

0.6232 ± 0.0418 0.5940 ± 0.0345 — —

cluster-dp

0.6067 ± 0.0485 0.5751 ± 0.0539 0.4824 ± 0.0391 0.4329 ± 0.0375

0.8162 ± 0.0271 0.8019 ± 0.0236 0.7740 ± 0.0172 0.7508 ± 0.0198

0.5409 ± 0.0500 0.5159 ± 0.0557 0.4469 ± 0.0434 0.3843 ± 0.0376

kNN-nearest

0.8764 ± 0.0322 0.7956 ± 0.0258 0.6539 ± 0.0443 0.5013 ± 0.0339

0.9322 ± 0.0141 0.8885 ± 0.0105 0.8140 ± 0.0170 0.7093 ± 0.0204

0.8425 ± 0.0356 0.7498 ± 0.0290 0.5898 ± 0.0478 0.4256 ± 0.0366

kNN-Kmeans

0.8729 ± 0.0345 0.8054 ± 0.0174 0.6602 ± 0.0458 0.5016 ± 0.0243

0.9360 ± 0.0141 0.8934 ± 0.0080 0.8220 ± 0.0179 0.7188 ± 0.0163

0.8610 ± 0.0329 0.7730 ± 0.0256 0.6023 ± 0.0524 0.4347 ± 0.0328

Table 5. Results on LFR networks with numerical attributes, μ = 0.8.

Algorithms D = 10 D = 5 D = 3 D = 2

K-means

0.7917 ± 0.0281 0.7258 ± 0.0486 0.7074 ± 0.0256 0.7367 ± 0.0228

0.8729 ± 0.0200 0.8464 ± 0.0186 0.8414 ± 0.0146 0.8571 ± 0.0110

0.7458 ± 0.0382 0.6761 ± 0.0508 0.6667 ± 0.0343 0.6965 ± 0.0204

cohsMix

0.6775 ± 0.0501 0.6626 ± 0.0989 — —

0.8016 ± 0.0258 0.7574 ± 0.0925 — —

0.6140 ± 0.0525 0.6313 ± 0.0920 — —

cluster-dp

0.5696 ± 0.0417 0.5260 ± 0.0343 0.4378 ± 0.0392 0.3731 ± 0.0527

0.7658 ± 0.0210 0.7584 ± 0.0210 0.7326 ± 0.0197 0.6944 ± 0.0402

0.4928 ± 0.0434 0.4646 ± 0.0386 0.3943 ± 0.0405 0.3198 ± 0.0552

kNN-nearest

0.7434 ± 0.0299 0.6651 ± 0.0435 0.5771 ± 0.0321 0.3800 ± 0.0388

0.8575 ± 0.0167 0.8168 ± 0.0247 0.7628 ± 0.0247 0.6208 ± 0.0316

0.6655 ± 0.0483 0.5924 ± 0.0514 0.4911 ± 0.0413 0.2853 ± 0.0398

kNN-Kmeans

0.7780 ± 0.0393 0.7072 ± 0.0453 0.6266 ± 0.0441 0.4256 ± 0.0296

0.8822 ± 0.0140 0.8432 ± 0.0217 0.7940 ± 0.0247 0.6670 ± 0.0301

0.7396 ± 0.0373 0.6576 ± 0.0540 0.5605 ± 0.0461 0.3506 ± 0.0343

Table 6. Results on LFR networks with numerical attributes, μ = 0.9.
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The Diabetes data set consisted of 19,717 scientific publications from the PubMed database pertaining to dia-
betes classified into one of three classes: Diabetes Mellitus Experimental, Diabetes Mellitus Type 1, and Diabetes 
Mellitus Type 2. These publications formed a citation network with 44,338 edges representing the citation rela-
tionships of pairs of publications. Further, each publication in the dataset was described by a TF/IDF weighted 
word vector from a dictionary that consisted of 500 unique words.

The experimental results of the methods on Cora and Citeseer are shown in Table 8, where columns repre-
sent the data sets used in the evaluation, the cells of each row represent the values of ACC, NMI, and PWF for 
the corresponding algorithm, and the algorithm with the best performance is marked in bold in each of the two 
groups (probabilistic methods and hybrid methods). Because the DBLP network had two categorical attributes, 
we tested SA-cluster on the two category attributes with 3 values and 99 values, respectively. We named the result 
SA-cluster-cate. We also tested SA-cluster on DBLP when we viewed these 102 values as binary and named the 
result SA-cluster-bina (the same was done for Inc-cluster). Since no ground truth was available on DBLP, we 
reported Modularity and Entropy (defined by Equations (8–9) in the Methods section) of all algorithms in Figs 3 
and 4 at different K (K is the number of communities). In Figs 3 and 4, we do not show the results of PCL-DC, 
PPL-DC, and PPSB-DC since either the time or space complexity of these algorithms was too high to handle large 
networks like DBLP10k. The results of the methods for processing Sinanet and PubMed networks with numerical 
attributes are shown in Table 9, where ‘*’ indicates that the algorithm ran out of memory on the corresponding 
data set. For the probabilistic methods PCL-DC, PPL-DC, PPSB-DC on Cora and Citeseer, and cohsMix on 
Sinanet, we ran the algorithms 10 times and reported the result with the largest likelihood. For K-means on attrib-
utes alone, we reported the best results of these networks over 10 runs. The details of the parameter settings for 
the compared algorithms in this group of experiments can be found in the Methods section.

We drew the following conclusions using the information in Tables 8 and 9 and Figs 3 and 4: (1) According 
to Table 8, probabilistic methods PCL-DC, PPL-DC, and PPSB-DC showed the best performance on Cora and 
Citeseer data sets. However, the time cost of these methods was too high and they would not be appropriate for 
real applications. In contrast, the kNN-enhance approach achieved high accuracy in comparison to other hybrid 
methods and was much faster than probabilistic methods PCL-DC, PPL-DC, and PPSB-DC (see Table 7). (2) By 
Figs 3 and 4, the Entropy of kNN-Kmeans on DBLP was the lowest, especially when the number of communities K 
was larger than 200. The Modularity of kNN-enhance indicates that the partitioned network maintained commu-
nity structure. Therefore, kNN-enhance was able to identify a clear community structure (large Modularity) with 
a high level of attribute homogeneity (low Entropy) in the network. (3) The kNN-enhance approach was capable 

Probabilistic 
models

n Hybrid 
methods

n

1000 5000 10000 1000 5000 10000

PCL-DC 716.21 40,718.24 126,607.01 SA-cluster 3.05 67.47 1127.13

PPL-DC 2131.74 103,140.25 — Inc-cluster 1.56 33.57 645.49

PPSB-DC 8360.91 * * CODICIL 7.65 179.74 726.96

CESNA 837.05 5523.21 10,798.43 GLFM 11.68 159.89 588.19

BAGC 0.63 15.72 117.95 cluster-dp 2.07 21.76 351.16

GBAGC 0.51 5.40 21.98
kNN-nearest 2.07 22.40 365.42

kNN-Kmeans 2.13 33.23 401.29

Table 7. Time cost of the compared algorithms (in seconds).

Algorithms

Cora Citeseer

ACC NMI PWF ACC NMI PWF

K-means 0.4136 0.2334 0.3068 0.5344 0.2712 0.3727

K-rank-D 0.4668 0.3266 0.3442 0.3469 0.1757 0.2983

PCL-DC 0.5539 0.4005 0.4330 0.4043 0.1703 0.2992

PPL-DC 0.6270 0.4781 0.5233 0.6380 0.4420 0.5278

PPSB-DC 0.7160 0.5264 0.5878 0.5927 0.3402 0.4522

BGAC 0.2895 0.1524 0.2947 0.2316 0.0382 0.3002

GBGAC 0.5654 0.4477 0.4575 0.4303 0.2029 0.3205

CESNA 0.4856 0.2689 0.3794 0.2132 0.0225 0.3023

CODICIL 0.5639 0.3678 0.4044 0.5432 0.2860 0.3936

SA-cluster 0.2637 0.1190 0.2825 0.2325 0.0466 0.2984

Inc-cluster 0.2637 0.1190 0.2825 0.2325 0.0466 0.2984

GLFM 0.6104 0.5029 0.4848 0.6621 0.3973 0.5094

cluster-dp 0.4974 0.2800 0.4204 0.3581 0.1440 0.3236

kNN-nearest 0.4878 0.3469 0.4403 0.4955 0.2518 0.3819

kNN-Kmeans 0.6662 0.4569 0.5014 0.6301 0.3703 0.4749

Table 8. Performance of compared algorithms on Cora and Citeseer.
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of processing networks with numerical attributes (see Table 9). Even through the accuracy of cohsMix was higher 
than kNN-nearest and kNN-Kmeans on Sinanet, cohsMix ran much slower than kNN-enhance and the results 
from this algorithm were selected over 10 runs on Sinanet data. Moreover, cohsMix was not capable of dealing 
with a large network such as the one from the Diabetes data set due to its high memory usage when storing the 
similarity matrix and all hidden variables.

Discussion
We have proposed a simple and flexible node attribute enhanced community detection approach, kNN-enhance. 
This method was designed to construct the k nearest neighbor graph of node attributes first, then merge the kNN 
graph with the original network. With this approach we were able to alleviate the sparsity of the original network, 
reduce noise effects, and strengthen the community structure of the original network. Because of this, a clear 
community structure could be partitioned within the kNN graph enhanced network by a community detection 
algorithm like K-rank-D. Our two implementations, kNN-nearest and kNN-Kmeans, have shown that the pro-
posed algorithms achieved better performance against the existing state-of-the-art algorithms. Furthermore, the 
algorithms were able to deal with a network containing binary, categorical, or numerical attributes and could be 
easily extended to process large-scale networks.

Figure 3. Modularity of the compared algorithms on DBLP10k.

Figure 4. Entropy of the compared algorithms on DBLP10k.

Algorithms

Sinanet PubMed Diabetes

ACC NMI PWF ACC NMI PWF

K-means 0.7989 0.6664 0.7080 0.5971 0.3198 0.5855

K-rank-D 0.3361 0.1900 0.2994 0.4088 0.0701 0.5012

cohsMix 0.6957 0.5789 0.6512 * * *

cluster-dp 0.4166 0.3180 0.3518 0.4007 0.0041 0.5117

kNN-nearest 0.3464 0.3172 0.3079 0.5249 0.0745 0.4585

kNN-Kmeans 0.6338 0.5356 0.5160 0.6232 0.2162 0.5127

Table 9. Performance of compared algorithms on Sinanet and PubMed Diabetes.
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In the future we intend to test this approach on large scale networks with millions of edges by combining fast 
approximate kNN graph construction algorithms (such as NN-Descent36 with O(n1.14) empirical cost) with fast 
community detection algorithms such as BGLL38 and Informap39. Moreover, besides strengthening the commu-
nity structure of a network using node attributes, we plan to design a more effective method by removing some 
easily detected weak-linked edges from the network. In this study we were concerned with detecting community 
structures containing nodes with more links to each other than to nodes outside their communities. However, it 
has been observed that trees and tree-like networks have high modularity44, 45, the classical objective function to 
discover communities and to measure their strength46, and that many real world networks have tree-like struc-
tures47–49. Existing methods use connections only to decompose a network into tree-like components. It is a 
challenging task to combine node attributes with topology to cluster nodes in a tree-like network into groups, and 
we will investigate whether our kNN-enhance approach is capable of partitioning attributed tree-like networks.

Methods
Community Detection in Attributed Networks. Suppose that G = (V, E, X) is a network with node 
attributes, where V is a set of nodes ( =V n), E is an edge set that indicates relationships between pairs of nodes 
( =E m) and is usually represented by an adjacency matrix A = [Aij] (Aij = 1 if there is an edge between nodes i 
and j, Aij = 0 otherwise), X = {x1, x2, …, xn} = = x x x x i n( ( , , , ), 1, 2, , )i i i iD1 2  is a set of vectors, each of 
which denotes the values of D attributes associated with a node i. We call this an ‘attributed network’ or ‘attributed 
graph’. Community detection in an attributed network involves partitioning nodes into clusters such that nodes 
in the same cluster are not only densely connect to each other but also exhibit a high level of attribute 
homogeneity.

An Active Method for Community Detection in Networks. cluster-dp is a recently-developed clus-
tering algorithm similar to the K-means method34. The algorithm assumes that cluster centers are surrounded by 
neighbors with lower local density and that they are a relatively large distance from any data points with a higher 
local density. Therefore, for each data point i, two quantities, the local density ρi and the distance from points of 
higher density δi, are defined as follows to quantify the likelihood of a data point being a cluster center:

∑ρ χ δ= − = ρ ρ>d d min d( ), ( )
(1)

i
j

ij c i j ij: j i

where dij is the distance of data points i and j, χ(x) = 1 if x < 0 and χ(x) = 0 otherwise, dc represents the cutoff 
distance, and δi = maxj(dij) for the point with the highest density.

If we scatter all data points on a decision graph drawn by their values of ρi and δi for all ∈ i n{1, 2, , }, the 
cluster centers tend to occupy the right upper part of the graph. After cluster centers with both relatively large ρi 
and δi are manually selected on the decision graph, each remaining point is assigned to the same cluster as its 
nearest neighbor of higher density. This allows cluster-dp to uncover the cluster structure of data points by 
actively knowing the number of clusters and cluster centers.

However, the following issues exist: (1) When the cluster structure is not clear (i.e., there is not a distinguished 
boundary between cluster centers and other data points on the decision graph), it is difficult to obtain the correct 
number of clusters and cluster centers. This leads to poor partitioning. (2) The parameter dc must be tuned in 
many cases, and it is usually difficult to know which parameter value is best. (3) The input for cluster-dp is a dis-
tance matrix. The quality of the matrix has a strong effect on the clustering result. When the algorithm is used to 
discover community structure in a network, the topological structure implied in the network is not fully utilized.

In a network structure, we suppose that community centers are: (1) influential and surrounded by less influ-
ential nodes, and (2) located far from each other in the network. Therefore, we have proposed K-rank-D33 and use 
two quantities, ∈ = v v v v v{ , , , }i n1 2  and δi, to describe the centrality and the dispersion of each node i, respec-
tively. The centrality vector v can be calculated efficiently using PageRank50 centrality as follows:

β β
=



 − +



 =

∑
∈+

v P e
n

v P
A

A
i j n(1 ) , , , {1, 2, , }

(2)
t t

ij
ij

j ij

1

where β is the re-start probability (fixed at 0.15), e is the unit matrix, v0 is a n-dimensional unit vector, and vt is 
normalized to 1 in each iteration. The dispersion of a node i to other nodes with higher centrality is defined by 
δ = >min d( )i j v v ij: j i

 and δ δ= max( )k i , i ≠ k, for the node k with highest centrality. dij is the structural distance 
between nodes i and j. It can be computed using Euclidean distance measurement ⋅ 2 after τ-step signal propa-
gation51 by following equations:

∑= + = = − .τ ‖ ‖S A I S S S d S S( ) , / ,
(3)

ij ij
j

ij ij i j
2

2

where τ = 3 in implementation and Si is the i-th row of S . In the case that the community structure of a network is 
fuzzy, we define the comprehensive value for each node i as follows:

δ δ= ⋅ ⋅ .= =CV i v max v max( ) /( ( ) ( )) (4)i i j
n

j j
n

j1 1

The top K nodes with the highest comprehensive value can then be automatically selected as the initial centers 
of K-rank-D.
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kNN-enhance: a Node Attribute-enhanced Community Detection Approach. Given an attributed 
network G = (V, E, X), we first construct the kNN graph of node attributes. The kNN graph for a set of nodes V is 
a directed graph with vertex set V and an edge from each v ∈ V to its k most similar objects in V under a given 
similarity measure on attributes. ∀xi, xj ∈ X, the cosine similarity ⋅x xi j

T is used to compute the similarity of a pair 
of nodes with binary attributes, and − −‖ ‖norm x x1 ( )i j 2

 is used to compute the similarity of a pair of nodes 
with numerical attributes, where −‖ ‖norm x x( )i j 2

 is the normalization of the Euclidean distance of xi and xj. We 
then add the kNN-graph of attributes to the original network. For an edge of the kNN graph, if it is a new edge in 
the original network, we add this edge to the original network; otherwise, we keep the edge in the original net-
work unchanged.

After the kNN-enhanced network is established, we use the K-rank-D method introduced above to perform 
node clustering. In addition to K-rank-D, we employ two node assignment strategies after selecting K community 
centers from the decision graph. kNN-nearest uses the cluter-dp strategy34, which involves assigning each remain-
ing node to the same cluster as its nearest neighbor of higher PageRank centrality computed by Equation (2). 
kNN-Kmeans uses the strategy of the K-means method, where the input is the data matrix =S S[ ]ij

51. It iteratively 
updates its community centers. It should be pointed out that kNN-nearest and kNN-Kmeans are just two imple-
mentations of kNN-enhance approach. Fast approximate kNN graph construction methods35–37 and 
highly-efficient community detection algorithms38, 39 can be combined to process large scale networks.

Metrics for Evaluating Algorithm Quality. In this study, we use two groups of metrics to evalu-
ate the performance of each algorithm. The first group includes ACC (Accuracy), NMI (Normalized Mutual 
Information), and PWF (Pairwise F-Measure)9, 11. These are commonly used to evaluate an algorithm running 
on a data set with ground truth. Larger values indicate better algorithm performance. The other group consists 
of Modularity38, 46 and Entropy13, 18. Modularity is used to measure the quality of communities in a network, and a 
larger Modularity value indicates better partition quality. Entropy is used to measure the degree of attribute con-
sistency in a community, and a lower Entropy value indicates a greater consistency. These metrics are often used 
when an algorithm is run on a network without ground truth. Formal definitions are provider below:

ACC. Given node i, lpi is the node label assigned by an algorithm and lti is its true label. The accuracy is defined 
by

∑δ=
=

ACC l p l n( , ( ))/
(5)i

n

ti map pi
1

where δ(·) is a Kronecker function, Pmap(lpi) is a permutation mapping function that maps the label lpi to its corre-
sponding label lti in the ground truth, and n is the total number of nodes in a network.

NMI. Suppose = C C C C{ , , , }K1 2  is a set of K communities contained in a network and ′ = ′ ′ ′
C C C C{ , , , }K1 2  

is a set of K communities obtained by a specific algorithm. NMI is defined by
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where nij is the number of nodes in the ground truth community Ci that are assigned to the computed community 
C′j, ni

C is the number of nodes in the ground truth community Ci, and ′nj
C  is the number of nodes in the computed 

community C′j.

PWF. Let T denote the set of nodes in the ground truth communities and W denote the set of nodes assigned by 
a given algorithm in the corresponding communities. PWF is defined as follows:

=
× ×

+
PWF precision recall

precision recall
2

(7)

where = ∩precision W T W/ , = ∩recall W T T/ , and ⋅  denotes the cardinality of a set.

Modularity. Given a network with n nodes and m edges, Modularity can be calculated as follows:

∑ δ=





−
⋅ 




Modularity
m

A
k k

m
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2 2
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(8)i j
ij

i j
i j

,

where A = [Aij] is the adjacency matrix of the network, ki is the degree of node i, δ(·,·) is the Kronecker function, 
and ci is the community to which the node i belongs.

Entropy. Given a network with n nodes, we suppose that each node is associated with D attributes a a a( , , , )D1 2  
and that the nodes can be partitioned into K communities. Let nc be the number of nodes in the c-th community 
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and pic be the fraction of nodes in the c-th community taking attribute ai. The total Entropy of attributes in com-
munities can then be defined in the following way:

∑ ∑=
= =

Entropy n
n

p plog( )
(9)c

K
c

i

D

ic ic
1 1

Entropy measures the homogeneity of communities and their shared attributes.

Parameter Settings on Synthetic and Real-world Networks. As mentioned above, the PCL-DC, 
PPL-DC and PPSB-DC methods are sensitive to initial values. For the experiments on these algorithms using 
synthetic attributed networks, we ran the algorithms 10 times on each sample set, selected the best result deter-
mined by maximum likelihood, and then reported the average results and standard deviations on 10 samples. We 
set the max iteration number and the convergence threshold of PCL-DC, PPL-DC, and PPSB-DB to 2000 and 
10−8, respectively. We set the regularization coefficient λ = 1 for PCL-DC and CESNA and λ = 0.1 for PPL-DC 
and PPSB-DC since they perform the best when λ is set accordingly. Similarly, for K-means on attributes, we ran 
it 10 times on each sample set (since it is sensitive to its initial values), selected the best result with the highest 
accuracy, and then reported the average results and standard deviations on 10 samples. For BAGC and GBAGC, 
the max iteration number was set at 10. For CODICIL, we set =K 30, 50 and 70 and selected the one with the 
highest accuracy. We used cosine similarity ⋅x xi j

T and signal similarity − −‖ ‖norm S S1 ( )i j 2
 to compute the 

similarity of node attributes and that of link structure for cluster-dp, respectively. We set the weight α of attribute 
similarity and link similarity to 0.5 for cluster-dp and CODICIL since it was difficult to tune the weight adaptively 
for each sample. We set =D 50 for GLFM. For kNN-nearest and kNN-Kmeans, we set k = 10 because we wanted 
to strengthen only the community structure of the original network so that small k is sufficient. We used default 
values for algorithm parameters not mentioned above. Similarly, for the probabilistic method cohsMix, we set the 
max iteration number to 200, chose the best result of cohsMix determined by maximum likelihood among 10 
runs for each sample set, and then reported the average values and the standard deviations on 10 samples of each 
test setting.

In the group of experiments on real-world networks, we used the same parameter settings as in the original 
method publications in nearly all cases. We set λ = 5 for PCL-DC, PPL-DC, and PPSB-DC and λ = 1 for CESNA 
because these settings produced the best performance. We set the max iteration number to 10 for BAGC and 
GBAGC. We chose =K 50 for CODICIL because it resulted in the best performance among the options 

∈K {30, 50, 70}. We set D  of GLFM to 20. The weight between link structure and node attributes was 0.5 for 
cluster-dp and CODICIL. The max iteration number of cohsMix was 200 since we used only node attributes to 
make up for the sparsity of the original network and strengthen its community structure. The parameter k of a 
kNN attribute graph was also 10 for all real networks with the exception of the Diabetes data set, for which we set 
k = 60 due to the fact that there were only 3 large communities with thousands of nodes and a larger k provided 
better performance.
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