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Reverse Anti-solvent Crystallization 
Process for the Facile Synthesis 
of Zinc Tetra(4-pyridyl)porphyrin 
Single Crystalline Cubes
Yohwan Park1,2, Misun Hong2,3, Jin Young Koo1, Minkyung Lee1,2, Jinho Lee1,2, Dae Jun 
Moon4, So Hyeong Sohn2, Taiha Joo2, Woo Taik Lim4, Hyunseob Lim5 & Hee Cheul Choi1,2

Synthesis of morphologically well-defined crystals of metalloporphyrin by direct crystallization based 
on conventional anti-solvent crystallization method without using any additives has been rarely 
reported. Herein, we demonstrate an unconventional and additive-free synthetic method named 
reverse anti-solvent crystallization method to achieve well-defined zinc-porphyrin cube crystals by 
reversing the order of the addition of solvents. The extended first solvation shell effect mechanism is 
therefore suggested to support the synthetic process by providing a novel kinetic route for reaching the 
local supersaturation environment depending on the order of addition of solvents, which turned out to 
be critical to achieve clean cube morphology of the crystal. We believe that our work not only extends 
fundamental knowledge about the kinetic process in binary solvent systems, but also enables great 
opportunities for shape-directing crystallization of various organic and organometallic compounds.

The morphological shape of micro- or nano-crystals highly influences their physical, biological, and chemical 
properties1–5. Therefore, development of the synthesis of organic and organometallic crystals in well-defined 
morphologies has been considered as an important research subject. During the last decade, our group has 
been investigating synthetic methods for various organic- and metal-containing highly conjugated molecular 
crystals6–16. One of the representative tetrapyrrole molecules, porphyrin derivatives, constitute attractive build-
ing blocks for organic micro- or nano-structures due to their distinct electronic, optical, and catalytic proper-
ties17–20. In 2009, we synthesized metal-free porphyrin rectangular tube crystals by the physical vapor transport 
(PVT) method14, and confirmed that the crystals are constructed by several intermolecular interactions, such 
as hydrogen bonding, hydrogen-π, and π-π intermolecular interactions. However, the shape-specific synthesis 
of metal-containing porphyrin (metalloporphyrin) crystals by the PVT method has not been successful mainly 
due to difficulties in providing a reaction environment for optimized kinetic control. This is a result of the nature 
the PVT process, which is not ideal to provide a homogeneous environment for molecules to make such inter-
molecular interactions fully applied to allow several key factors, including freedom of molecules, to form the 
appropriate dynamic motions necessary for the required intermolecular interactions to be effective within the 
time scale of the intermolecular interactions for the formation of crystal nucleates. Compared with metal-free 
porphyrin, for example, metalloporphyrin, might be needed to make metal-ligand coordination interactions to 
form morphologically well-defined crystals. However, as previously mentioned, it is difficult for the PVT method 
to provide a reaction environment that enables all of the feasible intermolecular interactions. On the other hand, 
a solution phase reaction would be an ideal approach to overcome this limitation. In fact, several studies have 
reported that the shape-specific synthesis of metalloporphyrin in the solution phase can be accomplished by 
adding additives, such as acid, surfactant, etc.21–27, which facilitate kinetic control by accelerating intermolecular 
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interactions or by minimizing the surface energy of certain crystal planes. It is clear, however, that the addition 
of extra chemicals should be minimized in order to maintain the original properties of the target crystals. From 
this perspective, our synthetic method is ideal and superior. We have synthesized cube-shaped crystals of zinc 
5,10,15,20-tetra(4-pyridyl)-21H,23H-porphyrin (ZnTPyP) for the first time without any additives, but simply 
using only solvent-solvent and solvent-solute interactions in binary solvent systems based on the concept of 
the c-ASC method, which is one of the most widely used crystallization methods. When the c-ASC method 
was utilized, however, ZnTPyP crystals (or even any precipitates) were not formed mainly due to the failure of 
achieving the supersaturation environment due to the unexpected increase in the solubility of the solute in the 
toluene/IPA binary solvent system. Therefore, we slightly modified the c-ASC method, as it provides a local super-
saturation environment well, and resolved the problem. Herein, we demonstrate this novel and facile synthetic 
method (r-ASC method, vide infra), which first roughly disperses ZnTPyP powder precursor molecules into the 
anti-solvent, and then adds the good solvent to form a local supersaturation environment (Fig. 1). To explain 
the precise mechanism, we first introduce the solvation shell effect (FSSE) mechanism28–30, which successfully 
explains the dissolution of ionic compounds in polar solvents through the effect of hydration or solvation of ionic 
solute with water or polar solvents by making its first solvent shell around the solutes. However, the conventional 
FSSE mechanism possesses a limitation to explain r-ASC and m-ASC methods that target neutral solutes and 
non-polar anti-solvents. Herein, in advance of the conventional FSSE mechanism, we suggest an extended FSSE 
mechanism that is suitable to explain the critical role of the type of solvation solvent regardless of the species of 
solvents (e.g., polar and non-polar solvents) that can be simply controlled by changing the solvent-addition order. 
This suggests a new kinetic route for reaching the local supersaturation environment and enables shape-specific 
crystal synthesis.

Results and Discussion
Design of the new facile method to overcome limitation of anti-solvent crystallization 
method. To prove this, we first attempted the c-ASC method for ZnTPyP powder solutes with isopropyl 
alcohol (IPA) as a good solvent, and toluene as an anti-solvent. For this, an excess amount of as-received ZnTPyP 
powder (Sigma-Aldrich, 90%) was added first in IPA (Sigma-Aldrich, ≥99.9%) to form a ZnTPyP-IPA super-
saturated solution. The ZnTPyP-IPA supersaturated solution was then filtered to prepare a saturated ZnTPyP-
IPA solution. Then, the anti-solvent (toluene) was slowly added into the saturated-ZnTPyP-IPA solution. More 
details about the experimental details are described in Method section. Interestingly, a quite unexpected result 
was found, in which no precipitation was observed during this process (Fig. S1). This is because the addition of an 
anti-solvent into a solution saturated with solutes in a good solvent generally induces the decrease of the total sol-
ubility of the solute in a binary solvent system, which readily results in prompt precipitation. However, an increase 
of total solubility of ZnTPyP was rather observed from 0.1330 mM in the saturated IPA solution to 0.3478 mM in 
the IPA/toluene binary solvent system (Fig. S2). Such phenomenon has been previously studied and explained 
by Hansen solubility parameters that consider dispersive, polar, and hydrogen bonding solubility parameters for 
several solute and solvent mixtures31. Therefore, the solubility enhancement demonstrates that the c-ASC method 
is not appropriate for the crystallization of ZnTPyP when IPA and toluene are used for good and anti-solvent, 
respectively. In order to overcome this problem in the c-ASC method, we attempted two modified reactions: i) 
Toluene was added into the supersaturated ZnTPyP-IPA solution without filtration, under mild hand-shaking. 

Figure 1. Scheme of c-ASC and r-ASC methods. (a) Conventional anti-solvent crystallization (c-ASC) method 
and (b) reverse anti-solvent crystallization (r-ASC) method, which reverse the solvent-addition order compared 
with the c-ASC method.

http://S1
http://S2


www.nature.com/scientificreports/

3Scientific RepoRts | 7: 2582  | DOI:10.1038/s41598-017-02718-9

No crystal with specific morphology was still obtained, but irregular precipitates were achieved (this method is 
termed the ‘modified-ASC (m-ASC) method’). ii) By reversing the solvent-addition order (termed the ‘reverse 
ASC (r-ASC) method’), i.e., we dispersed the same amount of ZnTPyP precursor in the toluene anti-solvent first, 
and then IPA was added to the solution under an identical reaction condition. More details about the experimen-
tal details are described in Method section. Although both processes produced precipitates in the binary solvent 
system, ZnTPyP cube crystals were obtained only from the latter case.

Morphology and structure analysis of crystals synthesized by r-ASC and m-ASC methods. The 
morphology and size of ZnTPyP precipitates were characterized by scanning electron microscopy (SEM). The 
ZnTPyP precipitates having non-uniform morphology were obtained by the m-ASC method (Fig. 2a) and we 
confirm that the ZnTPyP precipitates formed by the m-ASC method are similar with the initial ZnTPyP powder 
in Fig. S10, which indicates that no recrystallization occurs by the m-ASC method different from r-ASC method. 
In contrast, the well-defined cube shape (or square pillar shape) crystals with homogeneous size of 3–5 μm were 
obtained in the precipitates by the r-ASC method (ZnTPyP cube), and the cubes exhibited highly smooth sur-
faces. Their crystal structures were investigated by powder X-ray diffraction (pXRD) measurements. The pXRD 
patterns in Fig. 2b reveal that ZnTPyP precipitates (blue) by the m-ASC method have the same crystal structure as 
that of as-received ZnTPyP precursor powder (black), while ZnTPyP cubes have a totally different crystal struc-
ture (red). To elucidate the detailed crystal structure and intra- and inter-molecular interactions, ZnTPyP cube 
was further investigated by single-crystal XRD (sXRD) measurement using a synchrotron X-ray beam source. A 
ZnTPyP cube crystal has a monoclinic unit cell with a = 10.917(2) Å, b = 13.850(3) Å, c = 14.208(3) Å, α = 90°, 
β = 91.00(3)°, γ = 90° (Fig. 3a and b). In addition, its space group is assigned to be P21/c, which is determined 
by the program XPREP32. Based on the sXRD information, lattice planes for pXRD peaks in Fig. 2b (red) are 
assigned to originate from (100), (011) and (022) planes, respectively. In Fig. 3a and b, ZnTPyP molecules in a 
ZnTPyP cube form a 2D coordination polymer by zinc metal-N axial coordination bonding interaction between 
(100) and (011) planes. These 2D coordination polymer layers are stacked along the a-axis [100] direction, which 
indicates the intercalation of toluene molecules as a guest molecule. The solvated toluene molecules could be 
accommodated into ZnTPyP 2D coordination polymers for the formation of well-defined cube crystals. This 
result agrees well with the previously reported crystal structure of 1,2-dichlorobenzene solvated ZnTPyP crystal33. 
Transmission electron microscopy (TEM) combined with selected area electron diffraction (SAED) pattern fur-
ther assigns the lattice planes for three facets of the ZnTPyP cube. Figure 3c shows the TEM image of the square 
pillar shape ZnTPyP crystal, which was chosen because it is more appropriate for TEM study since the informa-
tion of anisotropic facets can be additionally determined. Each spot in the rhombic SAED pattern in the inset of 
Fig. 3c corresponds to lattice spacing values of (100) and (01–1) planes, estimated from sXRD, and thus its zone 
axis can be identified as the [011] direction. Consequently, one square face is a (100) surface, and the other rectan-
gular two facets are (011) and (01–1) surfaces. Structural analysis indicates that toluene guides to grow ZnTPyP 
molecules from 2D coordination polymer into a 3D cube shaped crystal, by assembly through zinc-nitrogen 
six-coordination (Fig. 3d). In contrast, the pXRD pattern of the ZnTPyP precipitates obtained by the m-ASC 
method is unchanged compared with the ZnTPyP precursor, which matches well with the pXRD pattern of the 
previously reported pattern, known as a trigonal crystal with R3 space group34. Lattice planes for pXRD peaks in 
Fig. 2b (blue) are assigned as (110), (300), and (220) planes. In addition, the structure was constructed by forming 
zinc-nitrogen six-coordination stabilized by hydrogen bonding with H2O or methanol as sXRD information of 
the reference (See Supplementary Information for detailed crystal structures, Fig. S3). Judging by the correlation 
between the crystal structure and species of solvent, solvents containing hydrogen bonding that enable the site 
could not cause the recrystallizing of ZnTPyP molecules due to their already being structurally stable about these 
solvents. Accordingly, the IPA solvation shell could not act as driving force for insertion of the IPA-like toluene 
solvation shell during the m-ASC method process.

Figure 2. SEM images of the crystals synthesized by r-ASC and m-ASC method and their powder XRD 
patterns. (a) High magnification (left column, scale bar = 5 μm) and low magnification SEM images (right 
column, scale bar = 50 μm) of ZnTPyP cubes and ZnTPyP precipitates grown by r-ASC and m-ASC method, 
respectively. (b) XRD patterns of commercial ZnTPyP powder (black), irregular precipitates obtained by the 
m-ASC method (blue), and cube-shaped crystals obtained by the r-ASC method (red). All of the spectra were 
converted to the wavelength of the Cu Kα1 line (λ = 1.54057 Å).
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Extended first solvation shell crystallization mechanism. The solute-solvent interaction has been 
studied to explain various phenomena in binary solvent systems. Especially, preferential solvation has been 
described importantly in terms of solute-solvent and solvent-solvent interactions, as well as solvent-exchange 
equilibria35. The solvent-exchange equilibria show an exchange model between the local solvation environment 
and the bulk solution environment around the solute, but the control of the dominant solvation environment and 
prediction of solvated solvent have been rarely studied. In order to prove the obviously different crystallization 
behaviors depending on the solvent-addition order, which influences the critical crystallization environment, i.e., 
different first solvation shell, we suggest a new kinetic crystallization mechanism, the extended FSSE mechanism, 
which is based on the preferential solvation theory36. The conventional FSSE mechanism that explains the effect 
of polar solvents for the local environment of ionic compounds has a limitation to describe r-ASC and m-ASC 
methods, which target neutral solutes and solvents, regardless of their species. Accordingly, the extended FSSE 
mechanism indicates that the solvation shell formed by the first-added solvent, regardless of the species of sol-
vent, highly influences the crystallization of neutral solute by control of the local supersaturating environment. 
When toluene anti-solvent is added first to ZnTPyP, in the r-ASC method, it could be dispersed only roughly, 
and the toluene molecules make a solvation-shell rapidly with preferential binding, such as the van der Waals 
(vdW) interaction and π-π interaction. As soon as IPA good solvent is added, the toluene solvation-shell inhibits 
interaction between IPA and ZnTPyP, and the shell is localized in the solution. Then, the shell forms the local 
supersaturation environment and promotes the crystallization of solutes into specific solvated crystals. Contrary 
to the r-ASC method, in the m-ASC method, solvation-shell is formed by the first-added solvent, IPA, caused 
by interaction such as ligation, hydrogen bonding, and dipole-dipole interaction. The highly interacting IPA 
with ZnTPyP interrupts the solvation of toluene molecules into precipitation, which induces poor crystallization. 

Figure 3. Single crystal structure and TEM analysis of ZnTPyP cube crystal. (a,b) Single crystal space-filling 
representations of (100) and (011) plane of cube crystal, respectively. (100) plane shows 2D coordination 
polymer of ZnTPyP including zinc metal-N axial coordination bonding, and (011) plane shows intercalation of 
toluene into the 2D coordination polymer. (c) TEM image and (inset) selected area electron diffraction (SAED) 
pattern of square pillar shaped-ZnTPyP corresponding to the TEM image. The arrow represents the growth 
direction of the ZnTPyP cube, and the zone axis is identified as (011). (d) Representation of growth direction 
introduced by toluene solvent molecule into 2D ZnTPyP coordination polymer.
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The same phenomena were observed when using the geometrically similar anti-solvent species, chlorobenzene, 
1,2-dichlorobenzene, and o-xylene. As shown in Fig. S9, although different anti-solvents were used, the same cube 
(or square pillar) shape crystals with the same crystal structure were obtained. This means that the geometrically 
similar anti-solvents have similar intermolecular interactions with ZnTPyP by forming their solvation-shell, and 
shape-directing synthesis occurs during the r-ASC method.

To demonstrate the extended FSSE during either m-ASC or r-ASC processes, the total solubility of ZnTPyP 
in the binary solvent system has been monitored according to process time by UV-VIS spectroscopy, depend-
ing on the solvent-addition order. UV-VIS absorption spectra and optical photograph in Fig. 4 revealed the 
different concentration of ZnTPyP in the solutions with different solvent-addition order, 2 h after adding the 
second-solvent despite the identical amount of ZnTPyP, toluene, and IPA. To calculate accurate concentration 
change upon r-ASC and m-ACS processes, final solutions having excess powder were filtered and measured 
UV-VIS absorption from diluted solutions as Fig. 4c and d. The absorption peak intensities of the two solutions 
were initially almost identical (0.3478 mM), but the concentration changes were obviously different as 0.2148 
and 0.2620 mM after 1 day upon r-ASC and m-ASC, respectively. The solution into which toluene was added first 
exhibits a considerable change of concentration (Fig. 4c), because the toluene solvent-shelled ZnTPyP forms first, 
and this shell induces a local supersaturation environment, and thus the continuous growth of ZnTPyP cubes in 
the binary solvent system. On the other hand, the solution into which IPA was added first shows a slight change 
of concentration (Fig. 4d) because the IPA solvent-shelled ZnTPyP forms first, and thus the shell prevents crys-
tallization from solvation of toluene. The results demonstrate that the first-added solvent determines the type of 
solvation-shell around ZnTPyP molecules, which highly influences the crystallization of ZnTPyP. The change 
of crystal structure in the precipitation as a function of growth time was also investigated by XRD. During the 
r-ASC process, in Fig. 4e, only ZnTPyP powder XRD pattern was observed during the first 15 min of the reaction, 
and ZnTPyP cube and powder pattern started to appear simultaneously after 30 min of the reaction. Finally, 
only the ZnTPyP cube pattern was found after 2 h of the reaction. This means that, after 30 min of the reaction, 
excess ZnTPyP powder started to be dissolved in the solution with the remaining toluene solvation-shell as the 
solvated solutes are crystallized out. In addition, these toluene solvent-shelled ZnTPyP molecules are crystal-
lized into ZnTPyP cubes continuously until 2 h (See Supplementary Information for detailed SEM images of 
time-dependent experiment, Fig. S6). In contrast, the ZnTPyP powder pattern was invariably observed during 
the whole reaction process when the m-ASC method was used (Fig. S7). All of the control experiments by r-ASC 
and m-ASC exhibited similar behaviors, which indicates that the r-ASC method and extended FSSE mechanism 
can be applied to various syntheses of organic and organometallic crystals.

Photoluminescence properties. We have also investigated the optical properties resulting from the dif-
ferent crystal shapes. Steady-state photoluminescence (PL) images and PL spectra (Fig. 5a) were obtained from 
individual ZnTPyP cube and powder crystal, and the PL spectra were averaged from 10 samples of each crystal. 
It is found that the higher crystallinity of ZnTPyP results in higher PL intensity, which can be understood by 
crystallization-induced emission enhancement (CIEE)12, 37. The PL peak position is almost the same for the cube 
and powder, which implies that the solvated-toluene molecules in the ZnTPyP cube do not affect the PL prop-
erty of ZnTPyP significantly. However, it is worth noting that the PL spectrum of the ZnTPyP cube exhibits two 

Figure 4. Extended first solvation shell mechanism and its indirect evidence via UV/VIS spectra and time-
dependent XRD patterns. (a) Schemes and photographs of the r-ASC method, including toluene solvent-shelled 
ZnTPyP that promotes crystallization to cube crystal, and excess powder is dissolved to maintain supersaturated 
solution. (b) Schemes and photographs of the m-ASC method, including IPA solvent-shelled ZnTPyP that 
protects ZnTPyP to crystallize to ZnTPyP cube, and excess powder is precipitated. (c,d) UV/VIS spectra of as-
received solution by the r-ASC method and the m-ASC method (red), respectively, and after 1 day (black). (e) 
XRD patterns of crystals grown by the r-ASC method depending on reaction time.
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additional small shoulders at 629 and 763 nm. The visible absorption/emission features of porphyrins consist 
of Qx and Qy bands, and their activities depend critically on symmetry and conformation. The appearance of 
a band at 629 nm indicates that there is some change of the structure between the powder and cube forms. The 
triplet emission of porphyrin usually appears in the 720~800 nm region, and the 763 nm band can be assigned 
to the emission from a triplet. It is interesting to observe that the intersystem crossing rate is enhanced in the 
single crystal, although a detailed mechanism is not clear. The more detailed emission profile was investigated by 
time-resolved PL spectroscopy (TRPL). The TRPLs of ZnTPyP shown in Fig. 5b was obtained by the excitation 
of the Soret (S2) band in absorption spectrum (Fig. S4) by femtosecond pulses at 425 nm. The TRPL of ZnTPyP 
cube rises by a time constant of 210 ps (37%) and decays biexponentially by time constants of 1.3 ns (55%) and 
2.7 ns (8%). In contrast, the TRPL of ZnTPyP powder rises much faster by a time constant of 34 ps (37%) and 
decays faster by two time constants of 860 ps (37%) and 2.3 ns (26%). The increase of the decay time constants 
of the ZnTPyP cube is consistent with the higher PL intensity of the ZnTPyP cube, as shown in Fig. 5a. In the 
TRPL of the Qx band at 667 nm (Fig. 5b), the ZnTPyP cube exhibits a much slower rise (210 ps), compared to 
that of ZnTPyP powder (34 ps). The picosecond rise of the Qx emission band has been observed previously, and 
was assigned to the vibrational relaxation within the Qx state38, 39. The unexpectedly large decrease of the ther-
mal dissipation rate through vibrational relaxation in the crystal phase may be caused by the reduction of the 
density of state (DOS) of solvent due to the smaller number of solvents. In addition, the reduction of the DOS of 
ZnTPyP may possibly be due to the more rigid structure in the crystal phase, which may also cause the reduced 
non-radiative relaxation rate to result in the longer lifetime.

Conclusion
In summary, our work constitutes the first demonstration of the synthesis of well-defined cube-shaped ZnTPyP 
crystals. While the shape-directing synthesis of polyhedron metalloporphyrin crystal has been regarded to be dif-
ficult due to its direct-assembly or precipitation of target solute molecules using the conventional c-ASC method, 
we could overcome these limitations by controlling the solvation condition. By the r-ASC method, the local 
environment of ZnTPyP could be kinetically controlled to promote toluene molecules solvated around ZnTPyP. 
Systematic investigations revealed that the first-added toluene molecules could act as a key factor for the crystal-
lization into cube-shaped morphology. In contrast, IPA molecules during the m-ASC method prevented crystal-
lization from solvation of toluene. The detailed mechanism is newly suggested by the extended FSSE mechanism, 
which explains that controlling the first solvation shell by the solvent-addition order affects shape-directing syn-
thesis remarkably. In addition, the improved optical property of the ZnTPyP cube was revealed, which is regarded 
as due to the crystallization-induced effect. We believe that this novel concept would not only extend fundamental 
knowledge of the kinetics in solute-solvent interactions, but also prompt new attempts at elucidating the crystal-
lization route for various organic and organometallic compounds.

Methods
Synthesis. 

 i) c-ASC method: c-ASC method: an excess amount of ZnTPyP powder (4 mg, Aldrich, 90%) was dissolved 
in 4 mL of IPA (Sigma-Aldrich, ≥ 99.9%) by ultrasonication (UCS-10, Lab companion) for 1 min, and 
ZnTPyP/IPA solution was filtered by a syringe filter having pore size of 0.02 μm. The final concentration 
is 0.1330 mM calculated by UV-VIS spectra (Fig. S2b and c) and 8 mL of toluene was added to ZnTPyP/
IPA saturated solution, and the mixture was mixed by hand-shaking. The final mixture was kept at room 
temperature for 2 h.

 ii) m-ASC method: 4 mg of ZnTPyP powder was dissolved in 4 mL of IPA with hand-shaking for 1 min, and 
8 mL of toluene was added without filtration process (0.5387 mM). Then, the mixture exhibited a dark red 
color after mixing by hand-shaking for 1 min, and kept at room temperature for 2 h.

Figure 5. Photoluminescence properties of ZnTPyP powder and crystals. (a) Photoluminescence spectra 
of powder (red) and cube (black) crystal, respectively (in the inset, photoluminescence images of individual 
powder (left) and cube (right) crystal) (λlaser = 338 nm and light source is a mercury lamp). (b) Time-resolved 
photoluminescence measurement of powder (red) and cube (black) crystal (detection λlaser = 667 nm).

http://S4
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 iii) r-ASC method: 4 mg of ZnTPyP powder was dispersed in 8 mL of toluene with hand-shaking for 1 min, 
and 4 mL of IPA was added slowly without a filtration process (0.5387 mM). The interface of IPA and ZnT-
PyP/toluene solution could be clearly observed, and a dark red color was observed when the mixture was 
mixed by hand-shaking for 1 min. Then, the final mixture was kept at room temperature for 2 h.

Time-dependent XRD measurement. To monitor the degree of crystallization as a function of time upon 
r-ASC and m-ASC method, each solution was newly prepared according to time in same batch and extract, drop 
and dry 12 μL the solution by pipette on Si substrate to measure pXRD. 4 mg of ZnTPyP was dispersed in 8 mL 
of toluene and added 4 mL of IPA slowly along the vial wall and only the solvent adding order was reversed in 
m-ASC method.

Characterization. All of the SEM images were obtained using a JEOL, JSM-7410F instrument, and TEM 
images and electron diffraction patterns were obtained using a JEOL JEM-2100F (with Cs Corrector on STEM) 
instrument. To investigate the detailed crystal structure, powder XRD and single crystal XRD data were collected 
by using a synchrotron (Pohang Accelerator Laboratory (PAL), 5D and 2D beamline, λ = 1.23954 Å). All obtained 
X-ray diffraction data were converted to Cu Kα (λ = 1.54057 Å) radiation.

For single crystal XRD, the temperature was maintained at 100(1) K by a flow of cold nitrogen gas. Preliminary 
cell constants and an orientation matrix were determined from 72 sets of frames collected at scan intervals of 5° 
with an exposure time of 1 s per frame. The basic scale file was prepared using the HKL3000sm program. The 
reflections were successfully indexed by the automated indexing routine of the DENZO program40. The diffrac-
tion data were harvested by collecting 72 sets of frames with 5° scans with an exposure time of 1 s per frame. These 
highly redundant data sets were corrected for Lorentz and polarization effects, and a very small correction for 
crystal decay was applied.

UV/VIS spectra were obtained using a spectrometer (Shimadzu 2600).
Steady-state photoluminescence spectroscopy and imaging of powder and cube crystal were obtained 

using a fluorescence microscope (Olympus microscope) equipped with a fluorescence filter (λex = 330–
380 nm, λem = 420 nm long pass filter). The picosecond time-resolved photoluminescence was measured by 
the time-correlated single photon counting (TCSPC) technique. Fundamental femtosecond pulse came from 
home-built cavity dumped Ti:sapphire laser, which was pumped by second harmonics of Nd:YVO4 continuous 
wave laser (Verdi, Coherent). Fundamental pulse centered at 850 nm was frequency-doubled at 500 μm β-barium 
borate crystal to excite porphyrin samples with a repetition rate of 355 kHz. The fluorescence was dispersed by a 
monochromator (SP-300i, Princeton Instruments), and detected by a silicon avalanche photodiode (id100–50, ID 
Quantique), which provides instrumental response function as 60 ps (FWHM).
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