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Identification of New Shikonin 
Derivatives as Antitumor Agents 
Targeting STAT3 SH2 Domain
Han-Yue Qiu1,2, Xiang Zhu1,2, Yue-Lin Luo1,2, Hong-Yan Lin1,2, Cheng-Yi Tang1,2, Jin-Liang Qi1,2, 
Yan-Jun Pang1, Rong-Wu Yang1, Gui-Hua Lu  1,2, Xiao-Ming Wang1,2 & Yong-Hua Yang1,2

Signal transducer and activator of transcription 3 (STAT3) is hyper-activated in diversiform human 
tumors and has been validated as an attractive therapeutic target. Current research showed that a 
natural product, shikonin, along with its synthetic analogues, is able to inhibit the activity of STAT3 
potently. The potential space of shikonin in developing novel anti-cancer agents encouraged us to 
carry out the investigation of the probable binding mode with STAT3. From this foundation, we have 
designed new types of STAT3 SH2 inhibitors. Combined simulations were performed to filter for the lead 
compound, which was then substituted, synthesized and evaluated by a variety of bioassays. Among 
the entities, PMM-172 exhibited the best anti-proliferative activity against MDA-MB-231 cells with IC50 
value 1.98 ± 0.49 μM. Besides, it was identified to decrease luciferase activity, induce cell apoptosis 
and reduce mitochondrial transmembrane potential in MDA-MB-231 cells. Also, PMM-172 inhibited 
constitutive/inducible STAT3 activation without affecting STAT1 and STAT5 in MDA-MB-231 cells, 
and had no effect in non-tumorigenic MCF-10A cells. Moreover, PMM-172 suppressed STAT3 nuclear 
localization and STAT3 downstream target genes expression. Overall, these results indicate that the 
antitumor activity of PMM-172 is at least partially due to inhibition of STAT3 in breast cancer cells.

The STAT family of proteins is a key mediator transferring extracellular signals into cell nucleus to regulate vari-
ous cellular processes including proliferation, apoptosis, angiogenesis and other biological activities1, 2. This fam-
ily consists of seven members which share similarity in structure, albeit they are encoded by disparate genes3. 
One of the most important family members, the STAT3 protein, is phosphorylated and activated by its upstream 
kinases such as FAK, JAK and Src4. The phosphorylation of STAT3 leads to the dimerization of its monomers 
through SH2 domains and after then the STAT3 dimers translocate into cell nucleus to perform their biological 
functions as gene expression regulator5, 6.

Compelling research shows that aberrantly activated STAT3 is tightly connected with cell dysfunction which 
causes morbid processes such as tumorigenesis and malignant transformation7. Clinically, the overexpression or 
constitutively activation of this transcription factor is observed in 70% of human solid and hematological tumors. 
In turn, inhibiting the activity of STAT3 has proved its potency to hinder the tumor process, both in vitro and 
in vivo8, 9. Thus STAT3 is considered a promising molecular target in cancer therapies and attracts considerable 
interest of medicinal chemists10, 11.

Current drug design strategy for suppressing STAT3 activity is mainly comprised of two methods. One is 
to inhibit its upstream kinases so that the phosphorylation process of STAT3 is thwarted. However, since these 
kinases target multiple downstream proteins, undesirable adverse effects might appear when other pathways 
are down-regulated. The other one is to directly suppress the activity of STAT312–14. Compared with the former 
method, this strategy is more appealing as normal cell functions are minimally disturbed15. To date, a number of 
STAT3 inhibitors have been identified and being tested in different stages3, 16, 17; still and all, inevitable attrition is 
predictable during the developing process, and the situation is worse off taking the tumorous inherent tendency 
of getting resistant and relapsing into consideration. The need of a larger candidate pool applies to almost every 
therapy strategy of tumor, which is also true for targeting STAT3.
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Recent research showed that shikonin (SHK), the main efficacy component of the Chinese herbal med-
icine Lithospermum erythrorhizon, is capable to block the STAT3 pathway18–20. Especially in breast cancer 
models, SHK exhibited impressive pharmacological characters which are related with its effect on STAT321. 
Besides, recent reports have revealed that many synthetic STAT3 inhibitors, such as plumbagin and LLL-12 
(Fig. 1A)22–25, share the same backbone with SHK, hinting a scaffold bias for the target STAT3. Hence SHK 
might be a good starting point for modification to achieve new agents with improved profile against STAT3 
and relating tumors26–29.

In this work we primarily explored the potential binding mode of SHK with STAT3. On the basis we employed 
Scaffold Growth strategy to furnish a library of modifications, which were then selected by virtual screen30. 
Molecular dynamics simulation was also performed to validate the docking results. The outcome showed that the 
optimization provided several entities with improved potency compared with their scaffold SHK.

Results
Chemistry. The synthesis of compounds PMM-158~PMM-173 followed the general pathway outlined in 
Fig. 1B. All synthesized compounds were reported and characterized for the first time, and gave satisfactory ana-
lytical and spectroscopic data. 1H NMR and ESI-MS spectra were in full accordance with the assigned structures 
(shown in the Supplementary Information).

Molecular docking and scaffold modification. The homodimerization of STAT3 is mediated by the 
PPI (protein-protein interaction) between SH2 domains of each STAT3 monomers, and the pTyr705 plays a 
vital role in this process. In the SH2 domains of STAT3, three adjacent binding subpockets were explored as 
the binding hot spots, namely pY-X (Δ 592–605), pY + 0 (591, Δ 609–620), and pY + 1 (Δ 626–639) site. The 
site pY + 0 binds with pTyr705 and contains polar residues responsible for hydrogen bonding and electrostatic 
interactions, and the other two subpockets pY + 1 and pY-X are formed by hydrophobic residues. Most of the 
known STAT3 inhibitors targeting the SH2 domain bind at least two of these three subpockets. In this work, 
docking simulations were performed iteratively. We primarily explored the binding mode of SHK with STAT3, 
as shown in Fig. 2A and Fig. 2B, the starting SHK mainly located in the pY-X and pY + 0 pockets hydrogen 
bonding with LYS 591, GLU 594 and ILE 634. This predicted mode is consistent with those gained by the men-
tioned SHK analogues, hinting a consensus scaffold bias in this pocket area. After then, modification was made 
on SHK backbone to establish a library of small molecules in order to screen for potential compounds. All the 
outcomes had better binding affinities than the scaffold SHK. Docking screening was employed to rank these 
candidates. In addition to the virtual screening, the synthetic accessibility for these candidates was taken into 
consideration. At last, the lead compound illustrated in Fig. 1A was validated. It was then substituted to furnish 
a class of derivatives which were also tested by docking simulation. The docking results are summarized in 
Table 1, the lead compound occupied the same two subpockets pY-X and pY + 0 assembling its scaffold SHK. 

Figure 1. (A) Reported synthetic STAT3 inhibitors and SHK with lead compound. The analogous structure 
for these compounds is colored in red. (B) Synthesis of compounds PMM-158~PMM-173. Reagents and 
conditions: (a) concentrated sulfuric acid, ethanol, reflux, 24 h; (b) NH2NH2-H2O (85%), ethanol, reflux, 12 h; 
(c) (1) CS2/KOH, ethanol (95%), reflux, 24 h; (2) HCl, PH 5–6; (d) ClCH2COOH, ethanol, reflux, 12 h; (e) DCC, 
DMAP, CH2Cl2, 0 °C, 8 h.
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Besides, it interacts with the same residues LYS 591, GLU 594 and ILE 634 comparing with SHK (Fig. 2C,D), 
however one more hydrogen bonds with residue ARG595 was formed, along with the coming up of additional 
interactions induced by the modification part.

MD trajectory analysis. In this study, we analyzed the dynamic behavior in the ligand-binding site of the 
STAT3-inhibitor complexes. It’s well established that the root mean square deviation (RMSD) fluctuation is an 
important criterion to gauge whether the protein-ligand system was stable. During the process of MD simulation, 
the maximum RMSD for each system was limited to 0.3 nm (Fig. 2E). The RMSDs of all the systems gradually 
became stable after 1 ns, indicating that they reached equilibrium. It has been shown that PMM-172 became 
stable quickly and could present an equilibrium state for more than 3 ns. Notably, we found that the RMSD of 

Figure 2. Binding mode of SHK and lead compound PMM-158 with STAT3 (PDB code: 1BG1). (A) 2D 
diagram of the interaction between SHK and amino acid residues of the nearby active site. (B) 3D diagram of 
SHK inserted in the STAT3 binding site: for clarity, 3D structure of the protein is presented in line ribbon and 
only interacting residues are displayed. (C) 2D diagram of the interaction between PMM-158 and amino acid 
residues of the nearby active site. (D) 3D diagram of PMM-158 inserted in the STAT3 binding site: for clarity, 
3D structure of the protein is presented in line ribbon and only interacting residues are displayed. (E)The 
RMSDs of the three studied complexes obtained during 5 ns of MD simulations, SHK (blue), lead compound 
(red) and PMM-172 (black).
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PMM-172 remains stable throughout the whole process of simulation, suggesting its distinct comparative advan-
tage against other compounds.

PMM-172 inhibited cell growth and STAT3 transcriptional activity. Initial experiments were 
performed for evaluation of growth inhibition by the new compounds against six human breast cancer cell 
lines, including MCF-7 (ER+/PR+, HER-2-), BT474 (ER+/PR+, HER-2+), SKBR-3 (ER-/PR-/HER-2+), 
MDA-MB-436 (ER-/PR-/HER-2-), MDA-MB-231 (ER-/PR-/HER-2-), MDA-MB-468 (ER-/PR-/HER-2-) and 
non-tumorigenic MCF-10A cells. After 24 h treatment by the obtained compounds, the inhibition was assessed 
and the IC50 was summarized. The results shown in Table 1 indicated that all compounds had lower toxicity 
against the non-tumorigenic MCF-10A cells than SHK itself. As shown in Table 2, the new synthetic compounds 
showed high sensitivity to three triple negative cells and HER2 over-expression cells than to the other two sub-
types. Fortunately, we obtained some compounds with strong cytotoxicity toward human breast cancer cells 
while avoiding non-tumorigenic MCF-10A cells. Among them, PMM-172 (IC50 = 1.98 ± 0.49 μM) showed better 
anti-proliferative activity against MDA-MB-231 cells than SHK (IC50 = 2.88 ± 0.25 μM). Subsequently, the inhibi-
tion of STAT3 activation by PMM-172 and Stattic was evaluated using a dual-luciferase assay. The results (Fig. 3) 
suggested that PMM-172 decreased the STAT3 luciferase activity in a dose-dependent manner, while the effects 
of Stattic showed only a slight advantage over PMM-172.

PMM-172 induced apoptosis in MDA-MB-231 cells in dose- and time- dependent manners. To 
determine whether PMM-172 induced apoptosis, Annexin V/PI double staining assay was conducted. 
MDA-MB-231 cells were treated with various concentrations of PMM-172 for 24 h, and the percentage of apop-
totic cells was markedly elevated in a dose-dependent manner. Likewise, MDA-MB-231 cells were treated with 

Compd R
Interaction energy 
ΔGb (kcal/mol)

CC50 (μM) MCF-
10A

PMM-158 −56.6335 92.5 ± 0.27

PMM-159 −55.7343 89.5 ± 0.99

PMM-160 −57.7694 68.3 ± 0.27

PMM-161 −59.1773 84.5 ± 0.74

PMM-162 −59.4741 91.9 ± 1.21

PMM-163 −61.1946 86.2 ± 0.33

PMM-164 −59.9377 74.6 ± 0.55

PMM-165 −61.361 83.7 ± 1.28

PMM-166 −56.5488 69.9 ± 0.58

PMM-167 −59.8725 72.5 ± 1.53

PMM-168 −60.3577 80.6 ± 1.07

PMM-169 −60.9084 99.5 ± 0.49

PMM-170 −61.8761 94.6 ± 0.83

PMM-171 −62.6852 76.2 ± 1.15

PMM-172 −63.1153 95.4 ± 0.62

PMM-173 −59.983 88.9 ± 0.34

Shikonin −59.4517 23.5 ± 1.01

Table 1. The interaction energy and anti-proliferative activity against non-tumorigenic MCF-10A cells of the 
target compounds.



www.nature.com/scientificreports/

5Scientific RepoRts | 7: 2863  | DOI:10.1038/s41598-017-02671-7

corresponding doses of Stattic. As shown in Fig. 4A, increased apoptotic rate was detected after cells being treated 
with escalating concentrations of PMM-172. The percentages of cell apoptosis 3.12%, 8.12%, 16.81%, 62.74% 
corresponded to the concentration of PMM-172 0, 2, 4 and 8 μM, respectively, including both the early and the 
late apoptotic cells. Clearly, PMM-172 can cause cell apoptosis more effectively than Stattic. Moreover, an extend 
time-course apoptosis analysis of MDA-MB-231 cells treated with 4 μM PMM-172 was carry out. The results 
indicated that longer treatment periods showed an increasing tendency in the percentage of apoptotic cells. To 
further assess the pro-apoptotic effect of PMM-172, we evaluated the cleavage of poly (ADP-ribose) polymerase 
(PARP) and caspase 3 in MDA-MB-231 cells after 24 h treatment with PMM-172. In this case, the active form of 
PARP involved in DNA repair and programmed cell death is considered as the hallmark of apoptosis. The results 
of western blot showed that PMM-172 could induce PARP and caspase 3 cleavage in MDA-MB-231 cells in a 
dose-dependent, which were in accordance with the above results (Fig. 4E). Taken together, we obtained the con-
clusion that PMM-172 induced apparent apoptosis in MDA-MB-231 cells in dose- and time- dependent manners.

PMM-172 reduced mitochondrial transmembrane potential in MDA-MB-231 cells. Subsequently, 
the mitochondrial transmembrane potential was monitored using JC-1 staining. The Fig. 5 shows representa-
tive JC-1 fluorescence in both FL-1 and FL-2 channels. Red fluorescence represents the mitochondrial aggregate 

Compound

IC50 (μM)

MCF-7 BT-474 SKBR-3
MDA-
MB-436

MDA-
MB-231

MDA-
MB-468

PMM-158 12.1 ± 0.42 15.6 ± 1.03 11.5 ± 0.74 10.1 ± 0.92 9.17 ± 0.99 10.6 ± 0.65

PMM-159 9.22 ± 0.13 10.8 ± 0.94 8.95 ± 0.69 8.49 ± 0.78 7.24 ± 0.82 8.23 ± 1.27

PMM-160 15.3 ± 0.52 18.3 ± 1.24 10.5 ± 0.88 11.8 ± 0.86 9.66 ± 1.21 12.4 ± 0.52

PMM-161 9.81 ± 0.49 11.1 ± 1.12 9.29 ± 0.66 9.55 ± 0.83 8.58 ± 0.53 8.97 ± 1.05

PMM-162 9.01 ± 0.92 9.54 ± 0.91 8.03 ± 0.83 7.28 ± 0.77 6.14 ± 1.05 6.85 ± 0.92

PMM-163 8.69 ± 0.83 9.27 ± 0.86 7.56 ± 0.72 7.09 ± 0.63 6.04 ± 0.59 7.83 ± 0.55

PMM-164 5.71 ± 0.52 7.09 ± 0.65 4.49 ± 0.58 4.41 ± 0.55 3.76 ± 1.02 3.94 ± 0.73

PMM-165 9.38 ± 0.66 9.22 ± 0.98 6.23 ± 0.73 5.97 ± 0.67 5.47 ± 1.01 6.58 ± 0.15

PMM-166 6.41 ± 0.75 6.91 ± 0.73 4.87 ± 0.58 4.66 ± 0.59 3.64 ± 0.91 4.07 ± 0.66

PMM-167 15.3 ± 0.61 13.7 ± 0.92 9.76 ± 0.95 10.6 ± 0.82 9.01 ± 0.56 12.2 ± 0.42

PMM-168 9.27 ± 1.12 10.6 ± 0.81 8.16 ± 0.71 7.87 ± 0.91 6.09 ± 1.04 8.42 ± 0.86

PMM-169 8.12 ± 0.98 8.36 ± 0.97 6.95 ± 0.82 7.36 ± 0.87 5.33 ± 0.77 7.22 ± 1.11

PMM-170 9.73 ± 1.03 12.7 ± 1.06 8.27 ± 0.69 6.88 ± 0.73 4.31 ± 0.65 8.44 ± 0.78

PMM-171 8.71 ± 0.67 8.59 ± 0.78 5.89 ± 0.64 6.49 ± 0.68 3.14 ± 1.02 6.95 ± 0.46

PMM-172 4.87 ± 0.55 5.26 ± 0.66 3.14 ± 0.46 3.07 ± 0.47 1.98 ± 0.49 3.24 ± 0.27

PMM-173 5.58 ± 0.83 6.03 ± 0.71 3.59 ± 0.49 4.06 ± 0.53 2.59 ± 0.19 3.76 ± 0.88

Shikonin 4.57 ± 0.69 5.74 ± 0.66 3.75 ± 0.52 3.28 ± 0.41 2.88 ± 0.25 3.61 ± 0.34

Stattic 5.85 ± 0.72 5.11 ± 0.57 3.39 ± 0.56 3.76 ± 0.50 3.18 ± 0.33 3.54 ± 0.42

Table 2. Anti-proliferative activity against six kinds of breast cancer cells by all compounds.

Figure 3. MDA-MB-231 cells were transfected with STAT3-TATA-Luc reporter and Renilla luciferase reporter 
plasmids. After 24 h, cells were treated with indicated concentrations of PMM-172 or Stattic for 24 h and then 
luciferase intensity was measured. Results are fold change ± SD of three independent experiments, *P < 0.05, 
**P < 0.01.
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Figure 4. The effect of PMM-172 on the cell apoptosis of MDA-MB-231 cells. (A) MDA-MB-231 cells were 
treated with various concentrations of PMM-172 or Stattic for 24 h, or treated with 4 μM PMM-172 for different 
time. Apoptosis was analyzed by flow cytometry by using Annexin V/PI double staining. (B) The percentage 
of apoptotic cells in MDA-MB-231 cells treated with various concentrations of PMM-172 for 24 h. (C) The 
percentage of apoptotic cells in MDA-MB-231 cells treated with 4 μM PMM-172 for different time. (D) The 
percentage of apoptotic cells in MDA-MB-231 cells treated with various concentrations of Stattic for 24 h. (E) 
PARP and caspase 3 cleavage in MDA-MB-231 cells after treated with various concentrations of PMM-172 
for 24 h were detected by using Western blot analysis. The relative expression level was analyzed by Image J 
software. Data were shown as mean ± SD of three independent experiments. *P < 0.05, **P < 0.01. Cropped 
blots/gels were used in the figure and the gels had been run under the same experimental conditions; the full-
length blots/gels are presented in Supplementary Figure S1.

http://S1
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form of JC-1 with high ∆Ψm in normal cells. Green fluorescence represents the monomeric form of JC-1 with 
low ∆Ψm in apoptotic cells. However, cells treated with PMM-172 exhibited increased green fluorescence and 
decreased red fluorescence, suggesting the depolarization of mitochondria and reduced ∆Ψm. The ratio of cells 
with high membrane potential exposed to 4 μM and 8 μM PMM-172 decreased from 92.3% to 64.6% and 21.3% 
after 4 h treatment.

PMM-172 reduced constitutive and inducible STAT3 activation in MDA-MB-231 cells. It 
has been well recognized that the aberrant activation of STAT3 contributes to malignant transformation 
and tumorgenesis, and its activity is ultimately dependent upon phosphorylation of residue Y705. Hence 
the Y705-phosphorylated level of STAT3 is an important metric to evaluate the inhibitory efficacy of STAT3 
antagonists. In this study, the ability of PMM-172 and Stattic inhibiting the constitutive STAT3 activation in 
MDA-MB-231 cells was investigated. Western blot analysis (Fig. 6A and D) revealed that PMM-172 and Stattic 
could reduce the level of Y705-phosphorylated STAT3 in MDA-MB-231 cells in a dose-dependent manner, and 
had no effect on STAT3 expression. By comparison, we found that the inhibitory effect of PMM-172 was more 
potent than Stattic. We further measured STAT3 phosphorylation at Tyr705 in a time-course experiment. As 
shown in Fig. 6B and E, the phosphorylation of residue Tyr705 in STAT3 is reduced with the longer treatment of 
PMM-172 or Stattic.

We further investigated whether PMM-172 could inhibit IL-6-induced STAT3 phosphorylation in 
MDA-MB-231 cells. As shown in Fig. 6C, IL-6 stimulation on MDA-MB-231 cells increased the levels of 
phosphor-STAT3 while the pretreatment of PMM-172 suppressed IL-6-induced STAT3 phosphorylation without 
affecting STAT3 expression.

Subsequently, we evaluated the phosphorylation level of other STAT family proteins including STAT1 and 
STAT5. The results (Fig. 6F) showed PMM-172 inhibited neither the phosphorylation nor expression of STAT1 
and STAT5, indicating that the inhibition of STAT3 activation by PMM-172 may be specific.

PMM-172 suppressed STAT3 nuclear localization. It is known that the dimerization of STAT3 is 
induced by the phosphorylation at residue Tyr 705, which then leads to its nuclear translocation. Herein, we 
investigated the effect of PMM-172 and Stattic on STAT3 nuclear translocation. The cytoplasmic and nuclear 
proteins of treated cells were extracted and the expressions of STAT3 in both fractions were examined. The results 
(Fig. 7A) showed that the level of STAT3 in the nuclear fraction was decreased by PMM-172 in a dose-dependent 
manner, while the level of STAT3 was slightly increased in the cytoplasmic fraction. As shown in Fig. 7B, the effect 
of PMM-172 to suppress STAT3 nuclear localization showed a slight advantage over Stattic.

PMMB-172 does not suppress STAT3 activation nor viability in normal cells. In the following 
work, we examined whether PMM-172 could affect the activity of STAT3 and viability in non-cancer cells. The 
non-tumorigenic MCF-10A epithelial cells were employed to be treated with increasing doses of PMM-172 
to conduct this assay. It is noteworthy that PMM-172 had no effect on the level of the pSTAT3 level in MCF-
10A cells, and the expression levels of total STAT3 kept unchanged (Fig. 7C). The cell viability was evaluated 
using MTT assay, and the results revealed that the growth of MCF-10A cells was barely inhibited by PMM-172 
(Table 1). Taken together, these results indicated that PMM-172 primarily suppressed STAT3 activation and via-
bility in STAT3-depedent breast cancer cells.

Figure 5. Mitochondrial transmembrane potential was analysed in PMM-172-treated MDA-MB-231 cells by 
JC-1 staining.
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PMM-172 inhibited STAT3 downstream target genes expression. STAT3 target genes are vital 
to the dysfunctional biology processes induced by the aberrantly activated STAT3. Therefore, we investigated 
whether PMM-172 suppresses the expression of STAT3-regulated genes related to cell survival, proliferation and 
apoptosis in MDA-MB-231 cells. As shown in Fig. 7D, the treatment with PMM-172 for 24 h down-regulated the 
expression of Bcl-2, Bcl-xL, survivin and cyclin D1 in a dose-dependent manner.

Discussion
The research advance on the biological information of STAT3 has paved the way for its utilization in cancer 
therapy. Also, current efforts on exploiting STAT3-targeting agents have made impressive progress: an increasing 
number of synthetic and natural-occurring chemical entities have been reported with potent STAT3 inhibition 
efficiency since the last decade. Yet remarkable challenges are foreseeable transferring the testing agents into clin-
ical drugs. Apart from the attrition in the preclinical and clinical studies, the developing of a certain chemotype 
into approved medicine is also likely to be plagued by resistance and relapse of tumor. In this situation, an ample 
multiformity in chemical space is favorable to explore for different kinds of inhibitors which shall alleviate the 
coming problems. Of note is that the traditional Chinese herbals provide a non-negligible candidate pool for 
digging of new STAT3 inhibitors. Diverse in structure, these natural products brought new understanding in the 
biological functional mechanism with STAT3 and novel starting points with considerable improving space31–35. 
Attempts in the characterization and optimization for these NP as STAT3 inhibitors may yield admirable outputs. 
Also noteworthy is that some NPs are restricted in medicinal use not only for the complexity of purification or/

Figure 6. (A) PMM-172 suppressed constitutive pSTAT3 (Tyr705) in a dose-dependent manner. (B) PMM-172 
suppressed constitutive pSTAT3 (Tyr705) in a time-dependent manner. (C) MDA-MB-231 cells were treated 
with IL-6 (20 ng/mL) or vehicle for 30 min, with or without pretreatment with PMM-172 (2 μM) for 24 h. PMM-
172 inhibited IL-6 induced phosphorylation of STAT3. (D) Stattic suppressed constitutive pSTAT3 (Tyr705) in 
a dose-dependent manner. (E) Stattic suppressed constitutive pSTAT3 (Tyr705) in a time-dependent manner. 
(F) Tyrosine phosphorylation of two STAT family proteins STAT1 and STAT5 were detected with specific 
antibodies. PMM-172 inhibited neither the phosphorylation nor expression of STAT1 and STAT5. Data were 
shown as mean ± SD of three independent experiments. *P < 0.05, **P < 0.01. Cropped blots/gels were used 
in the figure and the gels had been run under the same experimental conditions; the full-length blots/gels are 
presented in Supplementary Figure S2.

http://S2
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and synthesis, but also for the difficulty in optimization. As one of the most famous medicinal plant metabolites, 
SHK is unlike some other “untamed” NPs for bearing sites apt to be modified in structure. Based on the knowl-
edge that SHK has a remarkable STAT3 inhibitory profile, it’s of interest to investigate its probable molecular 
mechanism and explore for optimizations.

In this study, the binding mode of SHK with STAT3 was primarily explored by virtual simulation with a high 
ranking score. On the basis of maintaining key intermolecular interactions with receptor STAT3, we applied the 
scaffold growth strategy to modify the backbone SHK and establish a small library of SHK derivatives with higher 
binding affinity. Iterative docking screen simulations were performed to rank all the new compounds and the top 
hit was validated. The hit compound PMM-158 shared a quite similar binding modality with its original scaffold 
SHK, while the substituent group provided additional favorable interactions. Structural modification was carried 
out to PMM-158 in order to gain a further understanding on the structure-activity relationship. Also, molecular 

Figure 7. MDA-MB-231 cells were treated with indicated concentrations of PMM-172 or Stattic for 24 h, 
the expression levels of STAT3 in cytoplasmic and nuclear extracts were examined and relative expression 
levels were analyzed by Image J software. β-actin and Lamin B1 served as markers of cytoplasmic and nuclear 
extractions, respectively. (A) PMM-172 suppressed STAT3 nuclear localization. (B) Stattic suppressed STAT3 
nuclear localization. (C) MCF-10A cells were treated with the indicated concentrations of PMM-172 for 24 h. 
PMM-172 had no effect on the level of the pSTAT3 level in MCF-10A cells. (D) PMM-172 down-regulated 
the expression of STAT3 target genes. Data were shown as mean ± SD from three independent experiments, 
**P < 0.01. Cropped blots/gels were used in the figure and the gels had been run under the same experimental 
conditions; the full-length blots/gels are presented in Supplementary Figure S3.

http://S3
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dynamics was performed to the complex systems of SHK, PMM-158 and PMM-172 with protein STAT3 to detect 
their robustness. The fluctuant RMSD values for both systems and ligands were quite stable in the equilibrium 
state, hinting a high reliability of the binding models.

After the systematic synergetic simulation work, the target compounds were synthesized and tested in vitro 
to depict their pharmacological profile. According to Table 1, the obtained synthetics had lower toxicity against 
the non-tumorigenic MCF-10A cells than SHK. Also these compounds exerted more potent anti-proliferative 
activity against HER2 over-expression cell line and triple negative cell lines than the other two cell lines (shown 
in Table 2). Among all the entities, PMM-172 showed better anti-proliferative activity against one triple negative 
cell line MDA-MB-231 (IC50 = 1.98 ± 0.49 μM) than SHK (3.28 ± 0.41 μM) and Stattic (3.76 ± 0.50 μM). What’s 
more, PMM-172 could decrease the STAT3 luciferase activity in a dose-dependent manner, and the effect was 
similar with Stattic.

Subsequently, we investigated the effects of PMM-172 on cell apoptosis in MDA-MB-231 cells. The results 
demonstrated that PMM172 induced cell apoptosis in dose- and time- dependent manners, and more effectively 
than Stattic. Also the elevated expression of cleaved PARP and cleaved caspase-3, which are hallmarks of cell 
apoptosis, were observed by the treatment with increased concentration of PMM-172. Furthermore, the depo-
larization of mitochondria and reduced mitochondrial transmembrane potential by PMM-172 were confirmed. 
Taken together, these results indicated that PMM-172 induced the cell apoptosis of MDA-MB-231 cells through 
the mitochondrial pathway.

For the mechanistic study, we found that PMM-172 inhibited the constitutive/inducible STAT3 activation 
in MDA-MB-231 cells, and showed a slight advantage over Stattic. In contrary, the level of the phosphorylated 
STAT3 was not affected by PMM-172 in non-cancer MCF-10A cells. The expression levels of STAT1, STAT5 and 
their phosphorylated forms in MDA-MB-231 cells were further detected to character the selectivity of PMM-172. 
While no obvious changes were observed in the phosphorylation levels of STAT1 and STAT5, a conclusion may be 
safely conducted that PMM-172 primarily suppressed STAT3 activation in STAT3-dependent breast cancer cells.

It has been reported that the suppression of STAT3 activation results in the reduction of nuclear localization 
of STAT336. When exerting PMM-172 on MDA-MB-231 cells, the expression levels of STAT3 in nuclear fractions 
were reduced, in accordance with the mentioned reports. Also it’s known that after phosphorylation, STAT3 
translocates into the nuclear where it binds to a specific promoter to regulate targeted genes expression related to 
cell survival, proliferation and apoptosis37. In our study, levels of representative downstream proteins including 
Bcl-2, Bcl-XL, survivin and cyclin D1 were measured to reveal that PMM-172 could down-regulate the expres-
sion of STAT3 target genes in MDA-MB-231 cells.

Collectively, these results favored our design intention and hinted this type of natural product derivatives 
might be helpful in the further explorations of potent STAT3 inhibitors.

Methods
Materials and measurements. All chemicals (reagent grade) used were purchased from Nanjing 
Chemical Reagent Co. Ltd. (Nanjing, China). All the 1H NMR spectra were recorded on a Bruker DPX 300 model 
Spectrometer in CDCl3 and chemical shifts (Δ) were reported as parts per million (ppm). ESI-MS spectra were 
recorded a Mariner System 5304 Mass spectrometer. Elemental analyses were performed on a CHNO-Rapid 
instrument and were within 0.4% of the theoretical values. Thin layer chromatography (TLC) was performed on 
silica gel plates (Silica Gel 60 GF254) and visualized in UV light (254 nm). Column chromatography was per-
formed using silica gel (200–300 mesh) eluting with ethyl acetate and petroleum ether (bp. 30–60 °C).

STAT3 Antibody (#12640), phospho-STAT3 (Tyr705) Antibody (#9131) and GAPDH Antibody (#2118) 
were purchased from Cell Signaling Technology (Beverly, MA). BCL-XL Antibody (WL01558), Bcl-2 Antibody 
(WL01556), Survivin Antibody (WL01684), Cyclin D1 Antibody (WL01435a), β-actin Antibody (WL01774), 
Lamin B Antibody (WL01775), and Goat anti-rabbit IgG (H + L) (WLA023a) were purchased from Wanleibio 
Co., Ltd. (Shenyang, China). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) were purchased from 
Sigma-Aldrich (St. Louis, USA). Annexin V-FITC Apoptosis Detection Kit (A211-01/02) was purchased from 
Vazyme Biotech Co.,Ltd (Nanjing, China).

Docking simulation and scaffold modification. The STAT3 crystal structure (PDB code: 1BG1) was 
deposited from the PDB database as a dimer. Afterwards, the missing residues in STAT3 (residues 185–193, 
689–701, and 717–722) were added using Modeller38. The target was prepared using Accelrys Discovery Studio 
version 3.5 as follows: (1) All the water molecules and the DNA chains were removed; (2) Hydrogens assigned to 
the monomer A of 1BG1 which were then applied with CHARMM force field and minimized; (3) The centroid of 
residue pTyr705 of the monomer B was used as the center of binding pocket. Thereafter the ligand SHK was also 
prepared and minimized using Discovery Studio version 3.5 and the module CDOCKER was utilized to perform 
the docking simulation. Based on the predicted binding mode of SHK with STAT3, the scaffold modification and 
following docking simulation were achieved by dint of the module Grow Scaffold in Accelrys Discovery Studio 
version 3.5. Following the protocol, the hydroxyl at the branching chain of SHK was marked as site to be substi-
tuted. To increase the diversity, all the reaction types provided by the software were selected. After calculation, 
modified molecules were produced and combined with molecules designed empirically to furnish a library of 
small molecules. We used CDOCKER of Discovery Studio 3.5 to dock the pre-generated conformations into 
STAT3 and small-molecule compounds with high scores were selected to further confirm their pharmacological 
activities.

Molecular dynamics (MD) stimulations. To further verify the binding model, MD simulations were 
carried out using the GROMACS package (version 5.1.2). Proteins were charged using the GROMOS96 43a1p 
force field (which could handle with pTyr residue) and the small molecules were prepared using PRODRG. The 
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complex was solvated in a dodecahedron water box (1-nm thick) of SPC water molecules and periodic boundary 
conditions were applied in all directions. Periodic boundary conditions (PBC) were employed to avoid edge 
effects in MD simulations. The systems were neutralized with Na+ and Cl− counter ions and the long-range elec-
trostatic interactions were calculated by the particle mesh Ewald method. Prior to performing the MD simulation, 
energy minimization was carried out to clear poor contacts. Then, 100 ps NVT and 100 ps NPT ensembles with 
simultaneous protein–ligand position restraints were also carried out to equilibrate the system. Consequently, 
10 ns MD production simulation was performed with a 2 fs time step at constant temperature (300 K) and pres-
sure (1 atm).

General procedure for the synthesis of compounds PMM-158~PMM-173. Shikonin, C1-C16, 
4-dimethyaminopyridine (DMAP) and N, N’-dicyclohexyl-carbodiimide (DCC) were dissolved in dichlorometh-
ane. The reaction was stirred at ice bath for 8 h and monitored by TLC. After the completion of the reaction, the 
product PMM-158~PMM-173 was obtained and purified by column chromatography.

Cell Culture. Human breast cancer cells and human non-tumorigenic breast cells (MCF-10A) were pur-
chased from Nanjing Keygen Technology (Nanjing, China). Cells were maintained in Dulbecco’s modified Eagle’s 
medium (DMEM, Hyclone) (High Glucose) with L-glutamine supplemented with 10% fetal bovine serum (FBS, 
BI), 100 U/mL penicillin and 100 mg/mL streptomycin (Hyclone), and incubated at 37 °C in a humidified atmos-
phere containing 5% CO2.

Anti-proliferation assay. The anti-proliferative activities of the prepared compounds against MCF-7 (ER+/
PR+, HER-2-), BT474 (ER+/PR+, HER-2+), SKBR-3 (ER-/PR-/HER-2+), MDA-MB-436 (ER-/PR-/HER-2-), 
MDA-MB-231 (ER-/PR-/HER-2-), MDA-MB-468 (ER-/PR-/HER-2-) and non-tumorigenic MCF-10A cell lines 
were evaluated using a standard (MTT)-based colorimetric assay with some modification. Cell lines were grown 
to log phase in DMEM supplemented with 10% fetal bovine serum. Cell suspensions were prepared and 100 μL/
well dispensed into 96-well plates giving 104 cells/well. The subsequent incubation was permitted at 37 °C, 5% 
CO2 atmosphere for 24 h to allow the cells to reattach. Subsequently, cells were treated with the target compounds 
at increasing concentrations in the presence of 10% FBS for 24 h. Then, cell viability was assessed by the conven-
tional 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) reduction assay and carried out 
strictly according to the manufacturer instructions. The absorbance (OD570) was read on an ELISA reader (Tecan, 
Austria). In all experiments, three replicate wells were used for each drug concentration. Each assay was carried 
out for at least three times.

Luciferase assay. Cells were seeded in 24 well plates and transiently transfected together with STAT3 
reporter plasmid 4 × M67 pTATA TK-Luc (0.2 μg/per well, Addgene, USA) and Renilla luciferase control 
reporter plasmid pRL-CMV (0.1 μg/per well, promega, USA), using lipofectamine 2000 (Invitrogen, USA). Then 
the cells were incubated with complete medium for 24 h with PMM-172 or Stattic. Following the treatment, the 
cells were harvested in 100 μL of passive lysis buffer (Promega, USA) in each well. A 25 μL aliquot of cell lysate 
was subjected to a luciferase assay by using the dual-luciferase assay kit (Promega, USA). STAT3 luciferase activity 
was measured by EnVision Mutilabel Reader (Perkin Elmer, USA). Relative luciferase activity was calculated after 
the activity of STAT3-dependent firefly luciferase had been normalized to that of Renilla luciferase. All values are 
expressed as - fold induction relative to basal activity.

Cell apoptosis assay. Approximately 105 cells/well were plated in a 24 well plate and allowed to adhere. 
Subsequently, the medium was replaced with fresh culture medium containing PMM-172 or Stattic. Non-treated 
wells received an equivalent volume of ethanol (<0.1%). After 24 h, they were trypsinized, washed in PBS and 
centrifuged at 2000 rpm for 5 min. The pellet was then resuspended in 500 μL of staining solution (containing 
5 μL AnnexinV-FITC and 5 μL PI in Binding Buffer), mixed gently and incubated for 15 min at room tempera-
ture in dark. The samples were then analyzed by a FACSCalibur flow cytometer (Becton Dickinson, San Jose, CA, 
USA).

Mitochondrial membrane potential evaluation. Mitochondrial transmembrane potential (∆Ψm) 
was detected using a JC-1 mitochondrial membrane potential assay kit (Beyotime Biotech), following the 
manufacturer’s protocol. After the treatment, the cells were incubated at 37 °C for 20 min with 5 μg/mL JC-1 
(5,5,6,6-tetrachloro-1,1,3,3- tetraethylbenzimidazolylcarbocyanine iodide), then washed twice with PBS and 
placed in fresh medium without serum. The samples were analyzed using a FACSCalibur cytometer (Becton 
Dickinson) equipped with a 488 nm argon laser.

Preparation of cytoplasmic and nuclear extracts. To examine the relative proportion of STAT3 in the 
cytoplasm and nucleus, cytoplasmic and nuclear extracts were prepared. In brief, control and treated cells were 
collected and suspended in a buffer containing 10 mM HEPES (pH 7.9), 10 mM KCl, 0.1 mM EDTA (pH 8.0), 
0.1 mM EGTA (pH 7.0), 1 mM DTT, 0.5 mM PMSF, 2 μg/mL leupeptin, 2 μg/mL aprotonin, 0.5 mg/mL benzami-
dine. After 15 min, NP-40 (0.25%) was added, and cell lysate was vortexed for 10 s and centrifuged at 10000 rmp 
at 4 °C for 1 min. The supernatants were transferred to fresh tubes and considered as cytoplasmic extract. The 
pellets were resuspended in a buffer containing 20 mM HEPES (pH 7.9), 400 mM NaCl, 1 mM EDTA (pH 8.0), 
1 mM EGTA (pH 7.0), 1 mM DTT, 1 mM PMSF, 2 μg/mL leupeptin, 2 μg/mL aprotonin, 0.5 mg/mL benzamidine. 
After 30 min incubation on ice, the extract was centrifuged at 14000 rmp at 4 °C for 10 min, and the resultant 
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supernatants were collected as nuclear extracts. The protein content in the nuclear and cytoplasmic fractions was 
determined using a Pierce BCA protein assay kit.

Western blot analysis. Cells were rinsed twice with cold PBS and then lysed with RIPA buffer containing a 
protease inhibitor mixture at 1:100 dilution on ice for 30 min. Insoluble components of cell lysates were removed 
by centrifugation (4 °C, 12000 rmp, 10 min), and protein concentrations were measured using a Pierce BCA pro-
tein assay kit. Proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 
and transferred from the gel onto polyvinylidene difluoride (PVDF) membranes. The membranes were blocked 
with 5% skim milk in TBST buffer for 1 h at room temperature, and then incubated with corresponding primary 
antibodies diluted in 5% milk-TBST solution at 4 °C with gentle shaking overnight. After washing five times 
(5 min each), corresponding HRP-conjugated secondary antibodies were incubated for 1 h at room temperature. 
Immunoreactive bands were visualized using an ECL detection kit (Invitrogen, USA) following the manufactur-
er’s instruction.

IL-6 induction of STAT3 phosphorylation. Cells were seeded in 10 cm plates and allowed to adhere over-
night. The following day, the specimen was serum starved for 24 h. The specimen was then treated with or without 
tested agents at the dose of 2 μM. After 24 h, the treated specimen was stimulated with IL-6 (25 ng/mL). Cells were 
then harvested after 30 min and analyzed by Western blot.

Statistical analysis. All data are expressed as mean ± SD. The statistical analysis was performed by the 
Student’s t-test, using the statistical software OriginPro 2015. P values < 0.05 were considered statistically 
significant.
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